
Acta Mech 232, 2853–2875 (2021)
https://doi.org/10.1007/s00707-021-02948-z

ORIGINAL PAPER

An Ninh Thi Vu · Ngoc Anh Thi Le · Dinh Kien Nguyen

Dynamic behaviour of bidirectional functionally graded
sandwich beams under a moving mass with partial
foundation supporting effect

Received: 30 July 2020 / Revised: 30 October 2020 / Accepted: 25 January 2021 / Published online: 4 May 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021

Abstract Dynamic analysis of bidirectional functionally graded sandwich beams under a moving mass with
the effect of partial support by a Pasternak foundation is presented on the basis of a quasi-3D theory. The face
layers of the sandwich beams are made of bidirectional functionally graded material (FGM), while the core is
axially FGM. The material properties of the skin layers are varied smoothly in both the axial and transverse
directions by power gradation laws, and they are evaluated by both Voigt and Mori–Tanaka micromechanical
models. A finite element formulation is derived and employed to construct the equation of motion of the
beams. Dynamic characteristics, including the dynamic deflections, dynamic magnification factors and stress
distribution, are computed with the aid of the Newmark method. The numerical results reveal that the ratio
of the foundation supporting part to the total beam length plays an important role in the dynamic response
of the beams. The influence of the micromechanical model on the dynamic response of the beams is found
to be dependent on the foundation stiffness and the power-law indexes. The effects of the material gradation,
the foundation and loading parameters on the dynamic behaviour of the beams are examined in detail and
highlighted.

1 Introduction

Sandwich structures are extensively used in different engineering applications, such as in the automotive,
aerospace and defense industries, because of their light weight and high stiffness-to-weight ratio. However,
these structures tend to delaminate under excessive inter-laminar stresses. Thanks to advanced manufacturing
methods [1, 2], functionally graded materials (FGMs), a new type of composite materials initiated by Japanese
researchers in the mid-1980s [3], can be incorporated into sandwich construction to improve the performance
of structures. Functionally graded sandwich (FGSW) structures can be designed to have a smooth variation of
the effective properties between layers, and this feature helps to eliminate the above drawback of conventional
sandwich structures. Many investigations on the behaviour of FGSW beams are summarized in a review paper
by Sayyad and Ghugal [4]; the contributions that are most relevant to the present work are briefly discussed
below.
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Chakraborty et al. [5] presented a finite element formulation for thermoelastic analysis of sandwich Tim-
oshenko beams with an FGM core. The efficiency of the formulation is improved by using the solution of
equilibrium equations of a beam segment to interpolate the displacement field. The effect of temperature on
buckling and vibration of sandwich beams with a viscoelastic core was examined by Bhangale and Ganesan [6]
via a finite element procedure. The modified differential quadrature method was employed by Pradhan and
Murmu [7] to investigate the influence of temperature rise on natural frequencies of FGSW beams on an
elastic foundation. On the basis of various beam models, Apetre et al. [8] studied the bending response of
FGSW beams subjected to distributed loads. The effect of the beam model on the behaviour of the beams
was examined. Rahmani et al. [9] presented a high-order sandwich panel theory for free vibration analysis
of sandwich beams with a flexible functionally graded syntactic core. The radial point interpolation method
was used in combination with the Newmark method by Bui et al. [10] to study the dynamic behaviour of a
sandwich beam with FGM core under a tip load. The effect of elastic foundation on bending and vibration of
FGSW beams was investigated by Zenkour et al. [11] and Su et al. [12]. Both Voigt model and Mori–Tanaka
scheme were used in [12] to evaluate the effective material properties. Various higher-order shear deformation
theories were proposed in [13–19] for analysis of FGSW beams. In these theories, the transverse displacement
is split into bending and shear parts, or in-plane displacement is modified using hyperbolic functions. Yang
et al. [20] carried out free vibration analysis of FGSW beams using the meshfree boundary-domain integral
equation method. Free vibration and buckling of sandwich beams with FGM face sheets were examined in
[21] via a quasi-3D theory. An analytical method was used in the work to obtain the natural frequencies and
buckling loads of the beams. Based on a quasi-3D theory, Yarasca et al. [22] derived a finite element formu-
lation for bending analysis of FGSW beams. The distribution of the normal and shear stresses was examined
in detail. Vibration and buckling of FGSW beams were studied by Kahya and Turan [23] using a first-order
shear deformable finite element.

The influence of material gradation on the dynamic behaviour of beams under moving loads has been inves-
tigated by several authors recently. Şimşek and Kocatürk [24] and Şimşek [25] approximated the displacement
field by polynomials to compute the dynamic response of FGM beams to a moving force. The effect of the
material gradation in the thickness direction on the dynamic deflection and stress distribution was examined by
the authors. Using the above method, the dynamic behaviour of axially FGM beams under a moving harmonic
load [26] and an FGSW beam under two moving loads [27] was investigated. Khalili et al. [28] employed
the differential quadrature method to examine the effect of material gradation in the thickness direction on
the dynamic behaviour of an Euler–Bernoulli beam traversed by a moving mass. The exponential and power
gradation laws were considered for the material properties. The Runge–Kutta method was used by Rajabi
et al. [29] to compute the dynamic response of an FGM beam to a moving oscillator. In [30, 31], the finite
element method was used in combination with the Newmark method to compute dynamic response of FGM
Timoshenko beams under moving loads. Chen et al. [32] employed the Ritz method to study the effects of
porosities on dynamic deflection of FGM Timoshenko beams. The nonlinear variation of elastic moduli and
mass density due to the graded non-uniform porosity was considered by the authors. The Ritz method was also
used by Songsuwan et al. [33] to study the effect of the thickness gradation of material properties on the vibra-
tion of sandwich Timoshenko beams under a moving harmonic load. The influence of an elastic foundation
on the dynamic behaviour of the sandwich beams was taken into account by the authors. The effect of axial
gradation of the material properties and the temperature on the dynamic behaviour of a Timoshenko beam was
studied by Wang and Wu [34] using the Lagrange method.

The material properties of the beams discussed in the above references are graded in only one direction, the
axial or the transverse direction. Many applications in practice are demanding FGM structures with material
properties varying in two or more directions to meet the multifunctional requirements [35]. Analysis of beams
with material properties varying in both the axial and transverse directions has been carried out in recent
years. Lü et al. [36] presented a semi-analytical method for studying bending and thermal deformation of two-
directional FGMbeams. Thematerial properties are supposed to vary exponentially along both the longitudinal
and the transverse directions. The NURBS isogeometric finite element method was used in [37, 38] to study
thermo-mechanical behaviour and free vibration of bidirectional FGM beams, respectively. Free vibration of
FGM beams with exponential variation of properties in axial and transverse direction was investigated in [39,
40]. Şimşek [41] studied the vibration of an exponential gradation FGM beam under a moving point load.
The effect of material gradation in the axial and transverse directions on the vibration characteristics was
examined by the author with the aid of the Newmark method. Pydah and Sabale [42] studied the bending of
circular FGM Euler–Bernoulli beams with material properties varying in both the tangential and the thickness
direction. The analytical solution was obtained for a cantilever beam under various tip loads. Pydah and
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Batra [43] employed a logarithmic function to develop a shear deformation theory for the analysis of thick
circular FGMbeamswithmaterial properties varying in the tangential and the thickness directionby exponential
and power gradation laws. The numerical investigation by the authors showed that the maximum stresses can
be reduced significantly for a sandwich beam with bidirectional material gradation. Nguyen et al. [44] used
a Timoshenko finite element formulation to compute the dynamic response of a bidirectional FGM beam to
a moving load. The beam is made from four distinct materials with effective properties being graded in the
length and thickness directions by power gradation laws. Free vibration of tapered power-law bidirectional
FGM beams was studied by Nguyen and Tran [45] using a hierarchical finite element formulation. Static
bending of sandwich beams with power-law variation of properties was investigated by Karamanli [46] via a
quasi-3D theory. The dependence of the deflections and stresses on the material gradation of the beams under
uniform and sinusoidal distributed loads was examined using the symmetric smoothed particle hydrodynamics
(SPH) method. The SPH method was also used in [47] in the bending analysis of bidirectional FGM beams.
Nguyen and Lee [48] developed a finite element model for flexural-torsion vibration and buckling analysis of
thin-walled bidirectional FGM beams. The influence of the material gradation on the frequencies and buckling
loads of the beams has been examined in detail. The effect of porosities on buckling behaviour of power-law
bidirectional FGM beams was investigated by Lei et al. [49] using the generalized differential quadrature
method. Tang et al. [50] employed the general differential quadrature method to study nonlinear vibration
in the asymmetric mode of FGM Euler–Bernoulli beams with exponential variation of material properties in
axial and transverse direction. The differential quadrature method was also used in [51] to study nonlinear
vibration of bidirectional FGM beams in hygro-thermal environment. The finite element method was used by
Rajasekaran and Khaniki [52] in studying the forced vibration of non-uniform bidirectional FGMmicrobeams
on an elastic foundation due to a moving harmonic load/mass. Various material grading models, including the
exponential, linear, parabolic and sigmoidal models, were considered by the authors. Very recently, Nguyen
et al. [53] investigated the dynamic response of bidirectional sandwich Timoshenko beams with bidirectional
power-law gradation FGM face layers under a moving point load.

As seen from the above literature review, the analysis of bidirectional functionally graded sandwich
(BFGSW) beams has not been considered sufficiently. Keeping this in view, the present paper is an attempt to
fill this gap by studying the dynamic behaviour of BFGSW beams under a moving mass. The study is carried
out on the basis of a quasi-3D shear deformation theory. The beams consist of three layers, an axially FGM
core and two skin layers of bidirectional power-law FGM. Both the Voigt and Mori–Tanaka micromechanical
models are used to evaluate the effective material properties of the beams. In addition, as shown in [54–56],
the vibration of a beam partially resting on an elastic foundation is much different from that of the beam fully
resting on the foundation. Motivated by these works, the effect of partial support by a Pasternak foundation
on the dynamic behaviour of the BFGSW beams is also taken into consideration herein. In order to handle the
longitudinal variation of the beam rigidities, a finite element formulation is derived and employed to construct
the equation ofmotion for the beams. The dynamic response of the beam is computedwith the aid of an implicit
Newmark method. Numerical investigation is carried out to highlight the effects of the material distribution,
the foundation and moving mass parameters on the dynamic behaviour of the beams.

2 BFGSW beam

A simply supported beam with length L, rectangular cross section (b × h), partially supported by an elastic
foundation as depicted in Fig. 1 is considered. The core of the sandwich beam ismade of axially FGM,while the
face layers are made of bidirectional FGM. The Pasternak foundation model represented by Winkler springs
with stiffness kw and a shear layer with stiffness ks is adopted herein. In the figure, αF is the ratio of the
foundation supporting part LF to the total beam length L, αF = LF/L . The beam is under action of a mass m,
moving with a constant speed v from the left end to the right end of the beam. It is assumed that the mass m
is always in contact with the beam. The Cartesian coordinate system (x, y, z) in Fig. 1 is chosen such that the
(x, y) plane is coincident with the beam’s mid-plane, and the z-axis is perpendicular to the mid-plane and it
directs upward. Denoted by z0, z1, z2 and z3 (z0 = −h/2, z3 = h/2) are, respectively, the vertical coordinates
of the bottom surface, the interfaces between the layers and the top surface.
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Fig. 1 A BFGSW beam partially resting on elastic foundation under a moving mass
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Fig. 2 Variation of Vc and Vm of BFGSW beam for nx = nz = 0.5 and nx = nz = 3

The beam is assumed to be made from a mixture of ceramic and metal. The volume fraction of ceramic
(Vc) and metal (Vm) is considered to vary in both the thickness and the longitudinal direction by the following
power gradation laws:

Vc =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

( z − z0
z1 − z0

)nz(
1 − x

2L

)nx
for z ∈ [z0, z1]

(
1 − x

2L

)nx
for z ∈ [z1, z2]

( z − z3
z2 − z3

)nz(
1 − x

2L

)nx
for z ∈ [z2, z3]

and Vm = 1 − Vc,

(1)

where nx and nz are, respectively, the axial and transverse power-law indexes, defining the variation of the
constituent materials in the x and z directions, respectively. The subscripts ‘c’ and ‘m’ in Eq. (1) and hereafter
stand for ceramic and metal, respectively. The volume fraction in Eq. (1) was modified slightly from that of
Ref. [46], so that the conventional unidirectional FGM sandwich beam, e.g. the sandwich beams in Refs. [12,
15], can be obtained from (1) by simply setting nx to zero. The thickness ratio of the beam layers from the
bottom layer to the top layer is denoted herein by three numbers in parentheses, e.g. (2-1-2). Figure 2 shows
the variation of Vc and Vm in the thickness and length directions of the (2-2-1) beam for two pairs of the
power-law indexes, nx = nz = 0.5 and nx = nz = 3.
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Two micromechanical models, namely the Voigt model and the Mori–Tanaka scheme, are employed in
this paper to evaluate the effective material properties of the beam. The effective property (P f ) such as the
Young’s modulus and mass density evaluated by the Voigt model is of the form

P f = PcVc + PmVm, (2)

wherePc andPm are the properties of the ceramic and metal, respectively. Substituting Eq. (1) into Eq. (2),
one gets

P f (x, z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Pm + (Pc − Pm)
( z − z0
z1 − z0

)nz(
1 − x

2L

)nx
for z ∈ [z0, z1]

Pm + (Pc − Pm)
(
1 − x

2L

)nx
for z ∈ [z1, z2]

Pm + (Pc − Pm)
( z − z3
z2 − z3

)nz(
1 − x

2L

)nx
for z ∈ [z2, z3]

(3)

According to the Mori–Tanaka scheme [57], the effective Young’s modulus (E f ) and Poisson’s ratio (ν f ) can
be expressed as

E f = 9K f G f

3K f + G f
, ν f = 3K f − 2G f

6K f + 2G f
, (4)

where K f andG f are, respectively, the effective local bulkmodulus and shearmodulus,which can be calculated
from the moduli and volume fraction of the constituent materials as follows:

K f − Km

Kc − Km
= Vc

1 + Vm(Kc − Km)/(Km + 4Gm/3)
,

G f − Gm

Gc − Gm
= Vc

1 + Vm(Gc − Gm)/[Gm + Gm(9Km + 8Gm)/(6Km + 12Gm)] ,
(5)

where Kc, Km, Gc, Gm are the bulk modulus and shear modulus of the ceramic and metal. Note that the
effective mass density (ρ f ) is still calculated by the Voigt model according to Eq. (3).

3 Mathematical formulation

Based on the quasi-3D shear deformation theory [15], the displacements of a point in the x and z direction are,
respectively, given by

u(x, z, t) =u0(x, t) − zwb,x (x, t) − f (z)ws,x (x, t),

w(x, z, t) =wb(x, t) + ws(x, t) + g(z)wz(x, t),
(6)

where u0(x, t) is the axial displacement of the point on the x-axis; wb(x, t), ws(x, t) and wz(x, t) are, respec-
tively, the bending, shear and thickness stretching components of the transverse displacement; t is the time
variable, and

f (z) = 4z3

3h2
, g(z) = 1 − 4z2

h2
. (7)

In Eq. (6) and hereafter, a subscript comma is used to denote the partial derivative with respect to the variable
which follows.

The axial strain (εxx ), normal strain (εzz) and shear strain (γxz) resulting from Eq. (6) are

εxx =u,x = u0,x − zwb,xx − f (z)ws,xx ,

εzz =w,z = g(z),z wz,

γxz =u,z + w,x = g(z)(ws,x + wz,x ). (8)

The constitutive equation based on the linear behaviour of the beam material is given by
⎧
⎨

⎩

σxx
σzz
τxz

⎫
⎬

⎭
=
⎡

⎣
C11 C13 0
C13 C11 0
0 0 C55

⎤

⎦

⎧
⎨

⎩

εxx
εzz
γxz

⎫
⎬

⎭
, (9)
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where σxx , σzz and τxz are, respectively, the axial, normal and shear stresses associated with the train compo-
nents in Eq. (8), and

C11 = E f

1 − ν2f
, C13 = E f ν f

1 − ν2f
, C55 = G f . (10)

Noting that the effective Young’s modulus and Poisson’s ratio in the above equation are dependent on both the
x and z coordinates. In addition, C11 = E f and C13 = 0 if the thickness stretching effect is omitted (εzz = 0).

The elastic strain energy of the beam (UB) is given by

UB = 1

2

∫ L

0

∫

A
(σxxεxx + σzzεzz + τxzγxz)dAdx, (11)

where A is the cross-sectional area of the beam.
Substituting Eqs. (8) and (9) into Eq. (11), one gets

UB =1

2

∫ L

0

[
A11u

2
0,x − 2A12u0,xwb,xx + A22

(
w2
b,xx + 64

h4
w2
z

)

− 8

3h2
A34u0,xws,xx + 8

3h2
A44wb,xxws,xx + 16

9h4
A66w

2
s,xx

+ 16

h2

(
B12u0,x − B22wb,xx − 4

3h2
B44ws,xx

)
wz

+
(
D11 − 8

h2
D22 + 16

h4
D44

)
(ws,x + wz,x )

2
]
dx,

(12)

where A11, A12, A22, A34, A44, A66, B12, B22, B44 and D11, D22, D44 are the beam rigidities, defined
as

(A11, A12, A22, A34, A44, A66) = b
∫ h/2

−h/2

E f

1 − ν2f

(
1, z, z2, z3, z4, z6

)
dz,

(B12, B22, B44) = b
∫ h/2

−h/2

E f ν f

1 − ν2f

(
z, z2, z4

)
dz,

(D11, D22, D44) = b
∫ h/2

−h/2
G f

(
1, z2, z4

)
dz.

(13)

It is necessary to note that since E f , G f and ν f are dependent upon the x and z coordinates, the rigidities in
the above equation are function of x.

The strain energy stored in the elastic foundation (UF) based on the mid-plane transverse displacement is
of the form

UF = 1

2

∫ LF

0

[
kww2(x, 0, t) + ksw

2
,x (x, 0, t)

]
dx

= 1

2

∫ LF

0

[
kw(wb + ws + wz)

2 + ks(wb,x + ws,x + wz,x )
2
]
dx,

(14)

where LF , as above mentioned, is the length of the foundation supporting part.
The kinetic energy (T ) of the beam is given by

T = 1

2

∫ L

0

∫

A
ρ f (u̇

2 + ẇ2)dAdx, (15)

where the effective mass density ρ f is defined by Eq. (3), and an over dot is used to denote the derivative with
respect to the time variable. From Eqs. (6) and (7), one can write the above kinetic energy in the form

T =1

2

∫ L

0

{
I11

[
u̇20 + (ẇb + ẇs + ẇz)

2] − 2I12u̇0ẇb,x

+ I22
[
ẇ2
b,x − 8

h2
(ẇb + ẇs + ẇz)ẇz

]
− 8

3h2
I34u̇0ẇs,x

+ 8

h2
I44

(1

3
ẇb,x ẇs,x + 2

h2
ẇ2
z

)
+ 16

9h4
I66ẇ

2
s,x

}
dx,

(16)
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where I11, I12, I22, I34, I44, I66 are the mass moments, defined as

(I11, I12, I22, I34, I44, I66) = b
∫ h/2

−h/2
ρ f

(
1, z, z2, z3, z4, z6

)
dz. (17)

Noting that since ρ f is dependent on the x and z coordinates, the above mass moments are functions of x.
Finally, the potential energy due to the moving mass is given by [58, 59]

V = −
∫ L

0

[
(mg − mẅ − 2mvẇ,x − mv2w,xx )w − mü0u0(x, t)

]
δ(x − vt)dx, (18)

where g is the gravity acceleration; mü0 and mẅ are, respectively, the axial and transverse inertial forces;
2mvẇ,x and mv2w,xx are the Coriolis and centrifugal forces, respectively; δ(.) is the Dirac delta function;
x is the abscissa of the moving mass, measured from the left end of the beam. Noting that the transverse
displacement w in Eq. (18) is evaluated at z = 0.

Differential equations ofmotion for the beam can be obtained by applyingHamilton’s principle to Eqs. (12),
(14), (16) and (18). However, since the beam rigidities and mass moments are functions of the coordinate x, a
closed-form solution for such equations is hardly obtained. A finite element formulation is derived in the next
section for computing the dynamic response of the beam.

4 Finite element formulation

A two-node C1 beam element with length of l is considered herewith. The vector of nodal displacements (d)
for the element is given by

d
12×1

= {
du0 dwb dws dwz

}T
, (19)

where

du0 ={u01 u02}T , dwb = {wb1 wb,x1 wb2 wb,x2}T ,

dws ={ws1 ws,x1 ws2 ws,x2}T , dwz = {wz1 wz2}T (20)

are, respectively, the vectors of the nodal axial, bending, shear transverse displacements and thickness stretching
components. The superscript ‘T ’ in Eq. (20) and hereafter is used to denote the transpose of a vector or amatrix.

The displacements are interpolated from their nodal values according to

u0 = Ndu0 , wz = Ndwz , wb = Hdwb , ws = Hdws , (21)

where N and H are the matrices of interpolating functions with the following forms

N = [N1 N2], H = [H1 H2 H3 H4]. (22)

In the present work, linear interpolation functions are used for Ni , and cubic Hermite polynomials are adopted
for Hi .

With the interpolation, one can write the strain energy of the beam in the form

UB = 1

2

neB∑
dTkBd, (23)

where the summation is taken over the total number of elements, neB, and kB is the element stiffness matrix,
which can be written in sub-matrices as

kB
12×12

=

⎡

⎢
⎢
⎢
⎢
⎣

kBu0u0 kBu0wb
kBu0ws

kBu0wz(
kBu0wb

)T kBwbwb
kBwbws

kBwbwz(
kBu0ws

)T (
kBwbws

)T kBwsws
kBwswz(

kBu0wz

)T (
kBwbwz

)T (
kBwswz

)T
kBwzwz

⎤

⎥
⎥
⎥
⎥
⎦

. (24)
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In the above equation, the sub-matrices kBu0u0 , kBwbwb
, kBwsws

, kBwzwz
are, respectively, the element stiffness

matrices stemming from the axial stretching, bending, shear, thickness stretching deformation, and they have
the following forms:

kBu0u0 =
∫ l

0
NT

,x A11N,xdx, kBwbwb
=
∫ l

0
HT

,xx A22H,xxdx,

kBwsws
=
∫ l

0

[
16

9h4
HT

,xx A66H,xx +
(

D11 − 8

h2
D22 + 16

h4
D44

)

HT
,xH,x

]

dx,

kBwzwz
=
∫ l

0

[
64

h4
HT A22N +

(

D11 − 8

h2
D22 + 16

h4
D44

)

NT
,xN,x

]

dx,

(25)

and kBu0wb
, kBu0ws

, kBu0wz
, kBwbws

, kBwbwz
, kBwswz

are, respectively, the axial-bending, axial-shear, axial-thickness
stretching, bending shear, bending-thickness stretching, bending-shear and shear-thickness stretching coupling
matrices with the following forms:

kBu0wb
= −

∫ l

0
NT

,x A12H,xxdx, kBu0ws
= − 4

3h2

∫ l

0
NT

,x A34H,xxdx,

kBu0wz
= 8

h2

∫ l

0
NT

,x B12Ndx, kBwbws
= 4

3h2

∫ l

0
HT

,xx A44H,xxdx,

kBwbwz
= − 8

h2

∫ l

0
HT

,xx B22Ndx,

kBwswz
=
∫ l

0

[

− 32

3h4
HT

,xx B44N +
(

D11 − 8

h2
D22 + 16

h4
D44

)

HT
,xN,x

]

dx .

(26)

The strain energy UF in Eq. (14) can also be written as

UF = 1

2

neF∑
dTkFd, (27)

where neF is number of the elements used for the foundation, and

kF
12×12

=

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 kFwbwb

kFwbws
kFwbwz

0
(
kFwbws

)T kFwsws
kFwswz

0
(
kFwbwz

)T (
kFwswz

)T
kFwzwz

⎤

⎥
⎥
⎥
⎥
⎦

(28)

is the element foundation stiffness matrix with the following sub-matrices

kFwbwb
= kFwsws

= kFwbws
=
∫ l

0

(
HT kwH + HT

,xksH,x

)
dx,

kFwbwz
= kFwswz

=
∫ l

0

(
HT kwN + HT

,xksN,x

)
dx,

kFwzwz
=
∫ l

0

(
NT kwN + NT

,xksN,x

)
dx .

(29)

The total element stiffness is

k = kB + kF (30)

for the element resting on the foundation, and k = kB for the element without the foundation support.
Similarly, we can write the kinetic energy in the form

T = 1

2

neB∑
ḋTmḋ (31)
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with the element mass matrixm having the form

m
12×12

=

⎡

⎢
⎢
⎣

mu0u0 mu0wb mu0ws 0
mT

u0wb
mwbwb mwbws mwbwz

mT
u0ws

mT
wbws

mwsws mwswz

0 mT
wbwz

mT
wswz

mwzwz

⎤

⎥
⎥
⎦ (32)

in which

mu0u0 =
∫ l

0
NT I11Ndx, mu0wb = −

∫ l

0
NT I12H,xdx,

mu0ws = − 4

3h2

∫ l

0
NT I34H,xdx, mwbwb =

∫ l

0

(
HT I11H + HT

,x I22H,x

)
dx,

mwbws =
∫ l

0

(

HT I11H + 4

3h2
HT

,x I44H,x

)

dx, mwbwz = mwswz =
∫ l

0

(

I11 − 4

h2
I22

)

HTNdx,

mwsws =
∫ l

0

(

HT I11H + 8

9h4
HT

,x I66H,x

)

dx, mwzwz =
∫ l

0

(

I11 − 8

h2
I22 + 16

h4
I44

)

NTNdx .

(33)

The potential energy in Eq. (18) is now of the form

V =
neB∑(

d̈Tmm d̈ + ḋT cm ḋ + dTkmd − dT fm
)
, (34)

where mm, cm and km are, respectively, the element mass, damping and stiffness matrices due to the effects
of the inertia, Coriolis and the centrifugal forces of the moving mass; fm is the time-dependent element nodal
load vector generated by the moving mass. The expressions for these matrices and vector are as follows:

mm
12×12

= m

⎡

⎢
⎢
⎣

NTN 0 0 0
0 HTH HTH HTN
0 HTH HTH HTN
0 NTH NTH NTN

⎤

⎥
⎥
⎦

xe

,

cm
12×12

= 2mv

⎡

⎢
⎢
⎣

0 0 0 0
0 HTH,x HTH,x HTN,x

0 HTH,x HTH,x HTN,x

0 NTH,x NTH,x NTN,x

⎤

⎥
⎥
⎦

xe

,

km
12×12

= mv2

⎡

⎢
⎢
⎣

0 0 0 0
0 HTH,xx HTH,xx 0
0 HTH,xx HTH,xx 0
0 NTH,xx NTH,xx 0

⎤

⎥
⎥
⎦

xe

(35)

and

fm
12×1

= mg
[
0 HT HT NT

]T
xe

. (36)

The notation [.]xe in Eqs. (35) and (36) means that [.] is evaluated at xe—the current abscissa of the moving
mass with respect to the left node of the element. Except for the element under the moving mass, the element
matricesmm , cm , km and the force vector fm are zeros for all other elements. Since the beam rigidities andmass
moments are functions of the longitudinal coordinate x, explicit expressions for the integrals in the element
stiffness and mass matrices in Eqs. (25), (26) and (33) are hardly obtained. Gauss quadrature with 6 points
along the element length and thickness is used herein to evaluated the integrals. More points have been used,
but no improvement in the numerical result is seen.

Having the element stiffness and mass matrices derived, one can write the equation of motion for the beam
in the following form [60]:

(M + Mm) d̈ + Cm ḋ + (K + Km)d = F, (37)
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where d, ḋ and d̈ are, respectively, the vectors of nodal displacements, velocities and accelerations; M, Mm ,
Cm , K, Km and F are, respectively, the global matrices and vector, obtained by, respectively, assembling the
matrices m, mm , cm , k, km and fm over the elements. Equation (37) can be solved by the direct integration
Newmark method. The average acceleration method that ensures the numerical instability [61] is adopted
herein.

5 Results and discussion

Dynamic behaviour of the BFGSW beam partially resting on the elastic foundation under the moving mass
is numerically investigated in this section. To this end, a simply supported beam with b = 1m, h = 1m
and various values of span-to-height ratio is considered. The geometric boundary conditions for the simply
supported beam are as follows:

• At x = 0 : u0(0, t) = wb(0, t) = ws(0, t) = wz(0, t) = 0,
• At x = L : wb(L , t) = ws(L , t) = wz(L , t) = 0.

The beam is made from alumina (Al2O3) and aluminium (Al) with the material data are as follows [12]:

• Ec = 380 GPa, ρc = 3960 kg/m3, νc = 0.3 for alumina,
• Em = 70 GPa, ρm = 2702 kg/m3, νm = 0.3 for aluminium.

Following the works in [12, 33], the following non-dimensional parameters for the dynamic magnification
factor (Dd), mass ratio (rm), foundation stiffness parameters (k1) and (k2) are introduced as

Dd = max
(w(L/2, t)

wst

)
, rm = m

ρc AL
, k1 = kwL4

Ec I
, k2 = ks L2

Ec I
, (38)

where wst = mgL3/48Ec I is the static deflection of an alumina beam under a loadmg acting at the mid-span,
and A = bh is the cross-sectional area. A uniform time stepΔt = ΔT/500, withΔT is the total time necessary
for the mass to cross the beam, is used for the Newmark procedure.

5.1 Formulation verification

Before computing the dynamic response of the BFGSW beam, the accuracy of the derived formulation is
necessary to verify. Since there are no data on the BFGSW beam partially supported by the elastic foundation
under a moving mass, the verification is carried out by comparing the frequencies and dynamic response for
some special cases.

Table 1 compares the frequency parameter, μ = ωL2/h
√

ρm/Em , of a unidirectional FGSW beam fully
supported by a Pasternak foundation obtained in the present work with the result of Su et al. [12]. The sandwich
beam in [12] is a special case of the present beam model when nx = 0. As can be observed from the table,
the results obtained in the present work are in excellent agreement with that of Ref. [12], regardless of the
transverse power-law index nz , the foundation stiffness and the micromechanical model. Noting that the result
of Ref. [12] was obtained by using Timoshenko beam theory and the general Fourier formulation. In Table 2,
the fundamental frequency parameters of an exponentially bidirectional FGM beam obtained by the dived
formulation are compared with the result based on Timoshenko beam theory and a semi-analytical method of
Ref. [41]. The frequency parameter in Table 2 is defined in accordance with Ref. [41], and it is obtained for
a simply supported beam with the geometric and material data given in the reference. A good agreement is
noted from Table 2, regardless of the span-to-height ratio and the material grading indexes.

In Table 3, the dynamic magnification factors of a FGM beam with the material properties varying in
the thickness direction under a moving mass of the present paper are compared with the result of Khalili
et al. [28] and Song et al. [62]. The result of Ref. [28] is based on Euler–Bernoulli beam theory and the
differential quadrature method, while the Kirchhoff plate theory and the differential quadrature method are
used in Ref. [62]. A good agreement between the dynamic magnification factors of the present work with that
of Refs. [28, 62] is noted from Table 3. It is necessary to note that the result in Table 3 has been obtained
for a FGM beam made from alumina and steel with the geometrical and material data given in [28]. In order
to verify the formulation in some more further, Fig. 3 compares the time histories for mid-span deflection of
the unidirectional FGSW beam (nx = 0) obtained herein with the result of Songsuwan et al. [33] using the
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Table 1 Comparison of fundamental frequency parameters of (1-1-1) beam fully resting on foundation for nx = 0, L/h = 10

Source k1
k2
π2 Voigt model Mori–Tanaka scheme

nz = 0.6 nz = 1 nz = 2 nz = 5 nz = 0.6 nz = 1 nz = 2 nz = 5

Ref. [12] 0 0 4.3706 4.0017 3.5159 3.0937 3.7388 3.4480 3.1462 2.9387
Present 4.3747 4.0014 3.5154 3.0931 3.7402 3.4478 3.1455 2.9351
Ref. [12] 0.5 5.9427 5.7192 5.4540 5.2632 5.4947 5.3464 5.2233 5.1736
Present 5.9484 5.7220 5.4569 5.2663 5.4984 5.3494 5.2262 5.1750
Ref. [12] 1.0 7.1784 7.0289 6.8652 6.7699 6.8121 6.7290 6.6833 6.7004
Present 7.1852 7.0336 6.8700 6.7749 6.8173 6.7338 6.6881 6.7042
Ref. [12] 102 0 7.2381 7.0917 6.9321 6.8406 6.8750 6.7946 6.7520 6.7719
Present 7.2451 7.0966 6.9371 6.8458 6.8803 6.7996 6.7570 6.7759
Ref. [12] 0.5 8.2828 8.1846 8.0894 8.0576 7.9674 7.9285 7.9356 7.9993
Present 8.2907 8.1909 8.0958 8.0641 7.9738 7.9349 7.9419 8.0048
Ref. [12] 1.0 9.2097 9.1479 9.1007 9.1134 8.9270 8.9195 8.9643 9.0619
Present 9.2185 9.1554 9.1082 9.1211 8.9344 8.9269 8.9717 9.0686

Table 2 Comparison of the fundamental frequency parameters of a bidirectional FGM beam

nx Source L/h = 5 L/h = 20

nz = 0.2 nz = 0.4 nz = 0.6 nz = 0.8 nz = 1 nz = 0.2 nz = 0.4 nz = 0.6 nz= 0.8 nz = 1

0 Ref. [41] 2.6748 2.6669 2.6533 2.6337 2.6103 2.8349 2.8251 2.8115 2.7919 2.7685
Present 2.6796 2.6727 2.6613 2.6455 2.6254 2.8351 2.8279 2.8159 2.7994 2.7783

0.2 Ref. [41] 2.6728 2.6650 2.6513 2.6318 2.6083 2.8330 2.8251 2.8115 2.7919 2.7666
Present 2.6787 2.6718 2.6604 2.6445 2.6243 2.8340 2.8268 2.8148 2.7983 2.7772

0.4 Ref. [41] 2.6689 2.6611 2.6474 2.6279 2.6044 2.8291 2.8212 2.8076 2.7880 2.7626
Present 2.6761 2.6692 2.6577 2.6417 2.6215 2.8307 2.8235 2.8115 2.7950 2.7739

0.6 Ref. [41] 2.6630 2.6552 2.6416 2.6220 2.5986 2.8232 2.8154 2.8017 2.7822 2.7587
Present 2.6716 2.6647 2.6532 2.6372 2.6169 2.8252 2.8180 2.8061 2.7895 2.7685

0.8 Ref. [41] 2.6533 2.6455 2.6318 2.6123 2.5888 2.8154 2.8076 2.7939 2.7744 2.7509
Present 2.6654 2.6584 2.6469 2.6308 2.6105 2.8175 2.8103 2.7984 2.7819 2.7610

1 Ref. [41] 2.6416 2.6337 2.6201 2.6005 2.5771 2.8056 2.7978 2.7841 2.7646 2.7412
Present 2.6574 2.6504 2.6388 2.6227 2.6022 2.8076 2.8005 2.7886 2.7722 2.7513

Table 3 Comparison of dynamic magnification factors of FGM beam under a moving mass

v (m/s) Source nz SUS304

0.2 0.5 1 2 5 10 20

20 Ref. [28] 0.6305 0.6963 0.7568 0.8305 0.8937 0.9419 0.9880 1.0689
Ref. [62] 0.6170 0.6928 0.7429 0.8062 0.8828 0.9414 0.9899 1.0848
Present 0.6276 0.6928 0.7345 0.8042 0.8820 0.9452 1.0143 1.0827

40 Ref. [28] 0.6680 0.7579 0.8292 0.8723 0.8987 0.9194 0.9388 1.0799
Ref. [62] 0.6652 0.7561 0.8284 0.8750 0.9122 0.9387 0.9652 1.0674
Present 0.6595 0.7474 0.8162 0.8617 0.9029 0.9366 0.9711 1.0636

60 Ref. [28] 0.6134 0.7267 0.8570 0.9732 1.0901 1.1829 1.2749 1.4513
Ref. [62] 0.6341 0.7154 0.8403 0.9547 1.0848 1.1912 1.2907 1.4822
Present 0.6262 0.6991 0.8172 0.9254 1.0552 1.1668 1.2968 1.4391

80 Ref. [28] 0.7611 0.9070 1.0510 1.1740 1.2927 1.3882 1.4840 1.6681
Ref. [62] 0.7732 0.9212 1.0661 1.1914 1.3300 1.4425 1.5547 1.7589
Present 0.7433 0.8799 1.0108 1.1253 1.2599 1.3774 1.5152 1.6657

100 Ref. [28] 0.8863 1.0368 1.1798 1.3003 1.4173 1.5133 1.6100 1.7951
Ref. [62] 0.9293 1.0877 1.2332 1.3565 1.4940 1.6087 1.7233 1.9341
Present 0.8717 1.0107 1.1415 1.2568 1.3920 1.5104 1.6498 1.8014

125 Ref. [28] 0.9942 1.1427 1.2856 1.4020 1.5098 1.5983 1.6877 1.8597
Ref. [62] 1.0771 1.2352 1.3814 1.5045 1.6411 1.7611 1.8772 2.0995
Present 0.9816 1.1223 1.2542 1.3640 1.4892 1.6019 1.7346 1.8782

150 Ref. [28] 1.0684 1.2169 1.3524 1.4530 1.5435 1.6261 1.7131 1.8812
Ref. [62] 1.1906 1.3561 1.5066 1.6283 1.7565 1.8717 1.9855 2.2032
Present 1.0621 1.2025 1.3252 1.4201 1.5325 1.6417 1.7722 1.9054
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Fig. 3 Comparison of time histories for mid-span deflection of FGM sandwich beam under a moving force (L/h = 10, nx = 0,
nz = 0.5, v = 50 m/s)

Table 4 Convergence of the formulation in evaluating dynamic magnification factors of BFGSW beam (L/h = 20, rm = 0.5,
k1 = 50, k2 = 5 and v = 50 m/s)

αF Beam nx nz neB = 4 neB = 6 neB = 8 neB = 10 neB = 12 neB = 14 neB = 16 neB = 18

0 (2-1-2) 0.5 0.5 2.0322 2.0310 2.0295 2.0285 2.0291 2.0288 2.0287 2.0287
2 3.9251 3.9196 3.9183 3.9166 3.9161 3.9158 3.9156 3.9156

2 0.5 2.5455 2.5441 2.5438 2.5431 2.5428 2.5425 2.5421 2.5421
2 4.6513 4.6508 4.6504 4.6491 4.6487 4.6481 4.6477 4.6477

(2-1-1) 0.5 0.5 1.9755 1.9752 1.9740 1.9736 1.9733 1.9732 1.9731 1.9731
2 3.4597 3.4591 3.4589 3.4585 3.4584 3.4583 3.4583 3.4583

2 0.5 2.4941 2.4934 2.4928 2.4927 2.4925 2.4924 2.4922 2.4922
2 4.1997 4.1981 4.1976 4.1969 4.1969 4.1968 4.1967 4.1967

0.5 (2-1-2) 0.5 0.5 1.0493 1.0484 1.0477 1.0476 1.0473 1.0474 1.0472 1.0472
2 1.4566 1.4650 1.4643 1.4641 1.4639 1.4638 1.4638 1.4638

2 0.5 1.2293 1.2371 1.2361 1.2361 1.2359 1.2358 1.2356 1.2356
2 1.5604 1.5598 1.5586 1.5582 1.5582 1.5581 1.5579 1.5579

(2-1-1) 0.5 0.5 1.0278 1.0245 1.0238 1.0237 1.0236 1.0235 1.0232 1.0232
2 1.3970 1.4064 1.4062 1.4061 1.4061 1.4059 1.4059 1.4059

2 0.5 1.2078 1.2153 1.2144 1.2143 1.2143 1.2142 1.2141 1.2141
2 1.5058 1.5139 1.5138 1.5137 1.5137 1.5136 1.5136 1.5136

1 (2-1-2) 0.5 0.5 0.6921 0.6866 0.6849 0.6842 0.6839 0.6839 0.6838 0.6838
2 0.7965 0.7950 0.7923 0.7913 0.7912 0.7912 0.7912 0.7912

2 0.5 0.7523 0.7449 0.7437 0.7428 0.7426 0.7425 0.7424 0.7424
2 0.8284 0.8175 0.8129 0.8122 0.8122 0.8120 0.8120 0.8120

(2-1-1) 0.5 0.5 0.6841 0.6793 0.6779 0.6774 0.6771 0.6770 0.6768 0.6768
2 0.7818 0.7803 0.7698 0.7695 0.7695 0.7694 0.7694 0.7694

2 0.5 0.7467 0.7399 0.7391 0.7384 0.7383 0.7381 0.7379 0.7379
2 0.8176 0.8061 0.8049 0.8043 0.8043 0.8042 0.8042 0.8042

Timoshenko beam theory and the Ritz method. Very good agreement between the present result with that of
Ref. [33] is seen from Fig. 3.

The convergence of the derived formulation in evaluating dynamic response of the BFGSW beam is shown
in Table 4, where the dynamic magnification factors of symmetric (2-1-2) and non-symmetric (2-1-1) beams
obtained by different number of the elements are given for L/h = 20, rm = 0.5, k1 = 50, k2 = 5, v = 50 m/s
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Fig. 4 Time histories for mid-span deflection of (2-1-1) beam for various values of moving mass speed and foundation stiffness
parameter (L/h = 20, nx = nz = 0.5, rm = 0.5, αF = 0.5)

and various values of the foundation supporting parameter αF . The result in the table is based on the Voigt
model and a uniform mesh for both the beam and the foundation. Thus, the number of elements used for the
foundation is neF = 0, neB/2 and neB for α = 0, 0.5 and 1, respectively. The convergence of the derived
formulation, as seen from the table, is fast, and it is achieved by using sixteen elements, regardless of the
layer thickness ratio and the power-law indexes. Because of this convergence result, a uniform mesh of sixteen
elements is used in all computations reported below.

5.2 Parametric study

The effects of various parameters, including the power-law indexes, the moving mass and foundation param-
eters, on the dynamic behaviour of the BFGSW beam are investigated in this subsection.

In Figs. 4 and 5, the time histories for mid-span deflection of a (2-1-1) beam are depicted for various values
of the moving mass speed v, foundation stiffness parameters k1, k2, foundation supporting parameter αF and
the mass ratio rm . Both the Voigt model and the Mori–Tanaka scheme are employed to obtain the deflections
of the beam. It can be seen from Fig. 4 that the mid-span deflection is remarkably influenced by the moving
mass speed, and the maximum mid-span deflection is larger for a higher moving mass speed. The beam tends
to execute less vibration cycles when it is subjected to the mass with a higher moving speed. The effect of the
foundation supporting parameter αF on the time histories of the beam, as seen from Fig. 5, is more significant
than that of the mass ratio rm . Furthermore, the mass ratio can slightly change the amplitude of the mid-span
deflection, but it hardly changes the way the beam vibrates. For most of the travelling time, the deflections
obtained from the Mori–Tanaka scheme are higher than that obtained by the Voigt model.

In order to study the effect of the power-law indexes and the foundation supporting parameter on the
dynamic response of the BFGSW beam, the dynamic magnification factors of symmetric and non-symmetric
beams are evaluated. The numerical results are presented in Tables 5 and 6, where the dynamic factors of
the beams with two values of the span-to-height ratio, L/h = 5 and L/h = 20, are given for k1 = 100,
k2 = 10, rm = 0.5, v = 50 m/s and various values of the foundation supporting parameter αF . The tables



2866 A. N. T. Vu et al.

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

t/ΔT

w
(L

/2
,t)

/w
st

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

t/ΔT

w
(L

/2
,t)

/w
st

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

t/ΔT

w
(L

/2
,t)

/w
st

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

t/ΔT

w
(L

/2
,t)

/w
st

MT, α
F
=0.2 Voigt, α

F
=0.2 MT, α

F
=0.5 Voigt, α

F
=0.5

(a) r
m

=0.25 (b) r
m

=0.5

(c) r
m

=0.75 (d) r
m

=1

Fig. 5 Time histories for mid-span deflection of (2-1-1) beam for different mass ratios and foundation supporting parameters
(L/h = 20, nx = nz = 0.5, k1 = 100, k2 = 10, v = 50 m/s)

Table 5 Dynamic magnification factors for L/h = 5, k1 = 100, k2 = 10, rm = 0.5 and v = 50 (m/s)

αF nx nz Voigt model Mori–Tanaka scheme

2-2-1 1-1-1 2-1-1 2-1-2 2-2-1 1-1-1 2-1-1 2-1-2

0.2 0.5 0.3 1.1127 1.1360 1.1475 1.1669 1.4161 1.4536 1.4707 1.5023
0.5 1.2180 1.2558 1.2738 1.3057 1.5295 1.5853 1.6090 1.6670
1 1.4079 1.4751 1.5045 1.5636 1.7223 1.8230 1.8521 1.9392
5 1.8683 2.0529 2.0792 2.2672 2.0658 2.2635 2.2695 2.4427

3 0.3 1.6212 1.6401 1.6506 1.6660 2.0847 2.1039 2.1154 2.1324
0.5 1.7062 1.7403 1.7573 1.7872 2.1636 2.1946 2.2103 2.2356
1 1.8794 1.9386 1.9632 2.0129 2.2883 2.3352 2.3554 2.3940
5 2.2158 2.3410 2.3600 2.4719 2.4934 2.5651 2.5826 2.6402

0.4 0.5 0.3 0.8030 0.8145 0.8204 0.8299 0.9548 0.9728 0.9812 0.9960
0.5 0.8549 0.8733 0.8824 0.8978 1.0086 1.0339 1.0450 1.0660
1 0.9471 0.9791 0.9933 1.0206 1.0871 1.1241 1.1379 1.1690
5 1.1416 1.2065 1.2209 1.2829 1.2156 1.2843 1.2879 1.3451

3 0.3 1.0559 1.0646 1.0696 1.0766 1.2477 1.2542 1.2586 1.2638
0.5 1.0947 1.1079 1.1153 1.1260 1.2731 1.2825 1.2885 1.2959
1 1.1597 1.1811 1.1919 1.2095 1.3128 1.3278 1.3347 1.3467
5 1.2819 1.3207 1.3303 1.3633 1.3782 1.4000 1.4069 1.4238

0.8 0.5 0.3 0.4794 0.4832 0.4852 0.4883 0.5249 0.5302 0.5325 0.5367
0.5 0.4963 0.5021 0.5050 0.5097 0.5400 0.5469 0.5497 0.5552
1 0.5242 0.5334 0.5372 0.5447 0.5602 0.5693 0.5722 0.5795
5 0.5735 0.5880 0.5904 0.6019 0.5887 0.6027 0.6034 0.6149

3 0.3 0.5502 0.5525 0.5538 0.5557 0.5946 0.5961 0.5969 0.5981
0.5 0.5605 0.5639 0.5657 0.56855 0.6000 0.6020 0.6031 0.6047
1 0.5767 0.5818 0.5842 0.5882 0.6078 0.6106 0.6122 0.6148
5 0.6031 0.6104 0.6122 0.6178 0.6208 0.6253 0.6266 0.6300
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Table 6 Dynamic magnification factors for L/h = 20, k1 = 100, k2 = 10, rm = 0.5, and v = 50 (m/s)

αF nx nz Voigt model Mori–Tanaka scheme

2-2-1 1-1-1 2-1-1 2-1-2 2-2-1 1-1-1 2-1-1 2-1-2

0.2 0.5 0.3 1.0941 1.1185 1.1296 1.1536 1.4388 1.4907 1.5066 1.5505
0.5 1.2154 1.2608 1.2777 1.3165 1.5863 1.6585 1.6776 1.7400
1 1.4358 1.5182 1.5457 1.6272 1.7991 1.9070 1.9288 2.0342
5 1.9711 2.1869 2.1915 2.4024 2.1744 2.3769 2.3633 2.5466

3 0.3 1.6316 1.6571 1.6674 1.6886 2.1235 2.1442 2.1521 2.1694
0.5 1.7417 1.7805 1.7952 1.8279 2.2008 2.2311 2.2414 2.2669
1 1.9256 1.9914 2.0121 2.0740 2.3201 2.3666 2.3782 2.4183
5 2.3111 2.4457 2.4442 2.5642 2.5202 2.5963 2.5915 2.6563

0.4 0.5 0.3 0.7237 0.7362 0.7407 0.7512 0.8937 0.9161 0.9222 0.9411
0.5 0.7777 0.7968 0.8035 0.8227 0.9555 0.9856 0.9919 1.0173
1 0.8823 0.9209 0.9306 0.9641 1.0438 1.0939 1.0991 1.1420
5 1.1037 1.1883 1.1826 1.2541 1.1876 1.2553 1.2431 1.3035

3 0.3 0.9583 0.9685 0.9722 0.9807 1.1658 1.1735 1.1759 1.1822
0.5 1.0020 1.0171 1.0222 1.0349 1.1937 1.2044 1.2070 1.2158
1 1.0775 1.1052 1.1119 1.1355 1.2334 1.2481 1.2500 1.2621
5 1.2193 1.2626 1.2578 1.2928 1.2886 1.3108 1.3050 1.3243

0.8 0.5 0.3 0.4672 0.4716 0.4734 0.4771 0.5159 0.5214 0.5233 0.5277
0.5 0.4864 0.4931 0.4956 0.5011 0.5313 0.5382 0.5404 0.5459
1 0.5174 0.5276 0.5309 0.5393 0.5512 0.5598 0.5622 0.5692
5 0.5686 0.5829 0.5846 0.5964 0.5793 0.5907 0.5921 0.6016

3 0.3 0.5418 0.5443 0.5454 0.5475 0.5784 0.5797 0.5804 0.5815
0.5 0.5525 0.5561 0.5575 0.5605 0.5833 0.5852 0.5861 0.5877
1 0.5687 0.5739 0.5755 0.5797 0.5906 0.5934 0.5945 0.5969
5 0.5941 0.6016 0.6020 0.6082 0.6025 0.6069 0.6074 0.6111
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show a significant influence of both the foundation supporting parameter and the power-law indexes on the
factor Dd of the beams. The factor Dd increases with the increase in the power-law indexes, and it decreases
by increasing the foundation supporting parameter, regardless of the layer thickness ratio. The effect of the
power-law indexes can be seenmore clearly from Fig. 6, where the variation of theMori–Tanaka scheme-based
factor Dd with the power-law indexes is depicted for L/h = 20, rm = 0.5, k1 = 100, k2 = 10, v = 50 m/s
and various values of the supporting parameter αF . The influence of the indexes nx and nz on the dynamic
magnification factor ismore significant for the indexes smaller than 2.5, regardless of the foundation supporting
parameter. By comparing the result in Tables 5 and 6, one can see that the span-to-height ratio also plays an
important role on the dynamic response of the beam, and the dynamic magnification factor Dd is higher for
the beam with a smaller span-to-height ratio. This tendency is correct for all the power-law indexes and the
foundation supporting parameters.

Figures 7 and 8 show the variation of the dynamic magnification factor Dd with the moving mass speed
v for different foundation supporting parameters and the mass ratios, respectively. The results in the figures
are shown for the Dd obtained by both the Voigt model and the Mori–Tanaka (MT) scheme. As in case of the
moving load on a FGM beam [25], the dynamic factor Dd in Figs. 7 and 8 repeatedly increases and decreases
when increasing the moving mass speed v, and it then approaches a maximum value. Figure 7 shows that for
most of the moving mass speed, the dynamic factor Dd of both the symmetric and non-symmetric beams is
smaller for a larger supporting parameter αF . As expected, the dynamic magnification factor Dd , as seen from
Fig. 8, is higher when the beam is under a larger moving mass. The moving mass speed at which the dynamic
magnification factor attains a maximum value is very much dependent on the foundation supporting parameter
and the mass ratio.

In order to show the influence of the foundation stiffness on the dynamic response of the beam, the variation
of the dynamic magnification factor Dd with the foundation stiffness parameters k1 and k2 is depicted in Fig. 9
for L/h = 20, nx = nz = 0.5, rm = 0.5, αF = 0.5 and two values of the moving mass speeds, v = 30 and 80
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Fig. 11 Thickness distribution of axial stress for L/h = 10, nx = 0.5, k1 = 100, k2 = 10, rm = 0.5 and v = 50 m/s

m/s. As expected, the dynamic magnification factor decreases with the increase in the foundation parameters,
irrespective of the moving mass speed. The figure also shows a clear difference between the dynamic factor
obtained by the Voigt model and the Mori–Tanaka scheme. It is worthy to note that the influence of the
micromechanical model is more significant for 0 ≤ k1 ≤ 60 and 0 ≤ k2 ≤ 6. In other words, the influence of
the micromechanical model on the dynamic magnification factor is dependent on the foundation stiffness, and
this influence is less significant for the high stiffness foundation.

To explore the influence of the micromechanical model on the dynamic response of the BFGSW beam in
some more further, Fig. 10 shows the relation between the dynamic magnification factor obtained by the two
micromechanical models with the power-law indexes of symmetric (2-1-2) and non-symmetric (2-1-2) beams
for L/h = 20, k1 = 100, k2 = 10, rm = 0.5 and v = 50 m/s. As seen from the figure, the difference on the
dynamic magnification factor is the more significant for the power-law indexes smaller than 4. This difference
is, however, dependent on the foundation supporting parameter αF , and it becomes less significant for the
smaller parameter αF .

For completeness, the thickness distribution of the axial, normal and shear stresses of the symmetric (2-1-2)
and non-symmetric (2-1-1) beams is depicted in Figs. 11, 12 and 13 for L/h = 10, nx = 0.5, k1 = 100, k2 =
10, rm = 0.5, v = 50m/s and various values of the transverse index nz . The stresses in the figures are obtained
by using the Voigt model, and they are computed at the time when the moving mass arrives at the mid-span.
All the stresses are normalized by σ0 = mg/bh, that is σ ∗

xx = σxx (L/2, z)/σ0, σ ∗
zz = σzz(L/2, z)/σ0 and

τ ∗
xz = τxz(0, z)/σ0. Some difference between the stresses of the symmetric and non-symmetric beams can be
seen from the figures. At the given value of the axial index nx , the increase in the transverse index nz leads to
the decrease in the maximum tensile and compressive stresses σ ∗

xx and σ ∗
zz of the symmetric beam (Figs. 11a,b,

12a,b), while the corresponding stresses of the non-symmetric beam are variable (Figs. 11c,d, 12c,d). The
shear stress of both the symmetric and non-symmetric beams increases by the increase in the transverse index
(Fig. 13). All the stresses of the symmetric beam are seen to be symmetric with respect to the mid-plane,
while that is not true for the non-symmetric beam. The effect of the micromechanical model on the thickness
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distribution of the stresses is, respectively, shown in Figs. 14 and 15 for the normal stress and shear stress of
the symmetric (2-1-2) and non-symmetric (2-1-1) beams. Figure 15 shows that the shear stress obtained by the
Mori–Tanaka scheme is always larger than that using the Voigt model, while the effect of the micromechanical
model on the normal stress, as seen from Fig. 14, is dependent on the transverse index.

6 Conclusion

The dynamic behaviour of BFGSW beams partially resting on a Pasternak foundation under a moving mass
has been studied on the basis of the quasi-3D shear deformation beam theory. The beams consist of three
layers, an axially FGM core and two bidirectional FGM face layers. The material properties of the beams are
considered to follow the power gradation laws, and they are estimated by both the Voigt and the Mori–Tanaka
micromechanical models. The equation of motion in terms of the finite element analysis has been derived and
solved by the Newmark method. The accuracy of the formulation has been confirmed through a comparison
study. Results obtained from the numerical investigation reveal that the foundation supporting parameter αF ,
defined as the ratio of the supporting part to the total beam length, plays an important role regarding the
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dynamic behaviour of the beams. The effects of various parameters, including the material power-law indexes,
the layer thickness ratio, the moving mass speed and the mass ratio, on the dynamic characteristics have been
examined in detail and highlighted. Themost important findings from the numerical results can be summarized
as follows:

• The dynamic response is significantly influenced by the material gradation, and the dynamic magnification
factor is increased by an increase in the power-law indexes, regardless of the foundation and moving mass
parameters.

• The micromechanical model plays an important role on the dynamic response of the beam, and for most of
the moving mass speeds, the dynamic magnification factor based on the Voigt model is smaller than that
using the Mori–Tanaka scheme. The influence of the micromechanical model on the dynamic response is
dependent on the power-law indexes.

• The foundation supporting parameter αF has a significant effect on the dynamic response, and the influence
of the micromechanical model on the behaviour of the beam is dependent on the parameter αF .

• The layer thickness ratio has a significant influence on the dynamic behaviour of the beam, and the stress
distribution of the non-symmetric beam is greatly different from that of the symmetric beam.

It is necessary to note that although the numerical investigation was carried out for the simply supported beam,
the formulation derived in the present work can be used to evaluate the dynamic response of BFGSW beams
with other boundary conditions as well.
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