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Abstract Considering the piezoelectric effect, the electro-elastic field of an infinite one-dimensional qua-
sicrystal medium with two circular cylindrical inclusions is derived under antiplane shear and inplane electric
loading. The boundary value problem of the composite material with circular cylindrical inclusions is analyt-
ically solved by the use of the conformal mapping technique and analytical continuation theory. The stresses
in the phonon and phason fields and the electric displacements are obtained explicitly in the form of a power
series both for the matrix and the inclusions. Some typical examples are analyzed to show the effect of the
geometric parameters, material properties, and electro-mechanical loading on the electro-elastic fields in the
matrix, inclusions, and interfaces. The limiting cases of circular cavities and rigid circular inclusions have also
been investigated and discussed.

1 Introduction

As a new class of condensed matters with quasi-periodic translational symmetry and non-crystallographic
rotational symmetry, quasicrystals (QCs) have been reported by Shechtman et al. [1]. QCs differ from the con-
ventional crystalline materials and non-crystalline materials and possess long-range order and no translational
periodicity, and due to their ordered patterns, many unusual and remarkable properties have been in QCs, such
as low friction coefficient, high hardness, low thermal conductivity, which make them highly desirable for
extensive engineering applications [2, 3].

Note that a one-dimensional quasicrystal (1D QC) is defined as a three-dimensional solid whose atomic
structures are periodic in the (x1− x2)-plane and quasiperiodic in the normal direction of the plane. Thus, there
only exists a phason displacement w3 along the x3- axis for describing the quasilattices, and 1D QCs show a
property of transverse isotropy [4]. QCs may contain multiple defects such as inclusions, holes, and cracks.
When QCs are subjected to external loadings, these defects coalesce and grow leading to damage and/or failure
of this class of materials. Therefore, it is meaningful to study the problems of quasicrystal materials (QCs)
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containing cracks or inclusions. Fan et al. [5] studied the problem of a moving screw dislocation in a one-
dimensional hexagonal quasicrystal and obtained analytical solutions for the stress field. Collinear periodic
cracks and/or rigid line inclusions of antiplane sliding mode in a one-dimensional hexagonal quasicrystal have
been investigated by Shi [6]. The two-dimensional problem of an elliptic hole or a crack in three-dimensional
quasicrystals subject to far-field loadings was analyzed based on the complex potential method [7]. A path-
independent integral in fracture mechanics of quasicrystals has been derived to evaluate the fracture parameters
in QCs with the atomic arrangement being quasi-periodic in one, two or three directions. Furthermore, the
relation between the stress intensity factor and energy release rate was discussed by Sladek et al. [8]. Loboda
et al. [9] presented an analytical approach of an electrically permeable interface crack in a 1D piezoelectric
quasicrystal. The interaction of a screw dislocation and an elliptical hole with 2 asymmetric cracks in a one-
dimensional hexagonal piezoelectric quasicrystal has been considered, and the general solutions of the elastic
and electric fields have been derived in Li et al. [10].

Piezoelectric quasicrystal materials are expected to be exploited as sensors and actuators in smart struc-
tures [11]. Li et al. [12] obtained three-dimensional fundamental solutions for a one-dimensional hexagonal
quasicrystal with piezoelectric effect, and the solutions are explicitly expressed in terms of elementary func-
tions. Within a framework of the state space method, an axisymmetric solution for a functionally graded
one-dimensional hexagonal piezoelectric quasicrystal circular plate has been presented by Li et al. [13]. Using
the complex variable formulations and the conformal mapping technique, Yang and Li [14] investigated the
antiplane shear problem of two symmetric cracks originating from an elliptical hole in 1D hexagonal piezo-
electric QC. General solutions of plane problems in 1D piezoelectric QC material have been obtained based
on the fundamental equations of piezoelectricity. Furthermore, the application of fracture mechanics of QCs
was discussed by Yu et al. [15]. Fan et al. [16] obtained the fundamental solution of three-dimensional cracks
in one-dimensional hexagonal piezoelectric quasicrystals. The problem of an antiplane crack in a half-space
of a one-dimensional piezoelectric quasicrystal is studied by Tupholme [17] using an extension of the classical
continuous dislocation layer method. Li et al. [18] performed the fracture analysis of a transversely isotropic
piezoelectric quasicrystal cylinder under axial shear and found that the quasicrystal fracture is governed by
the phonon or phason field, depending on the phonon-phason loading ratio. A moving crack in 1D hexagonal
piezoelectric quasicrystals was considered under antiplane shear and inplane electric field, and the result shows
that the coupled elastic fields inside piezoelectric QCs depend on the speed of crack propagation [19]. An inter-
face crack between dissimilar 1D hexagonal QCs with piezoelectric effect under antiplane shear loading and
inplane electric field has been studied by Hu et al. [20] using singular integral equation method. The extended
displacement discontinuity boundary integral–differential equation method has been applied to analyze a
three-dimensional arbitrarily shaped interface crack in a one-dimensional hexagonal thermo-electro-elastic
QC bi-material [21, 22].

When the inclusions are embedded in an elastic medium, the differences between the material properties
of matrix and inclusions may disturb the stress fields around and inside the inclusions, as shown by Honein
et al. [23] and Wu [24]. Based on the method of complex stress potentials, Zou and Li [25] investigated the
stresses around two similar circular cylindrical inclusions in an infinite medium under the generalized plane
strain conditions. Ma and Gao [26] provided the fourth-order Eshelby tensor for a plane strain inclusion of
arbitrary cross-sectional shape in a general form, and the numerical results show that the derived Eshelby
tensor depends on both the position and inclusion size.

Considering the piezoelectric effect, Deeg [27] examined the effect of a dislocation, a crack, and an
inclusion upon the coupled response of a piezoelectric medium. A theoretical treatment was provided for the
elliptical inhomogeneity problem in piezoelectric materials under antiplane shear and inplane electric field
using the complex variable method [28]. Wu and Kunio [29] derived the electro-elastic field of an infinite
piezoelectric medium with two circular cylindrical inclusions, and the analytical solutions have been obtained.
The interactions between N randomly distributed cylindrical inclusions in a piezoelectric matrix have been
studied by Yang et al. [30], and it was shown that the electro-elastic field distribution in a piezoelectric material
with multiple inclusions is significantly different from that in the case of a single inclusion. He and Lim
[31] studied the electro-mechanical response of piezoelectric fibrous composites with viscous interface under
antiplane shear stress state, and the obtained result was used to study the overall behavior of the composite
based on the Mori–Tanaka mean field approximation scheme. The interaction between a screw dislocation
and a piezoelectric circular inclusion with viscous interface has been studied by Wang et al. [32], and exact
closed-form solutions in terms of elementary functions were derived for the time-dependent electro-elastic
fields. Using the method of harmonic functions, a closed-form solution for a spherical inclusion in an infinite
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Fig. 1 Two circular cylindrical inclusions under antiplane shear and inplane electric loading

1D hexagonal quasicrystal matrix with piezoelectric effect under general homogeneous loading was obtained
by Zhang et al. [33].

To the authors’ knowledge, the problem of 2 circular cylindrical inclusions in an infinite 1D piezoelectric
QC under antiplane shear and inplane electric loading has not been reported. In this work, the interaction
between two circular cylindrical inclusions in an infinite 1D QC medium is studied by the complex variable
method. The boundary value problem is analytically solved by applying the conformal mapping technique
and the analytical continuation theory. Exact solutions of the phonon field stresses, phason field stresses and
electric displacements in the inclusions and matrix are obtained. Finally, some typical examples are analyzed
to show the effect of the geometric parameters, material properties and electro-mechanical loading on the
electro-elastic fields in the matrix, inclusions, and interfaces.

2 Problem statement

We consider an infinite one-dimensional (1D) piezoelectric quasicrystal (QC) matrix containing 2 1D piezo-
electric quasicrystal circular cylindrical inclusions which are parallel to each other and infinitely long along
the direction perpendicular to the xy-plane, as shown in Figs. 1 and 2. Both the matrix and inclusions are
assumed to be transversely isotropic with a quasi-periodic poling axis along the z-axis, which is vertical to
the xy-plane. The regions occupied by the matrix, inclusion-1 and inclusion-2 are referred to as regions 0, 1,
and 2, respectively. The two circular cylindrical inclusions have radii r1 and r2, respectively, and the distance
between the two axes of the two inclusions is h, and h > r1 + r2. The interfaces between the matrix and the
two circular inclusions are denoted by interface 1 and interface 2, respectively.

As shown in Fig. 1, the infinite one-dimensional (1D) piezoelectric quasicrystal (QC) matrix is subjected
to uniform inplane electric fields E0

x and E0
y , and uniform antiplane shear in the phonon and phason fields,

σ 0
zy, σ 0

zx and H0
zy, H

0
zx , at infinity, respectively. The material constants of the two circular cylindrical inclusions

are general andunconstrained.The interfaces between the circular cylindrical inclusions andmatrix are assumed
to be perfectly bonded.

For the current boundary value problem, the deformation is independent of the spatial variable z, i.e.,
only the non-vanishing antiplane displacements of phonon and phason fields and inplane electric fields are
considered:

uz � uz(x, y), wz � wz(x, y), ϕ � ϕ(x, y) (1)

where uz and wz are components of the displacement vector of phonon and phason fields, respectively, and ϕ
is the electric potential.
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Fig. 2 Conformal transformation

According to the quasicrystal elasticity theory and considering the piezoelectric effect, the constitutive
relations for the present antiplane problem are [20]
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where c44 K2 and R3 are the respective phonon field elastic constant, the phason field elastic constant, and
the phonon-phason coupling constant; e15 and d15 are the respective piezoelectric coefficients, and λ11 is the
dielectric permittivity. Additionally, σz j , Hzj and εz j , γz j ( j � x, y) are the respective stresses and strains in
the phonon and the phason fields, and Dj and E j ( j � x, y) are the electric displacement and electric field,
respectively.

The gradient equations are as follows:

εz j � uz, j , γz j � wz, j , E j � −ϕ, j j � x, y (3)

where a comma implies partial differentiation with respect to the coordinate.
The equilibrium equations of the 1D piezoelectric QC under antiplane deformation and inplane electric

loading are:

σz j, j � 0, Hzj, j � 0, Dj, j � 0. (4)

By considering the constitutive relations and the gradient equations and neglecting body forces and free
charge, the governing equations for the antiplane problem of the 1D piezoelectric QC can be obtained as
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where ∇2 � ∂2
/
∂x2 + ∂2

/
∂y2 is the two-dimensional Laplacian operator in the variables x and y. From Eq.

(5), it can be seen that uz , ϕ, and wz satisfy the Laplacian equation when the determinant

∣
∣
∣
∣
∣
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c44 R3 e15
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e15 d15 −λ11

∣
∣
∣
∣
∣
∣
�� 0,

which is the most general case. The solution of uz ϕ and wz can then be expressed as the real parts of the
analytic functions U (z), �(z) and W (z) as:

uz � Re[U (z)]
/
c44, ϕ � Re[�(z)]

/
λ11, wz � Re[W (z)]

/
K2 (6)

where z � x + iy (i � √−1) is the complex variable and the over-bar refers to the complex conjugate. “Re”
denotes the real part of a complex number.
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The strains, stresses in the phonon field, the electric fields, electric displacements and the strains and
stresses in the phason field can be expressed in terms of the complex field potentials U (z), �(z) and W (z) as
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where the primed quantities denote the derivatives with respect to the arguments.
The resultant force in the phonon field T , the resultant normal component N of the electric displacement

and the resultant force in the phason field M along any arc ac can be expressed as
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where []ca represents the change in the bracketed function going from point a to point c along the arc ac, and
“Im” denotes the imaginary part of a complex number.

To simplify the analysis, we introduce a new complex variable ζ (ζ � ξ + iη) by the following bilinear
transformation:

z � �(ζ ) � x2ζ − x1
ζ − 1

, ζ � �−1(z) � z − x1
z − x2

,

x1x2 � r21 , (h − x1)(h − x2) � r22 ,

x1 � r1b, x2 � r1
/
b,

b �
h2 + r21 − r22 −

√

(h2 + r21 − r22 )
2 − 4r21h

2

2r1h

(10)

where x1 and x2(Fig. 2a) are the points, symmetrical relative to the circumferential L1 and L2, respectively,
and h is the distance between the two axes of the two circular cylindrical inclusions, with radii of r1 and r2,
respectively. The positive directions of the boundary contours are indicated by arrows in Figs. 2. The respective
circles L1 and L2 are transformed into the concentric circles S1 and S2 with radii

γ1 �
√
x1
x2

, γ2 �
√
h − x1
h − x2

. (11)

It is to be noted that the points at infinity in the original plane are transformed into internal points in the
ring, (ξ, η) � (1, 0), in the transformed plane, as shown in Fig. 2b.

Considering the relations shown in Eq. (10), Eqs. (6–9) can be expressed in the ζ–plane as:
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where U (ζ ), �(ζ ), and W (ζ ) represent U (�(ζ )), �(�(ζ )), and W (�(ζ )), respectively.
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For a homogeneous one-dimensional piezoelectric quasicrystal medium, when the uniform antiplane shear
and inplane electric loadings are applied at infinity, as shown in Fig. 1, the corresponding boundary conditions
at infinity can be expressed as
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where the constants α10, α20, δ10, δ20 are defined as
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3

/
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The assumption of the perfect bonding interface between the two circular cylindrical inclusions and matrix
leads to the continuity of the displacements, electric potential, resultant forces, and resultant normal component
of electric displacement across the interfaces, i.e.,

u0z � u j
z , w0

z � w
j
z , ϕ0 � ϕ j

T0 � Tj , P0 � Pj , M0 � Mj
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where the superscript or subscript j � 1 or 2 denotes the quantities referring to the region D1, R1 or D2, R2,
which corresponds to the inclusion 1 or 2; the superscript or subscript j � 0 denotes the quantities referring
to the region D0, R0 of the matrix.

Accordingly, the interface boundary conditions in the transformed plane on |ζ | � γ j can be expressed as

Re[U0(ζ )] � β1 jRe
[
Uj (ζ )

]

Re[�0(ζ )] � β2 jRe
[
� j (ζ )

]

Re[W0(ζ )] � β3 jRe
[
Wj (ζ )

]
( j � 1, 2), (19)

⎡

⎢
⎢
⎣

1 α10 α20

μ10 −1 μ20

δ10 δ20 1

⎤

⎥
⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

Im[U0(ζ )]

Im[�0(ζ )]

Im[W0(ζ )]

⎫
⎪⎪⎬

⎪⎪⎭

�

⎡

⎢
⎢
⎣

1 α1 j α2 j

μ1 j −1 μ2 j

δ1 j δ2 j 1

⎤

⎥
⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

Im
[
Uj (ζ )

]

Im
[
� j (ζ )

]

Im
[
Wj (ζ )

]

⎫
⎪⎪⎬

⎪⎪⎭

( j � 1, 2) (20)

where the constants β1 j , β2 j , β3 j ( j � 1, 2) and α1 j , α2 j , δ1 j , δ2 j , μ1 j , μ2 j ( j � 0, 1, 2) are defined as
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Considering the fact that the infinity point in the original plane corresponds to the point (1, 0) in the
transformed plane, as shown in Fig. 2, the corresponding boundary conditions at infinity in the transformed
plane can be expressed as
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3 Solution to the boundary value problem

In this Section, the theorem of analytic continuation is applied to solve the present boundary value problem.
It can be observed from Eq. (23) that U0(ζ ), �0(ζ ), and W0(ζ ) have the pole (singular point) of order one at
point ζ � 1. Thus, it can be set as follows:
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where u
′
0(1), φ

′
0(1), w
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Considering that the functions U0(ζ ), �0(ζ ), W0(ζ ) are analytic in region R0, the functions
u0(ζ ), φ0(ζ ), w0(ζ ) also are analytic in R0. After some manipulation of Eqs. (19), (20), and (24), we can
obtain the following relations:
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[
Bj

] �

⎡

⎢
⎢
⎣

β1 j 0 0

0 β2 j 0

0 0 β3 j

⎤

⎥
⎥
⎦.

(27)

According to the Laurent theorem, the analytic functions u0(ζ ), φ0(ζ ), andw0(ζ ) defined in the ring region
R0 can be expressed as

⎧
⎨

⎩

u0(ζ )
φ0(ζ )
w0(ζ )

⎫
⎬

⎭
�

⎧
⎨

⎩

u+0(ζ )
φ+
0 (ζ )

w+
0 (ζ )

⎫
⎬

⎭
+

⎧
⎨

⎩

u−
0 (ζ )

φ−
0 (ζ )

w−
0 (ζ )

⎫
⎬

⎭
(28)

where the superscripts “ + ” and “ − ” denote that the corresponding functions are analytic in regions |ζ | < γ2
and |ζ | > γ1, respectively. Without loss of generality, it can be assumed that in agreement to Eq. (25)

⎧
⎨

⎩

u+0(1)
φ+
0 (1)

w+
0 (1)

⎫
⎬

⎭
�

⎧
⎨

⎩

0
0
0

⎫
⎬

⎭
,

⎧
⎨

⎩

u−
0 (1)

φ−
0 (1)

w−
0 (1)

⎫
⎬

⎭
�

⎧
⎨

⎩

u0(1)
φ0(1)
w0(1)

⎫
⎬

⎭
. (29)

By substituting Eq. (28) into (26), one can arrive at

2

⎧
⎨

⎩

u+0(ζ )
φ+
0 (ζ )

w+
0 (ζ )

⎫
⎬

⎭
− (ζ − 1)[E1]

⎧
⎨

⎩

U1(ζ )
�1(ζ )
W1(ζ )

⎫
⎬

⎭
� −2

⎧
⎨

⎩

u−
0 (ζ )

φ−
0 (ζ )

w−
0 (ζ )

⎫
⎬

⎭
+ (ζ + 1)[E2]

⎧
⎨

⎩

U1(ζ )
�1(ζ )
W1(ζ )

⎫
⎬

⎭
(|ζ | � γ1), (30)

2

⎧
⎨

⎩

u−
0 (ζ )

φ−
0 (ζ )

w−
0 (ζ )

⎫
⎬

⎭
− (ζ − 1)[F1]

⎧
⎨

⎩

U2(ζ )
�2(ζ )
W2(ζ )

⎫
⎬

⎭
� −2

⎧
⎨

⎩

u+0(ζ )
φ+
0 (ζ )

w+
0 (ζ )

⎫
⎬

⎭
+ (ζ + 1)[F2]

⎧
⎨

⎩

U2(ζ )
�2(ζ )
W2(ζ )

⎫
⎬

⎭
|ζ | � γ2 (31)
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where the matrices [E1], [E2], [F1], and [F2] are defined as

[E1] � [B1] + [B01], [E2] � [B1] − [B01],

[F1] � [B2] + [B02], [F2] � [B2] − [B02]
(32)

in which the matrices [B1], [B2], [B01], and [B02] are defined in Eq. (27).
To apply the theorem of analytic continuation to Eqs. (30) and (31), it is convenient to introduce the

following analytic functions [34]:

F1(ζ ) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2

⎧
⎨

⎩

u+0(ζ )
φ+
0 (ζ )

w+
0 (ζ )

⎫
⎬

⎭
− (ζ − 1)[E1]

⎧
⎨

⎩

U1(ζ )
�1(ζ )
W1(ζ )

⎫
⎬

⎭
, (|ζ | < γ1)

−2

⎧
⎨

⎩

u−
0 (ζ )

φ−
0 (ζ )

w−
0 (ζ )

⎫
⎬

⎭
+ (ζ + 1)[E2]

⎧
⎪⎨

⎪⎩

U1(γ 2
1

/
ζ )

�1(γ 2
1

/
ζ )

W1(γ 2
1

/
ζ )

⎫
⎪⎬

⎪⎭
, (|ζ | > γ1),

(33)

F2(ζ ) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2

⎧
⎨

⎩

u−
0 (ζ )

φ−
0 (ζ )

w−
0 (ζ )

⎫
⎬

⎭
− (ζ − 1)[F1]

⎧
⎨

⎩

U2(ζ )
�2(ζ )
W2(ζ )

⎫
⎬

⎭
, (|ζ | > γ2)

−2

⎧
⎨

⎩

u+0(ζ )
φ+
0 (ζ )

w+
0 (ζ )

⎫
⎬

⎭
+ (ζ + 1)[F2]

⎧
⎪⎨

⎪⎩

U2(γ 2
2

/
ζ )

�2(γ 2
2

/
ζ )

W2(γ 2
2

/
ζ )

⎫
⎪⎬

⎪⎭
, (|ζ | < γ2).

(34)

By application of the Liouville theorem, one has

F1(ζ ) � {c1} � {
c11 c12 c13

}T
, F2(ζ ) � {c2} � [

c21 c22 c23
]T (35)

where c1 and c2 are constant column complex vectors, and the superscript “T” denotes the transpose of the
corresponding matrix. From Eqs. (29), (33), and (34), the constants c1 and c2 can be determined as

{c1} �

⎧
⎪⎪⎨

⎪⎪⎩

u0(1)

φ0(1)

w0(1)

⎫
⎪⎪⎬

⎪⎪⎭

� (x2 − x1)

⎡

⎢
⎢
⎣

1 α10 α20

0 −1
/
λ011 0

δ10 δ20 1

⎤

⎥
⎥
⎦

−1⎧
⎪⎪⎨

⎪⎪⎩

σ 0
zx − iσ 0

zy

E0
x − i E0

y

H0
zx − i H0

zy

⎫
⎪⎪⎬

⎪⎪⎭

,

{c2} �
[

0 0 0
]T

.

(36)

It is noted that the constant terms c1 represent rigid body motion and equipotential field, which do not
affect the deformation of the body and are therefore omitted.

Combining Eqs. (33–36), and according to the reflection principle across circles |ζ | � γ1 and |ζ | � γ2,
one can obtain the following relations:

2

⎧
⎨

⎩

u+0(ζ )
φ+
0 (ζ )

w+
0 (ζ )

⎫
⎬

⎭
− (ζ − 1)[E1]

⎧
⎨

⎩

U1(ζ )
�1(ζ )
W1(ζ )

⎫
⎬

⎭
�

⎧
⎨

⎩

c11
c12
c13

⎫
⎬

⎭
, (|ζ | < γ1),

−2

⎧
⎪⎨

⎪⎩

u−
0 (γ

2
1

/
ζ )

φ−
0 (γ

2
1

/
ζ )

w−
0 (γ

2
1

/
ζ )

⎫
⎪⎬

⎪⎭
+

(
γ 2
1

ζ
− 1

)

[E2]

⎧
⎨

⎩

U1(ζ )
�1(ζ )
W1(ζ )

⎫
⎬

⎭
�

⎧
⎨

⎩

c11
c12
c13

⎫
⎬

⎭
, (|ζ | < γ1),

(37)

−2

⎧
⎨

⎩

u+0(ζ )
φ+
0 (ζ )

w+
0 (ζ )

⎫
⎬

⎭
+ (ζ − 1)[F2]

⎧
⎪⎨

⎪⎩

U2(γ 2
2

/
ζ )

�2(γ 2
2

/
ζ )

W2(γ 2
2

/
ζ )

⎫
⎪⎬

⎪⎭
�

⎧
⎨

⎩

0
0
0

⎫
⎬

⎭
, (|ζ | < γ2),

2

⎧
⎪⎨

⎪⎩

u−
0 (γ

2
2

/
ζ )

φ−
0 (γ

2
2

/
ζ )

w−
0 (γ

2
2

/
ζ )

⎫
⎪⎬

⎪⎭
−

(
γ 2
2

ζ
− 1

)

[F1]

⎧
⎪⎨

⎪⎩

U2(γ 2
2

/
ζ )

�2(γ 2
2

/
ζ )

W2(γ 2
2

/
ζ )

⎫
⎪⎬

⎪⎭
�

⎧
⎨

⎩

0
0
0

⎫
⎬

⎭
, (|ζ | < γ2).

(38)
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By eliminating functions U1(ζ ), �1(ζ ), and W1(ζ ) from Eq. (37), we can obtain the following relations:
⎧
⎪⎨

⎪⎩

u−
0 (γ

2
1

/
ζ )

φ−
0 (γ

2
1

/
ζ )

w−
0 (γ

2
1

/
ζ )

⎫
⎪⎬

⎪⎭
� γ 2

1

/
ζ − 1

ζ − 1
[E2][E1]

−1

⎧
⎨

⎩

u+0(ζ )
φ+
0 (ζ )

w+
0 (ζ )

⎫
⎬

⎭
+ [H]

{
γ 2
1

/
ζ−1

ζ−1
1

}

, (|ζ | < γ1) (39)

where the matrix [H] is defined as

[H] �

⎡

⎢
⎢
⎣

H1 H2

H3 H4

H5 H6

⎤

⎥
⎥
⎦ � −1

2

⎛

⎜
⎜
⎝[E2][E1]

−1

⎡

⎢
⎢
⎣

c11 0

c12 0

c13 0

⎤

⎥
⎥
⎦ +

⎡

⎢
⎢
⎣

0 c11

0 c12

0 c13

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠, (40)

In a similar way, we can solve Eq. (38) to obtain the following relations:

⎧
⎨

⎩

u+0(ζ )
φ+
0 (ζ )

w+
0 (ζ )

⎫
⎬

⎭
� ζ − 1

γ 2
2

/
ζ − 1

[F2][F1]
−1

⎧
⎪⎨

⎪⎩

u−
0 (γ

2
2

/
ζ )

φ−
0 (γ

2
2

/
ζ )

w−
0 (γ

2
2

/
ζ )

⎫
⎪⎬

⎪⎭
, (|ζ | < γ2). (41)

According to the principle of analytic continuation and Eqs. (39, 41), we can solve the present problem in
the region |ζ | < γ1. After some manipulation one can obtain the following equations:

⎧
⎪⎨

⎪⎩

u−
0 (γ

2
1

/
ζ )

φ−
0 (γ

2
1

/
ζ )

w−
0 (γ

2
1

/
ζ )

⎫
⎪⎬

⎪⎭
� γ 2

1

/
ζ − 1

γ 2
2

/
ζ − 1

[G]

⎧
⎪⎨

⎪⎩

u−
0 (γ

2
2

/
ζ )

φ−
0 (γ

2
2

/
ζ )

w−
0 (γ

2
2

/
ζ )

⎫
⎪⎬

⎪⎭
+ [H ]

{
γ 2
1

/
ζ−1

ζ−1
1

}

(|ζ | < γ1) (42)

where the matrix [G] is defined as

[G] � [E2][E1]
−1[F2][F1]

−1. (43)

Applying the reflection principle across the circle |ζ | � γ1 to Eq. (42) leads to the following expression:
⎧
⎨

⎩

u−
0 (ζ )

φ−
0 (ζ )

w−
0 (ζ )

⎫
⎬

⎭
� ζ − 1

�−2ζ − 1
[G]

⎧
⎨

⎩

u−
0 (�

−2ζ )
φ−
0 (�

−2ζ )
w−
0 (�

−2ζ )

⎫
⎬

⎭
+
[
H
]
{

ζ (ζ−1)
γ 2
1 −ζ

1

}

(|ζ | > γ1) (44)

where � � γ1
/
γ2 < 1 and

[
H
]
is the conjugate of the matrix [H].

It is noted that Eqs. (44) are the functional equations to determine the unknown functions u−
0 (ζ ), φ−

0 (ζ )
and w−

0 (ζ ). The sequential transformations in region |ζ | > γ1 are adopted to solve these functions, and the
results are

⎧
⎪⎪⎨

⎪⎪⎩

u−
0 (ζ )

φ−
0 (ζ )

w−
0 (ζ )

⎫
⎪⎪⎬

⎪⎪⎭

� ζ − 1

�−2(n+1)ζ − 1
[G]n+1

⎧
⎪⎪⎨

⎪⎪⎩

u−
0 (�

−2(n+1)ζ )

φ−
0 (�

−2(n+1)ζ )

w−
0 (�

−2(n+1)ζ )

⎫
⎪⎪⎬

⎪⎪⎭

+
n∑

k�0

[G]k
[
H
]

⎧
⎨

⎩

ζ (ζ−1)
γ 2
1 �2k−ζ

ζ−1
�−2kζ−1

⎫
⎬

⎭
(|ζ | > γ1). (45)

If the terms �2(n+1)

⎧
⎨

⎩

u−
0 (�

−2(n+1)ζ )
φ−
0 (�

−2(n+1)ζ )
w−
0 (�

−2(n+1)ζ )

⎫
⎬

⎭
are bounded and limn→∞[G]n �

⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦, then the first term on

the right-hand side of Eq. (45) vanishes when n → ∞, and Eq. (45) can be rewritten as
⎧
⎨

⎩

u−
0 (ζ )

φ−
0 (ζ )

w−
0 (ζ )

⎫
⎬

⎭
� (ζ − 1)

∞∑

k�0

[G]k
[
H
]
{

ζ

γ 2
1 �2k−ζ

1
�−2kζ−1

}

(|ζ | > γ1). (46)
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The substitution of Eq. (46) into Eq. (41) yields

⎧
⎨

⎩

u+0(ζ )
φ+
0 (ζ )

w+
0 (ζ )

⎫
⎬

⎭
� (ζ − 1)[F2][F1]

−1
∞∑

k�0

[G]k[H ]

⎧
⎨

⎩

1
�2(k+1)ζ−1

�2kζ

γ 2
2 −�2kζ

⎫
⎬

⎭
(|ζ | < γ2). (47)

Combining Eqs. (24, 28, 46, 47), the corresponding complex analytical functions in regions R0, R1, and
R2 can be determined as follows:

⎧
⎨

⎩

U0(ζ )
�0(ζ )
W0(ζ )

⎫
⎬

⎭
� 1

ζ − 1

⎧
⎨

⎩

u+0(ζ ) + u−
0 (ζ )

φ+
0 (ζ ) + φ−

0 (ζ )
w+
0 (ζ ) + w−

0 (ζ )

⎫
⎬

⎭
(γ1 < |ζ | < γ2), (48)

⎧
⎪⎪⎨

⎪⎪⎩

U1(ζ )

�1(ζ )

W1(ζ )

⎫
⎪⎪⎬

⎪⎪⎭

� 2

ζ − 1
[E1]

−1

⎧
⎪⎪⎨

⎪⎪⎩

u+0(ζ ) + u0(1)

φ+
0 (ζ ) + φ0(1)

w+
0 (ζ ) + w0(1)

⎫
⎪⎪⎬

⎪⎪⎭

(|ζ | < γ1), (49)

⎧
⎪⎪⎨

⎪⎪⎩

U2(ζ )

�2(ζ )

W2(ζ )

⎫
⎪⎪⎬

⎪⎪⎭

� 2

ζ − 1
[F1]

−1

⎧
⎪⎪⎨

⎪⎪⎩

u−
0 (ζ )

φ−
0 (ζ )

w−
0 (ζ )

⎫
⎪⎪⎬

⎪⎪⎭

|(ζ | > γ2). (50)

After these complex potential functions are obtained, themechanical and electrical fields in the transformed
domain can be calculated using the relations shown in Eqs. (12–14). The mechanical and electrical fields in
the composite material depend on the material constants of the circular inclusions and matrix, geometric
parameters of the composite system, and the applied loadings at infinity. If the inverse transformation of Eq.
(10) is applied, one can easily obtain the corresponding fields in the original plane.

It is to be noted that if the phason field is not considered, the solution obtained can be reduced to the result
for a piezoelectric composite with two circular cylindrical inclusions [29]. If the piezoelectric effect of the
material disappears, the solution can be further reduced to the result of two circular inclusions in an elastic
medium [23, 24, 35].

4 Electro-elastic field solutions

The substitution of the complex potentials of Eqs. (48–50) into Eqs. (12–14) leads to the complete solutions
of the displacements, electric potential, stresses, and electric displacements of the matrix and inclusions
in the transformed plane (ζ -plane). The antiplane shear stresses in phonon and phason fields and electric
displacements in the transformed plane can be obtained as follows:

⎧
⎪⎪⎨

⎪⎪⎩

σzx − iσzy

Dx − i Dy

Hzx − i Hzy

⎫
⎪⎪⎬

⎪⎪⎭

� (ζ − 1)2

(x1 − x2)
[A0]

∂

∂ζ

⎧
⎪⎪⎨

⎪⎪⎩

U0(ζ )

�0(ζ )

W0(ζ )

⎫
⎪⎪⎬

⎪⎪⎭

(γ1 < |ζ | < γ2), (51)

⎧
⎪⎪⎨

⎪⎪⎩

σzx − iσzy

Dx − i Dy

Hzx − i Hzy

⎫
⎪⎪⎬

⎪⎪⎭

� (ζ − 1)2

(x1 − x2)
[A1]

∂

∂ζ

⎧
⎪⎪⎨

⎪⎪⎩

U1(ζ )

�1(ζ )

W1(ζ )

⎫
⎪⎪⎬

⎪⎪⎭

(|ζ | < γ1), (52)

⎧
⎪⎪⎨

⎪⎪⎩

σzx − iσzy

Dx − i Dy

Hzx − i Hzy

⎫
⎪⎪⎬

⎪⎪⎭

� (ζ − 1)2

(x1 − x2)
[A2]

∂

∂ζ

⎧
⎪⎪⎨

⎪⎪⎩

U2(ζ )

�2(ζ )

W2(ζ )

⎫
⎪⎪⎬

⎪⎪⎭

(|ζ | > γ2) (53)
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where

∂

∂ζ

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

U0(ζ )

�0(ζ )

W0(ζ )

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

�
∞∑

k�0

[G]k
[
H
]

⎧
⎪⎪⎨

⎪⎪⎩

γ 2
1 �2k

(γ 2
1 �2k−ζ )2

−�−2k

(�2k−ζ )2

⎫
⎪⎪⎬

⎪⎪⎭

+ [F2][F1]
−1

∞∑

k�0

[G]k[H ]

⎧
⎪⎪⎨

⎪⎪⎩

−�2(k+1)

(�2(k+1)ζ−1)2

γ 2
2 �2k

(�2kζ−γ 2
2 )

2

⎫
⎪⎪⎬

⎪⎪⎭

(γ1 < |ζ | < γ2),

(54)

∂

∂ζ

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

U1(ζ )

�1(ζ )

W1(ζ )

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

� 2[E1]
−1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

[F2][F1]
−1

∞∑

k�0

[G]k[H ]

⎧
⎪⎪⎨

⎪⎪⎩

−�2(k+1)

(�2(k+1)ζ−1)2

γ 2
2 �2k

(�2kζ−γ 2
2 )

2

⎫
⎪⎪⎬

⎪⎪⎭

− 1

(ζ − 1)2

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u0(1)

φ0(1)

w0(1)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

|ζ | < γ1,

(55)

∂

∂ζ

⎧
⎪⎪⎨

⎪⎪⎩

U2(ζ )

�2(ζ )

W2(ζ )

⎫
⎪⎪⎬

⎪⎪⎭

� 2[F1]
−1

∞∑

k�0

[G]k
[
H
]

⎧
⎨

⎩

γ 2
1 �2k

(γ 2
1 �2k−ζ )2

−�−2k

(�2k−ζ )2

⎫
⎬

⎭
(|ζ | > γ2), (56)

and the matrices [A0], [A1], and [A2] are defined from Eq. (20) as

[
A j

] �

⎡

⎢
⎢
⎣

1 α1 j α2 j

μ1 j −1 μ2 j

δ1 j δ2 j 1

⎤

⎥
⎥
⎦ ( j � 0, 1, 2). (57)

From Eqs. (51–57), it can be observed that the electro-elastic fields depend on the material constants of
the individual phases of the inclusions and the matrix, the geometric parameters of the composite system, and
the mechanical and electrical loading applied at infinity. The corresponding stress and electric displacement
fields in the original z-plane can be obtained by applying the inverse transformation of Eqs. (10–11).

5 Validation of the model

In this Section,we examine some interesting caseswhich demonstrate the validity and versatility of the obtained
formulations.

5.1 Unified material for inclusion-1 and matrix

When the inclusion-1 (in regions 1) and the matrix (in region 0) are of the same material, while inclusion-2
is of a different material, we can get the special case of a homogeneous 1D piezoelectric QC material with a
circular cylindrical inhomogeneity under antiplane shear and inplane electric loadings. For this special crack
problem, we have

c044 � c144, λ011 � λ111, K 0
2 � K 1

2 ,

[A1] � [A0], [B01] � [A0]
−1[A1] � [I] � [B1],

[E1] � [B1] + [B01] � 2[I], [E2] � [B1] − [B01] � [0],

[G] � [E2][E1]
−1[F2][F1]

−1 � [0], [H] � −1

2

[
0 c1

]

(58)

where [I] and [0] are the identity matrix and zero matrix, respectively.



2524 K. Hu et al.

The antiplane shear stresses in phonon and phason fields and electric fields in the transformed plane can
be obtained as

⎧
⎪⎪⎨

⎪⎪⎩

σzx − iσzy

Ex − i Ey

Hzx − i Hzy

⎫
⎪⎪⎬

⎪⎪⎭

�

⎧
⎪⎪⎨

⎪⎪⎩

σ 0
zx − iσ 0

zy

E0
x − i E0

y

H0
zx − i H0

zy

⎫
⎪⎪⎬

⎪⎪⎭

− γ 2
2 (ζ − 1)2

(γ 2
2 − ζ 2)

[M0][F2][F1]
−1[M0]

−1

⎧
⎪⎪⎨

⎪⎪⎩

σ 0
zx + iσ 0

zy

E0
x + i E0

y

H0
zx + i H0

zy

⎫
⎪⎪⎬

⎪⎪⎭

(|ζ | ≤ γ2),

(59)
⎧
⎪⎪⎨

⎪⎪⎩

σzx − iσzy

Ex − i Ey

Hzx − i Hzy

⎫
⎪⎪⎬

⎪⎪⎭

� [M2][M0]
−1

⎧
⎪⎪⎨

⎪⎪⎩

σ 0
zx − iσ 0

zy

E0
x − i E0

y

H0
zx − i H0

zy

⎫
⎪⎪⎬

⎪⎪⎭

(|ζ | ≥ γ2) (60)

where the matrices
[
M j

]
( j � 0, 1, 2) are defined as

[
Mj

] �
⎡

⎢
⎣

1 α1 j α2 j

0 −1
/

λ
( j)
11 0

δ1 j δ2 j 1

⎤

⎥
⎦ ( j � 0, 1, 2) (61)

and the constants α1 j , α2 j , δ1 j and δ2 j ( j � 0, 1, 2) are defined in Eq. (22).
It can be observed fromEqs. (59) and (60) that the electro-mechanical field in the matrix (|ζ | ≤ γ2) consists

of two parts: the first part is the homogeneous field which is equal to the far-field loading, and the second part
is the perturbed field due to the existence of the circular inclusion. The electro-mechanical fields inside the
circular inclusion are constant fields, which depend on the material properties of the matrix and inclusion, and
the loadings applied at infinity.

If we further assume that inclusion-2 has the same material properties as the matrix, i.e.,

c244 � c044 � c144, λ211 � λ011 � λ111, K 2
2 � K 0

2 � K 1
2 ,

[A2] � [A0], [B02] � [A0]
−1[A2] � [I] � [B2],

[M2] � [M1] � [M0],

[F1] � [B2] + [B02] � 2[I], [F2] � [B2] − [B02] � [0],

(62)

then, the substitution of Eq. (62) into Eq. (59) and (60) leads to the constant/homogeneous fields in a
homogeneous medium under uniform loadings at infinity; viz.,

⎧
⎪⎪⎨

⎪⎪⎩

σzx − iσzy

Ex − i Ey

Hzx − i Hzy

⎫
⎪⎪⎬

⎪⎪⎭

�

⎧
⎪⎪⎨

⎪⎪⎩

σ 0
zx − iσ 0

zy

E0
x − i E0

y

H0
zx − i H0

zy

⎫
⎪⎪⎬

⎪⎪⎭

(|ζ | ≥ 0). (63)

5.2 Circular inclusions replaced by cavities

When the two circular cylindrical inclusions are replaced by cavities, the continuity conditions of displace-
ments, electric potential, tractions, and normal component of electric displacement along the interface can be
simplified, and similar solving steps could be adopted. In this case, Eq. (20) can be rewritten as follows:

⎡

⎣
1 α10 α20

μ10 −1 μ20
δ10 δ20 1

⎤

⎦

⎧
⎨

⎩

Im[U0(ζ )]
Im[�0(ζ )]
Im[W0(ζ )]

⎫
⎬

⎭
�

⎧
⎨

⎩

0
0
0

⎫
⎬

⎭
|ζ | � γ j (64)

which indicates that the tractions and the normal component of the electric displacement along the free surface
are equal to zero.

Direct numerical calculation for the case of diminishing material properties of the inclusions (compared
to those of the matrix) may be performed to simulate the presence of cylindrical cavities in an infinite matrix.
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Fig. 3 Normalized shear stress σzy
/
P0 along interfaces 1 and 2, when σ 0

zy � σ 0
zx � P0

5.3 Rigid circular inclusions

When the material properties of the two circular cylindrical inclusions are close to infinity, the continuity
conditions of displacements, electric potential, tractions, and normal component of electric displacement
along the interface can be simplified. In this case, β1 j � β2 j � β3 j � 0, ( j � 1, 2), [B1] � [B2] � [0], and
Eq. (19) can be rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

U0(ζ )

�0(ζ )

W0(ζ )

⎫
⎪⎪⎬

⎪⎪⎭

+

⎧
⎪⎪⎨

⎪⎪⎩

U0(ζ )

�0(ζ )

W0(ζ )

⎫
⎪⎪⎬

⎪⎪⎭

�

⎧
⎪⎪⎨

⎪⎪⎩

0

0

0

⎫
⎪⎪⎬

⎪⎪⎭

, (|ζ | � γ j ) (65)

which means that the displacements and electric potential along the interface between the rigid inclusions and
matrix are equal to zero.

Direct numerical determination of the case of very large material properties of the inclusions (compared
to those of the matrix) may be performed to simulate the effect of the presence of rigid circular cylindrical
inclusions in an infinite matrix.

5.4 Piezoelectric composite

In this case, the quasicrystal constants are equal to zero, i.e., R j
3 � d j

15 � 0, ( j � 0, 1, 2), we then have

α2 j � δ1 j � δ2 j � 0,

[
A j

] �
⎡

⎣
1 α1 j 0

μ1 j −1 μ2 j
0 0 1

⎤

⎦,

[B01] � [A0]
−1[A1], [B02] � [A0]

−1[A2] ( j � 0, 1, 2).

(66)

5.5 Quasicrystal composite

In this case, the piezoelectric constants are equal to zero, i.e., e j15 � d j
15 � 0, ( j � 0, 1, 2), we then have

α1 j � μ1 j � μ2 j � 0 ( j � 0, 1, 2). (67)
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5.6 Purely elastic composite

In this case, the piezoelectric constants and quasicrystal constants are equal to zero, i.e., e j15 � d j
15 � R j

3 � 0,
( j � 0, 1, 2), we then have

α1 j � α2 j � μ1 j � μ2 j � δ1 j � δ2 j � 0 ( j � 0, 1, 2). (68)

6 Examples and discussions

In this Section, some examples are given to illustrate the application of the solutions obtained. The material
properties of the 1D piezoelectric QC material used in the following numerical calculation for the matrix are
taken from [19] as follows:

c44 � 70.19 GPa, e15 � −0.138 (C
/
m2), K2 � 56 GPa,

R3 � 15.36 GPa, d15 � −0.16 (C
/
m2), λ11 � 8.26 × 10−11(C2/Nm2),

(69)
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and the two circular cylindrical inclusions may have different material properties which are expressed as

M (1)
i j � ρ(1)M (0)

i j , M (2)
i j � ρ(2)M (0)

i j (70)

whereM (0)
i j are the correspondingmaterial constants of thematrix, as shown in Eq. (69).When the ratio number

ρ(1) or ρ(2) is close to zero, the corresponding inclusion becomes a circular cylindrical cavity, and when the
ratio number ρ(1) or ρ(2) is infinitely large, the circular cylindrical inclusion becomes rigid. In the special case
when ρ(1) � ρ(2) � 1, the composite system becomes a homogeneous medium.

Figures 3 and 4 show the variations of the normalized stresses σzy
/
P0 and σzx

/
P0 along the interface

between inclusion and matrix, respectively, when h
/
r1 � 2, r2

/
r1 � 0.5, ρ(1) � 2, ρ(2) � 0.5, and σ 0

zy �
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/
r1 � 5, r2 � 2r1, and H0
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σ 0
zx � P0. The plots using polar coordinates of the angle θ , in radians, and the radius show the magnitude

of the normalized stresses σzy
/
P0 or σzx

/
P0. It is observed that the shear stresses σzy on the interface in

the matrix and inclusion are different except at the angles θ � π
/
2 and θ � 3π

/
2; shear stresses σzx on

the interface in the matrix and inclusion are different except at the angles θ � 0 and θ � π . This result is
consistent with the boundary condition of traction continuity across the interface between the matrix and the
inclusions (σzr � σzy sin(θ ) + σzx cos(θ )). The shear stresses σzy and σzx on the interface in the inclusion with
higher material ratio ρ(1) � 2 are larger than those on the interface in the inclusion with lower material ratio
ρ(2) � 0.5.

Figure 5 shows the normalized radial shear stresses σzr
/
P0 along the interfaces 1 and 2. It is observed

that the stresses σzr vary with the angle θ along the interfaces between the matrix and the inclusions, and that
the magnitude of the shear stresses σzr along interface 1 is larger than of that which exists along interface 2
due to the fact that ρ(1) > ρ(2). The variation of the normalized tangential shear stresses σzs

/
P0 along the

interfaces 1 and 2 is displayed in Fig. 6. It is seen that the tangential stresses σzs are not continuous across the
interface between matrix and inclusion except at some particular angles. Furthermore, the magnitude of the
shear stresses σzs along interface 1 in the inclusion is larger than that in the matrix due to the fact that ρ(1) � 2,
and the shear stresses σzs along the interface 2 in the inclusion are smaller than that in the matrix due to the
fact that ρ(2) � 0.5.

Figures 7 and 8 depict the variation of the normalized stresses along interfaces 1 and 2 for σzx
/
P0 when

σ 0
zx � P0, σ 0

zy � 0, and σzy
/
P0 when σ 0

zy � P0, σ 0
zx � 0, respectively. It is seen from Fig. 7 that the shear

stress σzx in the inclusion (ρ(1) � 2) along the interface 1 is larger than that in the matrix except that they
are in the same directions when θ � 0 and θ � π . The shear stress σzx in the inclusion (ρ(1) � 0.5) along
the interface 2 is smaller than that in the matrix except that they are the same at the directions θ � 0 and
θ � π . Similar results can be observed from Fig. 8 except that the interface shear stresses σzy in the matrix
and inclusions 1 and 2 are the same along the directions θ � π

/
2 and θ � 3π

/
2.

Figure 9 depicts the tangential shear strains εzs along interface 1 at different electric loadings LE �
e015E0

/
P0 when σ 0

zy � P0 � 50MPa. The tangential shear strains εzs are continuous across the interface
between matrix and inclusion, which indicates that the perfect bonding condition holds on the interface. It
is observed that positive electric loading leads to higher magnitude of the shear strain and negative electric
loading leads to lower magnitude.

Figure 10 shows the variations of the normalized shear stresses σzy
/
P0 along the x-axis when ρ(1) �

2, ρ(2) � 0.5, h
/
r1 � 5, r2 � 2r1, and σ 0

zy � P0 � 50MPa. The discontinuity of stress σzy across the interface
is displayed, and the stress in inclusion-1 (ρ(1) � 2) is higher than that in the inclusion-2 (ρ(2) � 0.5), and
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Fig. 12 a Normalized shear stress in the matrix acting at interface 1 against θ, when ρ(1) � ρ(2) � ρ and h
/
r1 � 5, r2 � 2r1.

b Normalized shear stress in the inclusion acting at interface 1, when ρ(1) � ρ(2) � ρ and h
/
r1 � 5, r2 � 2r1
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the stress in the matrix lies between those in the inclusions 1 and 2. This result is in agreement with Wu [24]
for the case of two circular cylindrical inhomogeneities under antiplane shear loading. A similar distribution
of the phason shear stress Hzy along the x-axis is displayed in Fig. 11, and there is discontinuity across the
interfaces between matrix and inclusions.

The normalized tangential shear stresses σzs
/
P0 in the matrix and inclusion on interface 1 are shown in

Fig. 12a and b when ρ(1) � ρ(2) � ρ, h
/
r1 � 5, r2 � 2r1, and σ 0

zy � P0 � 50MPa. Figure 12a shows that,
as the material ratio ρ increases from zero to infinity, the magnitude of the tangential shear stresses σzs on the
interface in the matrix decreases from a particular value to zero. The limiting case of two holes (ρ � 0) in the
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matrix is in agreement with the results of Honein et al. [23], and the result for the limiting case of two rigid
inclusions in the matrix is the same as the exact solution obtained by Zhang and Hasebe [36]. The tangential
shear stresses σzs on the interface in the inclusion increase from zero as the material ratio ρ increases from zero
to infinity, as shown in Fig. 12b. It is observed from Fig. 12a and b that only when ρ � 1, i.e., the inclusion
and matrix are of the same material, the tangential shear stresses σzs across the interface are continuous.

The effects of the distance h between the two circular inclusions on the tangential shear stresses on the
interface 1 and interface 2 are depicted in Fig. 13a and b when r2

/
r1 � 2, ρ(1) � 2, ρ(2) � 0.5, and

σ 0
zy � P0. As the value of h

/
r1 increases, the magnitude of the tangential shear stresses σzs in the matrix

on interface 1 increases, i.e., as the distance between the two inclusions becomes larger, the magnitude of
the tangential shear stresses σzs in the matrix on interface around inclusion-1 (ρ(1) � 2) becomes larger, see
Fig. 13a. Figure 13b shows the variation of the tangential shear stresses σzs in the matrix on interface 2 around
inclusion-2 (ρ(2) � 0.5), which shows that the larger distance between the two inclusions in the matrix leads
to smaller magnitude of the tangential shear stresses in the matrix on the interface 2. The shear stresses σzs
on the interface in the matrix with higher material ratio ρ(1) � 2 are larger than those on the interface in the
matrix with lower material ratio ρ(2) � 0.5.

7 Conclusions

A closed-form solution is obtained for themechanical and electric fields of an infinite piezoelectric quasicrystal
medium with two circular cylindrical inclusions under antiplane shear and inplane electric loading. Conformal
mapping technique and the theorem of analytic continuation are used to solve the boundary value problem.
Explicit expressions of the stresses and electric fields in both the matrix and inclusions have successfully
been derived. The validity and versatility of the generalized solution in this work have been demonstrated by
application to some particular examples, and the influence of the geometric parameters and material properties
on the interface stresses was discussed. It is shown that the material properties and the geometric parameters
of the composite system and the loading conditions have an effect on the stress distribution.
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