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Abstract Lithiation and delithiation in electrodes lead to the evolution of internal stresses which may cause
the mechanical degradation of batteries. In this work, the diffusion-induced stress of a hollow cylindrical
electrode under either galvanostatic or potentiostatic charging is analytically solved based on a diffusion and
mechanical coupled continuum model. The stress distributions at the end faces of the electrode with both ends
traction free or fixed are also analyzed, the end effect of diffusion-induced bending is taken into account, and
the resulting bending stresses are of practical importance for the stress distribution at the end faces. Using the
obtained analytical expressions, a numerical example is given, and the results show that the stress distributions
at the end faces change dramatically compared to the stresses remote from ends, both the charging mode and
end constraints have significant effects on the distribution of stresses at the end faces of the electrodes, and the
most dangerous location during the charging process is affected by the end’s constraint conditions.

1 Introduction

Lithium-ion batteries are the dominant energy storage medium for portable electronic devices and electric
vehicles due to their high energy density and long cyclic life. To improve the performance of lithium-ion
batteries, thorough understanding of the failure mechanisms is of great necessity. Mechanical degradation is
one of the primary modes of failure [1–3]. Lithiation and delithiation in electrodes during electrochemical
charging and discharging result in volumetric strain in electrodes, lead to the evolution of internal stresses, and
thereby induce damage and fracture of the active materials, causing the failure of batteries [4–7].

Mechanical degradation due to the insertion and extraction of Li ions in the electrodes is involved with
the diffusion-induced stress (DIS) from the mechanics perspective. Prussin [8] analyzed the diffusion-induced
stress in a thin plate based on the analogy between thermal stress and DIS. Subsequently, extensive works have
addressed the evolution of diffusion-induced stress. Following the Fick’s law, Lee et al. [9] studied the concen-
tration distribution and diffusion-induced stress in a hollowcylinderwith constant surface stress. Themagnitude
and distribution of diffusion-induced stresses were significantly affected by surface stress and surface energy,
and the tensile stresses could decrease significantly due to the surface effects [10–12]. For potentiostatic or
galvanostatic operation, the evolutions of diffusion-induced stress and strain energy were quite different [13],
and the surface tangential stress in the discharge process for graphite evolved like decaying sinusoidal waves
[14]. Deshpande et al. [15] showed that the concentration-dependent elastic modulus has a significant effect on
the evolution of diffusion-induced stress in battery electrodes. Cai and Guo [16] not only considered the effect
of concentration-dependent elastic modulus on diffusion-induced stresses in anisotropic anode particles, but
also the effect of the concentration-dependent diffusion coefficient was studied. The core–shell structure model
was usually applied to investigate the two-phase electrode particles, and discontinuities of diffusion-induced
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stress were found because of the concentration jumps at the phase boundaries [17]. Zhang et al. [18] and Hu
et al. [19] studied the effects of the composition gradient on the stress evolution in electrodes and demonstrated
that the composition gradient could improve the mechanical performance of electrodes. In these works, the
concentration gradient is always the driving force for the diffusion; however, it is also demonstrated that the
diffusion-induced stress conversely influences the rate of lithium diffusion [20–23], and two-way coupling
between stress and diffusion should be accounted. Christensen and Newman [20, 24] developed a mathe-
matical model that coupled the hydrostatic pressure into the driving force for diffusion and reported that the
maximum stress in lithium manganese oxide and graphite particles increased with particle size and charging
rate. Cui et al. [25] proposed a stress-dependent chemical potential to investigate the insertion and extraction
of lithium ions, and the effects of nonlinear, inelastic and finite deformation were accounted for. Anand [26]
developed a unified framework which coupled the large elastic–plastic deformation with the Cahn–Hilliard-
type species diffusion, and then, the effects of plasticity on the electrochemical performance of a-Si anodes
were identified. Zhang et al. [27] developed a rate-dependent model to analyze the plastic flow and phase trans-
formation in a cylindrical Si electrode, and the temporal evolution of the interface was captured by a diffusion
model in the framework of Cahn–Hilliard phase-field theory. Chen et al. [28] investigated the cyclic plasticity
behavior of an electrode subjected to a cyclic charging/discharging process, and the shakedown, ratcheting
and fatigue responses were analyzed by both numerical method and experiments. Based on the free-energy
imbalance inequality, Drozdov [29] derived a constitutive model for the viscoplastic response of the electrode
to analyze the stresses in a spherical electrode particle. Bagheri et al. [30] proposed a constitutive theory for
amorphous anode materials, and the viscoplastic deformations and microstructure evolution were accounted
for. Introducing the mechanical potential [31] in the chemical potential, the continuum models that coupled
diffusion and stress were presented [32–34], and the effect of hydrostatic stress on the diffusivity coefficient
was also considered [35–37]. Recently, Chen and Huang [38] developed a self-consistent formulation that
contains mechanical–diffusional–electrochemical coupling effects to study the variation of stress distribution
and lithium-ion fraction of the electrodes.

To accommodate the mechanical degradation of electrodes caused by diffusion in the electrodes, various
optimizing electrode structures have been used. For example, Holzapfel et al. [39] and Patel et al. [40] showed
that the composite structures electrode can withstand the volume change to obtain better capacity retention and
structure stability. Zhu et al. [41] evaluated the fatigue damageof a layered electrode plate under electrochemical
cycling by the finite element method, and the results fitted well with experimental tests. Chan et al. [42] found
that silicon nanowire electrodes can accommodate large strain upon lithiation and delithiation with little
capacity fading. Xiao et al. [43] introduced a patterned structure on thin-film electrodes, the gaps between Si
patterns provide stress relaxation, and the cycling stability of electrodes was improved. Bhandakkar and Gao
[44] analyzed the diffusion-induced stress in a thin strip electrode, and the results suggested that nanoscale size
can suppress crack formation under large diffusion-induced stresses. Yao et al. [45] compared the maximum
tensile stresses of a sphere and a hollow sphere with an equal volume of Si, and the results indicated that the
hollow structure reduced the maximum tensile stress. However, the geometry of the electrodes will affect the
stress distribution and performance of the electrodes [36]. Zhang et al. [46] analyzed the diffusion-induced
buckling of nanowires with radial diffusion or axial diffusion. The critical buckling time for the onset of
buckling decreases with increasing wire length and current density, and the constraints to the ends of a wire
play an important role in determining the critical buckling time [47–50]. Chakraborty et al. [51] found that the
buckling also happened in cylinder electrodes for the diffusion-induced large compressive axial stress.

For hollow cylindrical electrodes, Guo et al. [52] considered the effects of hydrostatic stress and
concentration-dependent elastic modulus on diffusion-induced stress (DIS) in a cylindrical Li-ion battery
by finite element calculations using the commercial package COMSOL Multiphysics 3.5a. The distribution
of diffusion-induced stress at the ends is more complicated because of local irregularities. Yang [53] consid-
ered the effect of diffusion-induced bending and obtained the analytical formulations of the diffusion-induced
stresses of a hollow cylinder electrode under the potentiostatic operation, and the effect of stress on diffusion
was not considered. To clarify the end effect caused by lithiation or delithiation, we adopted a continuummodel
of diffusion coupled with mechanics to analyze the stress evolutions of the electrode under either galvanos-
tatic or potentiostatic condition, the effect of surface pressures and end bending was also considered, and the
bending moment in Yang’s work [53] has also been amended to be more reasonable. Analytical formulations
of the diffusion-induced stresses at the end faces and remote from the ends were obtained. Numerical results
showed that diffusion-induced bending had a significant effect on the stress distribution at end faces and both
the charging mode and ends condition could affect the distribution of DIS in the electrodes.
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2 Basic formulations for chemo-mechanical coupled model

Based on the theory of nonequilibrium thermodynamics, the diffusion equation with chemo-mechanical cou-
pling term for homogenous isotropic media is given by [31, 54, 55]

∂c

∂t
� Ag∇2c + A

�

b∇2, e (1)

in which A is the species mobility and relates to the diffusion coefficient D as A � Dc0
RT (R is gas constant), g

is the scalar chemistry modulus, e is the volume strain and
�

b is the chemistry-strain modulus expressed by the
Lame constants λ and the G and chemical dilation coefficient β as follows:

�

b � −(2G + 3λ)β. (2)

The diffusion equation is thermodynamically consistent and differs from Fick’s second law for the mechan-
ical effect on species diffusion is accounted. Its aimlessness in line with the diffusion equation given by
Haftbaradaran et al. [56] where the hydrostatic pressure affects the diffusion is considered.

The field equation of motion with the inertia term and body force disregarded is given by

G∇2u + (λ + G)∇(∇ · u) +
�

b∇c � 0. (3)

In the framework of linear elasticity, the isotropic constitutive relation between the stress and strain with
the effect of diffusion is expressed as

σ � 2Gε +

(
λe +

�

bc

)
I. (4)

Consider a homogeneous isotropic hollow cylinder with inner radius a and outer radius b, as shown in
Fig. 1. The cylindrical coordinate system (r, θ, z) is used where r is the radial direction, θ is the circumferential
direction and z is the cylinder axis direction. For axisymmetric problem, the field variables are independent of
θ , and the displacement components are ur � ur (r, z, t), uθ � 0 and uz � uz(r, z, t). The strain components
can be calculated from the displacement as

εr � ∂ur
∂r

, εθ � ur
r

, εz � ∂uz
∂z

and γr z � ∂ur
∂z

+
∂uz
∂r

. (5)

Then, the Navier equation in the cylindrical coordinate system can be obtained as:
�

b
∂c

∂r
+ (λ + 2G)

∂e

∂r
− G

(
−∂2ur

∂z2
+

∂2uz
∂r∂z

)
� 0, (6)

�

b
∂c

∂z
+ (λ + 2G)

∂e

∂z
− G

(
1

r

∂ur
∂z

− 1

r

∂uz
∂r

+
∂2ur
∂r∂z

− ∂2uz
∂r2

)
� 0, (7)

and the volume strain is

e � divu � 1

r

∂(rur )

∂r
+

∂uz
∂z

. (8)

The Laplace operator for the axisymmetric situation is

∇2 � ∂2

∂r2
+
1

r

∂

∂r
+

∂2

∂z2
. (9)

It is easily seen fromEqs. (6) and (7) that the volume strain and the species concentration have the following
important relation:

∇2e � −
�

b

λ + 2G
∇2c. (10)

Substituting Eq. (10) in Eq. (1), the diffusion equation with chemo-mechanical coupling term is

∂c

∂t
� A

⎛
⎝g −

�

b
2

λ + 2G

⎞
⎠∇2c. (11)

The second term in the right-hand side of Eq. (11) represents the coupling effect on the diffusion, and
it shows that the volume strain varies with the change in concentration and affects the diffusion processes
conversely.
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Fig. 1 The sketch of hollow cylindrical electrode

3 Analytical solutions for a hollow cylindrical electrode

Assuming that the length of the hollow cylinder is long enough or finite with both ends completely constrained,
then the axial displacement component can be ignored, and the nonzero displacement in the electrode is u � ur
(r, t) and strain–displacement relations are

εrr � dur
dr

, εθθ � ur
r

. (12)

The equation of motion is simplified as

∂2ur
∂r2

+
1

r

∂ur
∂r

− ur
r2

� −
�

b

λ + 2G

∂c

∂r
. (13)

The radial displacement can be found by integration as

u � (1 + v)β

1 − v

1

r

∫ r

a
crdr + C1r +

C2

r
, (14)

where v is the Poisson’s ratio and C1 and C2 are the constants to be determined from boundary conditions.
The stresses components can be deduced by using Eq. (14) in Eq. (4),

σrr � − βE

1 − v

1

r2

∫ r

a
crdr +

C1E

(1 + v)(1 − 2v)
− C2E

(1 + v)r2
, (15)

σθθ � − βE

1 − v
c +

βE

1 − v

1

r2

∫ r

a
crdr +

C1E

(1 + v)(1 − 2v)
+

C2E

(1 + v)r2
, (16)

σzz � 2C1Ev

(1 + v)(1 − 2v)
− βE

1 − v
c, (17)

where E represents the modulus of elasticity.
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The hollow cylinder is supposed to be subject to inner pressure P0 and external pressure P1, that is,

σrr � P0 at r � a, (18)

σrr � P1 at r � b. (19)

The constants C1 and C2 can be obtained from the boundary conditions (18) and (19):

C1 � (1 + v)(1 − 2v)

E

[
b2P1 − a2P0

b2 − a2
+

Eβ

1 − v

1

b2 − a2

∫ b

a
crdr

]
, (20)

C2 � 1 + v

E

[
b2a2(P1 − P0)

b2 − a2
+

Eβ

1 − v

a2

b2 − a2

∫ b

a
crdr

]
. (21)

Then, the displacement and stresses in Eqs. (14)–(17) can be expressed as

u � 1 + v

E

[
1

r

b2a2(P1 − P0)

b2 − a2
+ (1 − 2v)r

b2P1 − a2P0
b2 − a2

]

+
(1 + v)β

1 − v

[
1

r

∫ r

a
crdr +

1

r

a2

b2 − a2

∫ b

a
crdr + (1 − 2v)

r

b2 − a2

∫ b

a
crdr

]
, (22)

σrr � b2P1
b2 − a2

(
1 − a2

r2

)
− a2P0

b2 − a2

(
1 − b2

r2

)
+

βE

1 − v

1

r2

[
−

∫ r

a
crdr +

r2 − a2

b2 − a2

∫ b

a
crdr

]
, (23)

σθθ � b2P1
b2 − a2

(
1 +

a2

r2

)
− a2P0

b2 − a2

(
1 +

b2

r2

)
− βE

1 − v
c +

βE

1 − v

1

r2

[∫ r

a
crdr +

r2 + a2

b2 − a2

∫ b

a
crdr

]
, (24)

σzz � 2v
(
b2P1 − a2P0

)
b2 − a2

+
2vβE

1 − v

1

b2 − a2

∫ b

a
crdr− βE

1 − v
c. (25)

These are the displacement and stress distribution in the hollow cylinder far away from the cylinder end
when the strain in the direction of the z-axis is zero. They can deteriorate into the elastic solutions of an infinite
cylinder subjected to internal and external pressure with the chemical terms neglected.

For a finite length cylinder with both ends free, there will be boundary conditions σzz � 0 at both ends.
Assuming that the other initial and boundary conditions for concentration and stresses should be maintained,
then it is impossible to satisfy σzz � 0 at each point. Therefore, we make the resultant forces at both ends zero
to satisfy the boundary conditions approximately,

∫ b

a
σzz · 2πrdr � 0. (26)

Adding a constant Q to the stress σzz shown in Eq. (25) makes Eq. (26) come true, that is,

∫ b

a

{[
2v

(
b2P1 − a2P0

)
b2 − a2

+
2vβE

1 − v

1

b2 − a2

∫ b

a
crdr− βE

1 − v
c

]
+ Q

}
· 2πrdr � 0. (27)

After integration, Q can be solved as

Q � −2v
(
b2P1 − a2P0

)
b2 − a2

+
2βE

b2 − a2

∫ b

a
crdr . (28)

Superpositioning Eqs. (28) and (25), the axial stress expression far away from the ends for a finite length
hollow cylinder with both ends free is obtained to

σzz � Eβ

1 − v

[
2

b2 − a2

∫ b

a
crdr − c

]
. (29)

At both ends of the hollow cylinder, the axial stress is still not equal to zero, but its resulting force is equal
to zero. The stresses σrr and σθθ far away from the ends remain the same as shown in Eqs. (23) and (24), and
the displacement is changed as to
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Fig. 2 The bending moments at end faces for traction free ends condition

u � 1 + v

E

[
1

r

b2a2(P1 − P0)

b2 − a2
+
1 − v

1 + v
r
b2P1 − a2P0

b2 − a2

]

+
(1 + v)β

1 − v

[
1

r

∫ r

a
crdr +

1

r

a2

b2 − a2

∫ b

a
crdr +

1 − 3v

1 + v

r

b2 − a2

∫ b

a
crdr

]
. (30)

In the foregoing discussion, we considered the stresses far away from the ends; however, the stress distri-
bution is more complicated near the ends due to local irregularities. For the hollow cylinder with both ends
free, Eq. (29) requires that the normal stress caused by nonuniform distribution of concentration in the radial
direction should be distributed over the ends of the cylinder. To have a free end, the stress produced by forces
equal and opposite to that shown in Eq. (29) must be superposed. Those forces can be reduced to bending
momentsM at the end faces, shown in Fig. 2, and introduce the deflection of the hollow cylinder near the ends.
Supposing the hollow cylinder is long enough that the free end condition will have an impact only locally, then
take any end of the cylinder as a representative for analysis. The bending moments are uniformly distributed
at the end faces as

M � −
∫ b

a
σzz

(
r − a + b

2

)
· 1dr � −

∫ b

a

Eβ

1 − v

[
2

b2 − a2

∫ b

a
crdr − c

](
r − a + b

2

)
· 1dr

� − Eβ

1 − v

(
a + b

2

∫ b

a
cdr −

∫ b

a
crdr

)
. (31)

Evidently, the maximum deflection is at the ends, and the resultant hoop stress at the end faces of a
thin-walled cylinder of thickness h with traction free conditions is [57]

σ E
θθ � b2P1

b2 − a2

(
1 +

a2

r2

)
− a2P0

b2 − a2

(
1 +

b2

r2

)
+

Eβ

1 − v

1

r2

(
r2 + a2

b2 − a2

∫ b

a
crdr +

∫ r

a
crdr − cr2

)

+
Eβ

2(1 − v)χ2K

E

r
×

(∫ b

a
crdr − a + b

2

∫ b

a
cdr

)
− Eβv

1 − v

(
2

b2 − a2

∫ b

a
crdr − c

)
, (32)

where χ � 4

√
3(1−v2)(
a+b
2

)2
h2
[4]

3
(
1−v2

)
(
a+b
2

)2
h2

and K � Eh3

12(1−v2)
is the flexural rigidity of the strip on the hollow cylinder

in the axial direction. The axial stress at the end face is ignored because the resultant force in axial direction
is zero under free ends condition.

For the hollow cylinder of length l with both ends completely constrained, the built-in condition was
adopted at each end to approximate the mechanical constraint. In addition to the case of a hollow cylinder
with both ends free, any end of the cylinder can be taken as representative for the analysis, supposing that the
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Fig. 3 The shear force and bending moments at end faces for fixed end condition

hollow cylinder is long enough. The built-in condition introduces shear forces V and bending momentsM on
the end surfaces of the hollow cylinder, shown in Fig. 3, and the deflection caused by these reaction forces V
and momentsM can be found as [57]

w � e−χ z

2χ3K
[V cosχ z − Mχ(cosχ z − sin χ z)], (33)

where the shear force V and bending moments M per unit length of the edge can be found by the built-in
conditions

M � −2χ2K (1 + v)

E

[
1

b

b2a2(P1 − P0)

b2 − a2
+ (1 − 2v)b

b2P1 − a2P0
b2 − a2

]
− 4χ2Kβ(1 + v)

b

b2 − a2

∫ b

a
crdr ,

(34)

V � −4χ3K (1 + v)

E

[
1

b

b2a2(P1 − P0)

b2 − a2
+ (1 − 2v)b

b2P1 − a2P0
b2 − a2

]
− 8χ3Kβ(1 + v)

b

b2 − a2

∫ b

a
crdr .

(35)

Notice that the largest deflection caused by these reaction forces at the end face occurs at z � 0 and the
corresponding average hoop stress and axial stress are

σ b
θθ � − (1 + v)

a

[
1

b

b2a2(P1 − P0)

b2 − a2
+ (1 − 2v)b

b2P1 − a2P0
b2 − a2

]
− 2β(1 + v)

E

a

b

b2 − a2

∫ b

a
crdr (36)

σ b
zz � 24χ2K (1 + v)

Eh3

(
r − a + b

2

)[
1

b

b2a2(P1 − P0)

b2 − a2
+ (1 − 2v)b

b2P1 − a2P0
b2 − a2

]

+
48χ2Kβ(1 + v)

h3

(
r − a + b

2

)
b

b2 − a2

∫ b

a
crdr . (37)

Thus, the resultant hoop stress near the end faces of the thickwall hollowcylinderwith both ends constrained
can be approximated as

σ E
θθ � b2P1

b2 − a2

(
1 +

a2

r2

)
− a2P0

b2 − a2

(
1 +

b2

r2

)
+

βE

1 − v

1

r2

[
r2 + a2

b2 − a2

∫ b

a
crdr +

∫ r

a
crdr − cr2

]

−
(

(1 + v)

a
− 24vχ2K (1 + v)

Eh3

(
r − a + b

2

))[
1

b

b2a2(P1 − P0)

b2 − a2
+ (1 − 2v)b

b2P1 − a2P0
b2 − a2

]

− 2β(1 + v)
b

b2 − a2

(
E

a
− 24vχ2K

h3

(
r − a + b

2

))∫ b

a
crdr (38)

and the resultant axial stress is
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σ E
zz � 2v

(
b2P1 − a2P0

)
b2 − a2

+
βE

1 − v

(
2v

b2 − a2

∫ b

a
crdr − c

)

+
24χ2K (1 + v)

Eh3

(
r − a + b

2

)[
1

b

b2a2(P1 − P0)

b2 − a2
+ (1 − 2v)b

b2P1 − a2P0
b2 − a2

]

+
48χ2Kβ(1 + v)

h3

(
r − a + b

2

)
b

b2 − a2

∫ b

a
crdr . (39)

It should be noted that the length of the hollow cylinder in the preceding discussion is assumed to be large.
If this is not the case, the bending at one end cannot be considered as independent of the conditions at the other
end, and a more detailed discussion of the stress distribution becomes necessary.

Considering the diffusion of lithium into a hollow cylinder electrode, the transport of lithium ions in this
axisymmetric case can be obtained from Eq. (11) as

∂c

∂t
� Am

(
∂2c

∂r2
+
1

r

∂c

∂r

)
, (40)

where m � g −
�
b
2

λ+2G . Suppose that the initial Li-ion concentration in the hollow cylinder is zero, that is,

c(r, 0) � 0. (41)

For a galvanostatic charging process, the Neumann boundary condition is applied:

Am
∂c(r, t)

∂r

∣∣∣∣
r�a

� 0 for t ≥ 0, (42)

Am
∂c(r, t)

∂r

∣∣∣∣
r�b

� in
F

for t ≥ 0, (43)

where F � 96,485.3 Cmol−1 is the Faraday’s constant and in is the applied current density flowing into the
electrode. But, to simulate the potentiostatic charging, the boundary conditions are

∂c(r, t)

∂r

∣∣∣∣
r�a

� 0 for t ≥ 0, (44)

c(r, t)|r�b � c0 for t ≥ 0, (45)

where c0 is the constant surface concentration.
Using the method of separation of variables, the solutions of Eq. (40) with initial boundary conditions for

galvanostatic and potentiostatic charging can be solved analytically [58, 59], and the concentration expression
for galvanostatic charging is

(46)

c � inb

FAm

{
2Amt

b2 − a2
+

r2

2
(
b2 − a2

) − a2 ln r

b2 − a2
− b3 − a3

6 (b − a)
(
b2 − a2

)

+
a2 (b ln b − b − a ln a + a)

(b − a)
(
b2 − a2

) +
∞∑
n�1

An [Y1 (ξna) J0 (ξnr ) − J1 (ξna) Y0 (ξnr )] e
−Amξ2n t

}
,

where Ji and Yi are the Bessel functions of order i of the first and second kind, respectively. ξn must be the
positive roots of the equation

J1(ξa)Y1(ξb) − Y1(ξa)J1(ξb) � 0. (47)

The coefficients An are given by

An � −π2

2

J21(ξnb)

J21(ξnb) − J21(ξna)
[J1(ξna)Y0(ξnb) − Y1(ξna)J0(ξnb)]. (48)
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Fig. 4 The distribution of concentration at different times under galvanostatic charging

But for potentiostatic charging, the concentration expression is provided as [58, 59]

c � c0

{
1 − π

∞∑
n�1

J0(bζn)J1(aζn)

J20(bζn) − J21(aζn)
[J1(aζn)Y0(rζn) − J0(rζn)Y1(aζn)]e

−Amζ 2n t

}
, (49)

where ζn are the positive roots of the following equation:

J0(bζn)Y1(aζn) − J1(aζn)Y0(bζn) � 0. (50)

Applying the concentration expressions in the equations for stresses, the diffusion-induced stresses both
at or away from the end faces of the hollow cylinder can be obtained.

4 Results and discussion

Using the above solutions, we consider a thin-walled hollow cylindrical electrode of inner radius 10.5 µm and
outer radius 11.0 µm. For simplicity, the uniform pressure on the inner and outer surfaces of the electrode
is supposed to be zero. The material parameters used here are D � 1.76 × 10−15 m2/s, v � 0.2, β �
1.92 × 10−6 m3/mol E � 70 GPa and c0 � 2.3 × 104 mol/m3 [60]. The chemistry modulus g is estimated
from the relationship between chemical potential and concentration as g � 1.56 J · m3/mol2.

4.1 The stress distribution under galvanostatic charging

The concentration distribution for galvanostatic charging at different times is shown in Fig. 4, and it is evident
that the Li concentration in the electrode increases gradually with time and that it decreases from the outer
surface to inner surface at any time, since there is a constant surface flux at the outer surface. The distribution

curves of Li concentration along the radius are almost parallel to each other after 7.50 s (about 0.5(b−a)2

Am ),
which indicates that the Li concentration on the whole hollow cylindrical electrode nearly keeps a stable and
uniform growth after 7.50 s.

Figure 5 shows the variations of the stress components away from the ends at different times, and the
radial stress and hoop stress are the same under free ends condition or fixed ends condition and are shown in
Figs. 5a, b, respectively. From Fig. 5a, we note that the radial stress is tensile at all points and becomes zero at
the inner and outer surface of the hollow cylinder. The value of the tensile stress gradually increases with time
until 7.50 s, and after that, it remains stable. However, Fig. 5b shows that the hoop stress is tensile at the inner
surface and compressive at the outer surface, it has its largest numerical value at the inner and outer surfaces
of the electrode, and its value also increases until 7.50 s. It is known that the diffusion of Li concentration
causes the expansion of the hollow cylindrical electrode, and for the galvanostatic charging considered here,
the concentration at outer surface is larger than at the inner surface, which leads to circumferential compressive
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(a) (b)

(c) (d)

Fig. 5 Stress distributions away from the ends at different times under galvanostatic charging: a radial stress, b hoop stress, c axial
stress under traction free ends condition, d axial stress under fixed ends condition

stress at the outer surface but circumferential tensile stress at the inner surface and radial tensile stress at all
points. The increases of the stress values are due to the raise of the Li concentration in the electrode, and the
stable and uniform growth of concentration after 7.50 s results in the stable stress state at last.

Figure 5c shows the axial stress of points remote from the ends under free ends condition, and it is also
tensile at the inner surface and compressive at the outer surface. That is because the axial expansion at the
outer surface caused by diffusion is constrained by the surrounding materials and leads to a stretch of the inner
surface. We also note that at the inner and outer surfaces, the value of axial stress is the same as that of hoop
stress under free ends condition, and it is because Eq. (24) is equal to Eq. (29) at the surfaces.

Figure 5d shows the variation of the axial stress away from the ends under fixed ends condition, and it
shows that the hollow cylindrical electrode gets into a state of compression in the axial direction, and the
compressive stress increases with the rise of concentration constantly; since both ends of the electrode are
constrained, the diffusion-induced expansion is restricted in the axial direction.

For the thin hollow cylindrical electrode with the traction free end faces, the resultant axial stress at the
end faces is zero, and the variation of the resultant hoop stress at the end faces for different times is shown
in Fig. 6. It is evident that the hoop stress at the end faces is different from that away from the ends because
of the local bending effect caused by diffusion. In Fig. 7, the hoop stress at the end faces and that away from
the ends are compared, and it shows that the tensile stress at the inner face is enlarged and the compressive
stress at the outer surface is reduced, since the local bending causes stretch in circumferential direction. This
bending-induced hoop stress at the end faces is always at the tensile state, and it also increases similar to the
axial stress remote from the ends. The maximum tensile stress at the free end of the thin-walled electrode is
74% greater than the stress at points remote from the ends under galvanostatic operation.
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Fig. 6 Hoop stress distributions at the end faces for different times under galvanostatic charging and traction free ends condition

Fig. 7 The comparison of hoop stress at end faces and away from ends under galvanostatic charging and traction free ends
condition

In order to predict the most dangerous location during the charging process, the vonMises equivalent stress
in the cylindrical electrode is analyzed. Figure 8 shows the comparison of equivalent stress at the end faces and
away from the ends under galvanostatic charging and traction free ends condition. The von Mises equivalent
stress both at the end faces and away from the ends increases during the charging process, and the increment of
the equivalent stresses gradually slowing down for the distribution of stress components in electrode tends to
be stable. Though the end bending affects the distribution of stresses at the end face, the maximum equivalent
stress for the hollow cylindrical electrode under galvanostatic charging and traction free ends condition still
occurs at the outer surface away from the ends.

For the case of both ends fixed, the distribution of the resultant hoop stress and axial stress at the end faces
for different times is shown in Figs. 9 and 10, respectively. Figure 9 shows that the hoop stress gets compressive
at the whole end faces, and its value also increases continuously with rising Li concentration. This is because
the fixed ends prevent the ascent of the circumference of the end faces of the thin-wall electrode caused by
chemical expansion, thus imposing a great constraint on the end faces in the circumferential direction. This
constraint will increase with the concentration and leads to an increase of compressive stress at the end faces.
The maximum compressive stress occurs on the edge of the end faces, and it transfers from the outer edge to
the inner edge with the ongoing galvanostatic operation.

From Fig. 10, we note that the axial stress at the end faces is compressive on the inner edge, while it is
first compressive and then tensile on the outer edge. Compared to Fig. 5d which shows the axial stress remote
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Fig. 8 The comparison of equivalent stress at end faces and away from ends under galvanostatic charging and traction free ends
condition

Fig. 9 Hoop stress distributions at the end faces for different times under galvanostatic charging and fixed ends condition

Fig. 10 Axial stress distributions at the end faces for different times under galvanostatic charging and fixed ends condition
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Fig. 11 The comparison of equivalent stress at end faces and away from ends under galvanostatic charging and fixed ends
condition

Fig. 12 The distribution of concentration at different times under potentiostatic charging

from the ends, it indicates that the fixed end produces a bending moment on the thin wall of the electrode from
outside to inside, which leads to the compression on the inner edge and stretch on the outer edge.

The comparison of equivalent stress at the end faces and that away from the ends of the hollow cylindrical
electrode under galvanostatic charging and fixed ends condition is shown in Fig. 11. It shows that the Mises
equivalent stresses both at the end faces and away from the ends increase during the charging process, because
the axial stress away from the ends, the hoop stress and axial stress at the end faces increase with the diffusion
process when the ends of electrode are fixed. The maximum equivalent stress for the electrode under galvano-
static charging and fixed ends condition occurs at the inner edge of the end faces, and its value grows with the
galvanostatic charging process.

4.2 The stress distribution under potentiostatic charging

The radial distribution of concentration at different times for potentiostatic operation is shown in Fig. 12. It
shows that, for potentiostatic operation, the concentration at outer surface of the electrode keeps a constant
value, while in the electrode the Li concentration increases with time and eventually reaches the equilibrium
state where the Li concentration is uniformly distributed along the radius. The diffusion of Li concentration
proceeds from the outer surfaces to the inner surface, and the diffusion rate of the concentration gradually
slows down for the concentration gradient decreasing.
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(a)

(c) (d)

(b)

Fig. 13 Stress distributions away from the ends at different times under potentiostatic charging: a radial stress, b hoop stress,
c axial stress under traction free ends condition, d axial stress under fixed ends condition

The distribution of the stresses away from the end at different times for potentiostatic operation is shown in
Fig. 13. The radial stress and hoop stress independent of end conditions are shown in Figs. 13a, b, respectively.
The axial stress distribution for free ends and fixed ends is shown in Figs. 13c, d, respectively. From these
figures, we find that the distribution of stress remote from the ends are similar to that for galvanostatic charging;
however, its value and evolution pattern are different from that for galvanostatic charging. Figure 13a shows
that the radial tensile stress increases first and then decreases after about 0.75 s. The hoop stress shown
in Fig. 13b presents the same trend at the inner surface, while at the outer surface, the compressive stress
gradually decreases. Eventually, the radial stress and hoop stress disappear in the equilibrium state where the
Li concentration is uniformly distributed. The evolution of axial stress remote from the ends under free ends
condition shown in Fig. 13c is also similar to that of the hoop stress, and the reason is the same as that for
galvanostatic charging. Under fixed ends condition, the axial stress away from the ends is compressive in the
electrode as shown in Fig. 13d. The compressive stress increases at the inner surfaces but decreases at the outer
surfaces with the diffusion processes and finally comes to the same value in the equilibrium state.

The distribution of resultant hoop stress at the end faces of the electrode with traction free ends under
potentiostatic charging is shown in Fig. 14. Its evolution is identical to that of the hoop stress remote from the
ends and also eliminated at last for the bending moment M disappearing when Li concentration is uniformly
distributed in electrode. To analyze the end effect, the comparison of distribution of them at 0.15 s, 0.75 s and
3.00 s is also shown in Fig. 15. The tensile hoop stress at the inner edge of the end faces is increased and the
value of the compressive hoop stress at the outer edge is diminished compared to the hoop stress remote from
the ends at the same time. This indicates the bending moment-induced hoop tensile stress at the end faces, and
the value of the induced stress is also increased first and then diminished to zero. The maximum tensile stress
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Fig. 14 Hoop stress distributions at the end faces for different times under potentiostatic charging and traction free ends condition

Fig. 15 The comparison of hoop stress at end faces and away from ends under potentiostatic charging and traction free ends
condition

at the free end of the thin wall electrode is about 76% greater than the maximum stress at points remote from
the ends under potentiostatic operation.

The von Mises equivalent stresses at end faces and away from the ends for the hollow cylindrical electrode
under potentiostatic charging and traction free end condition are shown in Fig. 16. The equivalent stresses at
the inner surface away from the ends and at the inner edge of end faces first increase and then decrease, while
at the outer surface and outer edge, the equivalent stress gradually decreases. The maximum equivalent stress
occurs at the beginning of the potentiostatic charging process, and its position is at the outer surface away from
the ends of the hollow cylindrical electrode.

For the electrode with fixed ends under potentiostatic charging, the distribution of resultant hoop stress at
the end faces is shown in Fig. 17. It shows that the hoop stress gets into compressive at the end faces, and
its value increases at the inner edge, decreases at the outer edge and remains unchanged after reaching the
equilibrium state, when the Li concentration in the electrode is uniformly distributed and no longer grows under
potentiostatic charging. The maximum compressive stress at the end faces is 33% greater than the maximum
compressive stress remote from the ends.

The axial stress at the end faces of the electrode with fixed ends under potentiostatic charging is shown in
Fig. 18. It shows that the distribution of axial stress at the end faces under potentiostatic charging is the same
as that under galvanostatic charging. However, the axial stress at the end faces under potentiostatic charging
will come to a stable state when the Li concentration is uniformly distributed in the electrode at equilibrium
sate.
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Fig. 16 The comparison of equivalent stress at end faces and away from ends under potentiostatic charging and traction free ends
condition

Fig.17 Hoop stress distributions at the end faces for different times under potentiostatic charging and fixed ends condition

Fig. 18 Axial stress distributions at the end faces for different times under potentiostatic charging and fixed ends condition
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Fig. 19 The comparison of equivalent stress at end faces and away from ends under potentiostatic charging and fixed ends
condition

Figure 19 shows the equivalent stress at the end faces and that away from the ends of the hollow cylindrical
electrode under potentiostatic charging and fixed ends condition. The vonMises equivalent stresses at the inner
surface face away from the ends and at the inner edge of end faces increase during the charging process, and the
distribution of the equivalent stress in the electrode will come to a steady state for the Li concentration in the
electrode uniformly distributed for the potentiostatic charging. For the electrode with both ends constrained,
the maximum equivalent stress occurs at the end of the potentiostatic charging process and its position is at
the inner edge of the end faces.

5 Conclusions

In this work, based on a diffusion and mechanical coupled continuum model, the diffusion-induced stresses of
a thin wall hollow cylindrical electrode under either galvanostatic operation or potentiostatic operation were
analytically solved. Taking into account the end effect of diffusion-induced bending near the end faces of the
electrode, the analytical solutions of the stress distributions at the end faces were also obtained. Two limiting
conditions at the ends of the hollow cylindrical electrode were considered: One had traction free ends and the
other had fixed ends. Using the obtained analytical formulas, numerical studies were carried out to investigate
the effects of end bending of the electrode, charging mode and constraint condition on the distribution of
diffusion-induced stress. The numerical results showed that both charging mode and end constraint conditions
affect the distribution of the diffusion-induced stress; the hoop stress at the end faces and axial stress remote
from or at the end faces increase constantly under galvanostatic charging and fixed end condition. While
under potentiostatic charging, the diffusion-induced stress vanishes both at and remote from the end faces
at equilibrium state under traction free ends condition, and the stress distribution under fixed ends condition
would also come to a stable state finally. The comparison of the stress distribution at the end faces and remote
from the ends indicated that the resulting bending stresses is of practical importance for the stress distribution
at the end faces. The maximum tensile stress at the free end of the thin wall electrode is 74% greater than
the stress at points remote from the ends under galvanostatic operation and traction free ends condition, and
under potentiostatic charging and fixed ends condition, the maximum compressive stress at the end faces is
33% greater than the maximum compressive stress remote from the ends. For the electrode with traction free
ends condition, the maximum von Mises equivalent stress during the charging process, either potentiostatic
charging or galvanostatic charging, occurs at the outer surface away from the ends, while for the electrode
with fixed ends, the maximum equivalent stress occurs at the inner edge of the end faces.
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