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Abstract In this study, the inelastic buckling equation of a thin plate subjected to all in-plane loads is ana-
lytically solved and the inelastic buckling coefficient is explicitly estimated. Using the deformation theory of
plasticity, a multiaxial nonlinear stress–strain curve is supposed which is described by the Ramberg–Osgood
representation and the von Mises criterion. Due to buckling, the variations are applied on the secant modulus,
the Poisson’s ratio and the normal and shear strains. Then, the inelastic buckling equation of a perfect thin
rectangular plate subjected to combined biaxial and shear loads is completely developed. Applying the gen-
eralized integral transform technique, the equation is straightforwardly converted to an eigenvalue problem
in a dimensionless form. Initially, a geometrical solution and an algorithm are presented to find the lowest
inelastic buckling coefficient (ks). The solution is successfully validated by some results in the literature. Then,
a semi-analytical solution is proposed to simplify the calculation of ks . The method of linear least squares is
applied in two stages on the obtained results and an approximate polynomial equation is found which is usually
solved by trial and error. The obtained results show good agreement between the proposed semi-analytical and
geometrical methods, so that the differences are < 12%. The semi-analytical solution is easily programmed in
usual scientific calculators and can be applied for practical purposes.

List of symbols

a Length of plate
b Width of plate
h Number of series terms in the GITT
ks, kx Inelastic buckling coefficients
kes , k

e
x Elastic buckling coefficients

m, n, r, s Positive integers
q Shape parameter to describe the curvature of stress–strain curve in the Ramberg–Osgood

representation
q Integer of corresponding q in the boundary of linear and bilinear approximations (R �

0.999)
si j , ci Fundamental parameters to find S1, S2 and C (i, j � 1, 2)
t Thickness of plate
z Distance from the middle surface of plate
C Intercept of the second line in bilinear approximation of ks − ξ curve
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Di j Arrays of stiffness matrix (i, j � 1, 2, 3)
E Young’s modulus (or the slop of stress–stain curve at zero stress)
Esec Secant modulus
Etan Tangent modulus
Mrs

mn Arrays of coefficient matrix (m, n, r, s � 1, 2, …, h)
Nx , Ny , Nxy In-plane loads in the x-, y- and xy-directions per unit length
R Correlation coefficient of linear approximation in linear least squares
S1, S2 Slope of the first and the second line for approximation of ks − ξ curve
Xm(x), Yn(y) Kernels of double integral transform in x- and y-direction (m, n � 1, 2, …, h)
αm , βn Roots of transcendental beam frequency equations in x- and y- directions (m, n � 1, 2, …,

h)
γ Shear strain
δw(x, y) Variation of out of plane displacements in z- direction
δwmn Variation of transformed out of plane displacements (m, n � 1, 2, …, h)
δMx , δMy Variation of bending moments in the x- and y-directions per unit length
δMxy Variation of twisting moment per unit length
δγ0 Variation of middle surface shear strain
δε0x , δε0y Variation of middle surface strains in x- and y-directions
δκx , δκy Variation of curvatures in x- and y-directions
δκxy Variation of twist
δσx , δσy Variation of stresses in x- and y-directions
δτ Variation of shear stress
εx , εy Strain in x- and y-directions
ξ Secant modulus-to-Young’s modulus ratio
η Tangent modulus-to-Secant modulus ratio
λ Thickness ratio of plate
ν Poisson’s ratio
νe Elastic Poisson’s ratio
σ.7E Stress corresponding to intersection of the stress–strain curve and a secant of 0.7E in

Ramberg–Osgood representation
σi Stress intensity
σx , σy Stresses in x- and y-directions
τ Shear stress
σx,cr, τcr Critical stresses
φ Aspect ratio of plate
ψx , ψy , ψ y , ψ xy Load ratios

1 Introduction

The stability of structural plates is one of the most important design criteria in mechanics, civil, aerospace
and marine engineering. During their lifetime, various loads are applied on them to perform in-plane stresses
on their edges. In addition to shear stress, the edges may experience compressive or tensile (biaxial) stresses
and due to the geometrical and material properties of the plate, inelastic buckling may occur. An analytical
procedure may be quite complicated for the solution of the inelastic buckling equation of the plate with diverse
boundary conditions and under multiaxial loadings. Thus, an explicit solution should be preferably developed
using the theories of plasticity to predict the inelastic buckling load of plates.

In the 1940s, two main plasticity models were applied to describe the inelastic buckling of plates. Ilyushin
[1], Stowell [2] and Bijlaard [3] used the deformation (total) theory of plasticity, while Handelman and Prager
[4] used the incremental (flow) theory of plasticity. In the deformation theory of plasticity, the total strain
is related to the total stress by the secant modulus without any consideration of stress history and then, the
surveyed path to get a particular point on the stress–strain curve is not important. As only the secant modulus
appears in the stress–strain relations, the hardening is isotropic in this theory. Nevertheless, in the incremental
theory of plasticity, the stress at any point and time is a function of the current strain as well as the history of
strain. In other words, increments in strain are related to increments of stress by the tangent modulus, leading to
a complicated nonlinear stress–strain relation. Applying the variational approach on the stress–strain relations,
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only the tangent modulus appears in the incremental theory, while both the secant and tangent modulus appear
in the deformation theory. Generally, the not very complicated deformation theory relations are comparable
with very complicated incremental theory relations for inelastic stress analysis. Although the incremental
theory is more general than the deformation theory, the latter can be successfully applied to proportional
loading problems in which the components of the stress tensor increase in a constant ratio to each other [5, 6].
In addition, the deformation theory is an acceptable approach for the bifurcation check in the buckling of plates
and provides good agreement with measured buckling loads for bars, plates and shells, while the incremental
theory predicts much higher than the measured buckling loads [7]. This discrepancy, which is called ‘plastic
buckling paradox’ [7], has not been solved generally until recently [8]. One of the oldest problems which
directly refers to this ‘paradox’ and reported in the literature is the inelastic stability of cruciform columns
[7–11]. Recently, Guarracino and Simonelli [12] showed that the torsional buckling of a cruciform column in
the inelastic range is not actually the ‘plastic buckling paradox’ if effects of the imperfections are accurately
computed up to the limit load. Their analytical procedure represented very good agreement between flow
and deformation theories for this problem. The ‘plastic buckling paradox’ was also tried to solve for circular
cylindrical shells under both axial and non-proportional loading [13, 14]. The results of finite element analysis
were compared with those of experimental studies and it was shown that the adaptation of flow theory of
plasticity with the experimental findings depends on the assumption of initial imperfections and buckling
shapes.

Shamass [15] reviewed in detail many aspects which affect on the ‘plastic buckling paradox’. In this review,
the considered aspects are the effective shear modulus, initial imperfections, different material constitutive
models, transverse shear deformation, deformations in the pre-bifurcation state, actual boundary conditions,
sensitivity of the predictions by different plasticity theories and effects of the kinematic constraints used in
analytical treatments. It is concluded that the incremental theory does not have any limitation and a number
of combined approximations affect the results predicted by the incremental theory.

Generally, the variations of strains and stresses during buckling are used to develop the inelastic buckling
equation of plates. In the initial studies of deformation theory of plasticity, the material was supposed to be
incompressible in the nonlinear (elastoplastic) region of the stress–strain curve and then, the Poisson’s ratio
was always ½ for isotropic materials. As a result, the variation was only being applied on the strains and
the secant modulus in the stress–strain relations (Hooke’s law) as seen in the approaches of Ilyushin [1] and
Stowell [2]. Pifko and Isakson [16], Bradford and Azhari [17], Ibearugbulem et al. [18, 19], Onwuka et al.
[20] and Eziefula et al. [21] applied Stowell’s procedure in their studies. However, in several investigations
[22–35], Bijlaard’s formulation [3] was applied in which the Poisson’s ratio appears in the elastic value during
inelastic buckling. Gerard and Wildhorn [36] showed that for a nonlinear stress–strain curve such as the
Ramberg–Osgood representation [37], the Poisson’s ratio changes from the elastic value to the incompressible
value of ½ as the stress is increased above the yield stress,

ν � 1

2
− Esec

E

(
1

2
− νe

)
, (1)

where E is the Young’s modulus (or the slope of the stress–stain curve at zero stress), Esec is the secant
modulus and νe is the elastic Poisson’s ratio. Using Eq. (1), the variable Poisson’s ratio is considered in the
elastoplastic region of the stress–strain curve as well as the other parameters [38–43]. Jones [6] successfully
applied variation to the Poisson’s ratio and developed the inelastic buckling equation of a plate subjected to
biaxial loads, although the obtained equation was only solved for uniaxial loading.

The elastic/inelastic buckling of plates is analytically formulated with a fourth-order linear partial differ-
ential equation. In recent decades, several numerical and semi-analytical methods have been proposed to solve
this equation with different boundary conditions and mostly uniaxial loading. The most important of these
methods are finite element (FE) [16, 44, 45], finite difference [42], finite strip [31], spline finite strip [24],
isoparametric spline finite strip [29, 46], complex finite strip [17, 26, 47], finite layer (FL) [48], differential
quadrature (DQ) [30, 43], generalized differential quadrature (GDQ) [33–35], element-free Galerkin (EFG)
[32], funicular polygon (FP) [23], p-Ritz [49, 50], Rayleigh–Ritz [51–53], and the virtual work principle
[18–21]. Integral transforms have already been used for solving complex boundary value problems in elastic
bending, buckling and vibration of beams. Fourier series were differentiated as many as four times to solve
the corresponding ordinary differential equations. In 1944, Green [54] extended the double Fourier series for
solving elastic problems of isotropic rectangular plates in which partial differential equations appear. Later,
this method was used for the buckling of simply supported orthotropic and isotropic skew plates, subjected
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to in-plane compressive and shear edge loads [55]. Afterward, double finite integral transform and the corre-
sponding inverstion were analytically used to solve the bending equation of rectangular thin/thick plates with
different boundary conditions [56–60]. As the double finite integral transform has some restrictions for com-
plex boundary conditions, it may be modified to the generalized integral transform technique (GITT) which is
mathematically more general and also faster convergence. This technique was previously applied in the auto-
matic and accuracy-controlled solution of nonlinear diffusion and convection–diffusion problems as well as the
solution of Navier–Stokes equations [61]. In the GITT, an appropriate auxiliary eigenvalue problem is solved
to find the kernel of the integral transform. Then, applying the integral transformation to an ordinary/a partial
differential equation, it is transformed into infinite algebraic/ordinary differential equations and then, they are
truncated at finite terms to allow the computational solution. Alternatively, the double integral transformation
can be directly applied to a PDE for obtaining the infinite algebraic equations. For bending, buckling and
vibration problems of rectangular plates, kernels of the double integral transform are similar to the vibrating
functions of two beams which have the same material properties and boundary conditions of plates in two
orthogonal directions. If the original PDE is linear, then the linear algebraic equations are naturally obtained,
so that they can be analytically solved for the bending problem and on the other hand, lead to an algebraic
eigenvalue problem for buckling/vibration of a plate. Thus, the buckling load/natural frequency is obtained for
each mode as well as the corresponding mode shape. An et al. [62] used the GITT as single integral transform,
so that the original PDE is transformed into a set of coupled ordinary differential equations. Ullah et al. [63]
employed the GITT and solved an eigenvalue problem to obtain the elastic buckling coefficient of uniaxial
loaded fully clamped plates (CCCC), plates with three clamped and one edge simply supported (CCCS), and
plates with two adjacent edges clamped and the other edges simply supported (CCSS). The GITT has been also
applied for the bending solution of orthotropic rectangular thin foundation plates [64] as well as free vibration
of orthotropic rectangular plates with free edges [65].

In this study, using the deformation theory of plasticity [6] and applying variations to all mechanical
components of an isotropic perfect rectangular plate, the complete equation of inelastic buckling of plates under
combined biaxial and shear stresses is developed. The parameters of the Ramberg–Osgood representation are
used to find the secant and tangent moduli in the nonlinear region of the stress–strain curve. Then, using
the generalized integral transform technique (GITT) [62–65], the inelastic buckling equation is solved for
simply supported (SSSS) and fully clamped (CCCC) plates and the effect of variation of Poisson’s ratio on the
inelastic buckling load is compared with those of previous studies. The rectangular plate may be subjected to
compressive–compressive–shear (CCS), compressive–tensile–shear (CTS), tensile–compressive–shear (TCS)
or tensile–tensile–shear (TTS) loads. A geometrical solution and an algorithm are presented to find the inelastic
buckling coefficient of a plate based on the aspect ratio, thickness ratio, load ratios, secant to Young’s modules
ratio, elastic Poisson’s ratio and Ramberg–Osgood parameters. Using the obtained results and linear regression
technique (linear least squares), a semi-analytical procedure is also suggested to calculate the lowest inelastic
buckling coefficient. In this procedure, a qth-order equation must be solved using a trial and error method in
which q is the shape parameter of the Ramberg–Osgood representation. The procedure is applicable to practical
purposes and can be easily programmed in usual scientific calculators.

2 Analytical approach

2.1 Inelastic buckling equation of a plate

Consider a rectangular plate with dimensions of a ×b × t subjected to CCS, CTS, TCS or TTS loads as shown
in the Cartesian coordinate system of Fig. 1. In this figure, Nx � tσx , Ny � tσy and Nxy � tτ are the applied
loads per unit length on the plate edges in the x-, y- and xy-directions, respectively. Also, σx , σy and τ are the
applied stresses in the x-, y- and xy-directions, respectively.

In the deformation theory of plasticity, using general nonlinear material properties (Esec and ν), the two-
dimensional stress–strain relations are established as shown in Eq. (2). In these relations, εx , εy and γ are the
strains in the x-, y- and xy-directions, respectively, and ν is obtained from Eq. (1):

⎡
⎣σx

σy
τ

⎤
⎦ � Esec

1 − ν2

⎡
⎣1 ν 0

ν 1 0
0 0 1−ν

2

⎤
⎦
⎡
⎣ εx

εy
γ

⎤
⎦. (2)
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Fig. 1 A rectangular plate subjected to a CCS, b CTS, c TCS and d TTS loads

After applying the variations to all components of Eq. (2),⎡
⎣ δσx

δσy
δτ

⎤
⎦ � Esec

1 − ν2

⎡
⎣ D11 D12 D13
D12 D22 D23
D13 D23 D33

⎤
⎦
⎡
⎣ δε0x + zδkx

δεy0 + zδky
δγ0 + zδkxy

⎤
⎦, (3)

where δε0x , δεy0 and δγ0 are the variations of the middle surface strains in the x-, y- and xy-directions,

respectively, δκx � − ∂2δw
∂x2

, δκy � − ∂2δw
∂y2

are the variations of the curvatures in the x- and y-directions,

respectively, δκxy � −2 ∂2δw
∂x∂y is the variation of twist, and z is the distance from the middle surface of the plate

as shown in Fig. 1. In addition,

D11 � 1 − K

4
(
1 − ν2
)[(2 − ν)σx − (1 − 2ν)σy

]2
, (4)
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D12 � ν − K

4
(
1 − ν2
)[(2 − ν)σx − (1 − 2ν)σy

][
(2 − ν)σy − (1 − 2ν)σx

]
,

D13 � − 3K τ

4(1 + ν)

[
(2 − ν)σx − (1 − 2ν)σy

]
,

D22 � 1 − K

4
(
1 − ν2
)[(2 − ν)σy − (1 − 2ν)σx

]2
,

D23 � − 3K τ

4(1 + ν)

[
(2 − ν)σy − (1 − 2ν)σx

]
,

D33 � 1 − ν

2

[
1 − 9K τ 2

2(1 + ν)

]
.

In Eq. (4), K � 1
σ 2
i H

(
1 − Etan

Esec

)
, where σi �

√
σ 2
x − σxσy + σ 2

y + 3τ 2 is the stress intensity based on von

Mises criteria and Etan is the tangent modulus. Also,

H � 1 − 1 − 2νe
2
(
1 − ν2
) Esec

E

(
1 − Etan

Esec

)⎡
⎣2ν −

(1 + 2ν)
(
σ 2
x + σ 2

y

)
− 2(2 + ν)σxσy + 6(1 + ν)τ 2

2σ 2
i

⎤
⎦. (5)

Substituting Eq. (3) into Eq. (6), the moment–curvature relations can be determined:
⎡
⎣ δMx

δMy
δMxy

⎤
⎦ �

t
2∫

− t
2

⎡
⎣ δσx

δσy
δτ

⎤
⎦zdz, (6)

⎡
⎣ δMx

δMy
δMxy

⎤
⎦ � Esect3

12
(
1 − ν2
)
⎡
⎣ D11 D12 D13
D12 D22 D23
D13 D23 D33

⎤
⎦
⎡
⎣ δkx

δky
δkxy

⎤
⎦. (7)

Then, substituting Eq. (7) into the equilibrium equation,

∂2(δMx )

∂x2
+

∂2
(
δMxy
)

∂x∂y
+

∂2
(
δMy
)

∂y2
� Nx

∂2(δw)

∂x2
+ 2Nxy

∂2(δw)

∂x∂y
+ Ny

∂2(δw)

∂y2
,

the inelastic buckling equation of the plate is obtained:

D11
∂4(δw)

∂x4
+ 4D13

∂4(δw)

∂x3∂y
+ 2(D12 + 2D33)

∂4(δw)

∂x2∂y2
+ 4D23

∂4(δw)

∂x∂y3

+ D22
∂4(δw)

∂y4
+
12
(
1 − ν2
)

Esect3

[
Nx

∂2(δw)

∂x2
+ 2Nxy

∂2(δw)

∂x∂y
+ Ny

∂2(δw)

∂y2

]
� 0. (8)

2.2 Generalized integral transform technique (GITT)

When the GITT is used for a two-dimensional boundary value problem, two appropriate auxiliary ODEs must
be solved. Here, they are the vibrating beam equations (Eq. (9)) which satisfy the corresponding boundary
conditions (Eqs. (10, 11)) and orthogonality (Eqs. (12, 13)) in the x- and y-directions:⎧⎨

⎩
d4

Xm(x)
dx4 � α4

mXm(x)
d4

Yn(y)
dy4 � β4

nYn(y)
(9)

x � 0, a →
⎧⎨
⎩

Xm(x) � 0
d2Xm(x)
dx2 � 0

y � 0, b →
⎧⎨
⎩
Yn(y) � 0
d2Yn(y)
dy2 � 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
; SS (10)
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x � 0, a →
⎧⎨
⎩

Xm(x) � 0
dXm(x)
dx � 0

y � 0, b →
⎧⎨
⎩
Yn(y) � 0
dYn(y)
dy � 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
; CC (11)

a∫
0
Xm(x)Xr (x)dx �

⎧⎨
⎩

a
2 ; m � r

0; m �� r

b∫
0
Yn(y)Ys(y)dy �

⎧⎨
⎩

b
2 ; n � s

0; n �� s

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
; SS (12)

a∫
0
Xm(x)Xr (x)dx �

⎧⎨
⎩
a; m � r

0; m �� r

b∫
0
Yn(y)Ys(y)dy �

⎧⎨
⎩
b; n � s

0; n �� s

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
; CC (13)

where SS and CC are used for simply supported and clamped beams, respectively, andm, n, r and s are positive
integers. Equations (9) are readily solved for the different boundary conditions (Eqs. (10, 11)) to yield the
related eigenfunctions which are shown in Eqs. (14) and (15) for SS and CC beams, respectively:⎧⎨

⎩
Xm(x) � sin αmx

Yn(y) � sin βn y
(14)

⎧⎨
⎩

Xm(x) � cosh αmx − cosαmx − cm(sinh αmx − sin αmx)

Yn(y) � cosh βn y − cosβn y − cn(sinh βn y − sin βn y)
(15)

where ⎧⎨
⎩
cm � cosh αma−cosαma

sinh αma−sin αma

cn � cosh βnb−cosβnb
sinh βnb−sin βnb

(16)

In Eqs. (14) and (15), αm and βn are the roots of transcendental beam frequency equations:{
sin αma · sinh αma � 0 ⇒ αma � mπ
sin βnb · sinh βnb � 0 ⇒ βnb � nπ

}
; SSSS (17)

⎧⎨
⎩
cosh αma · cosαma � 1 ⇒ αma ∼�

[
(2m + 1)π

2 + 2(−1)m+1e−(2m+1) π
2

]
cosh βnb · cosβnb � 1 ⇒ βnb ∼�

[
(2n + 1)π

2 + 2(−1)n+1e−(2n+1) π
2

]
⎫⎬
⎭; CCCC (18)

Using the obtained eigenfunctions in Eqs. (14, 15), the two-dimensional generalized finite integral transform
and the corresponding inversion are defined as:

δwmn �
a∫

0

b∫
0

δw(x, y)Xm(x)Yn(y)dxdy, (19)

δw(x, y) � 1

μφb2

∞∑
m�1

∞∑
n�1

δwmnXm(x)Yn(y), (20)

where

μ � 1

φb2

a∫
0

X2
m(x)dx ·

b∫
0

Y 2
n (y)dy �

{
1
4 SSSS
1 CCCC

(21)

and φ � a
b is the plate aspect ratio.
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2.3 Analytical procedure for inelastic buckling

The GITT should be applied to all terms of Eq. (8). Using integration by parts in the successive steps, the
fourth- and second-order partial derivatives in Eq. (8) are reduced and finally, δw(x, y) is transformed to δwmn
based on Eq. (19). In Eqs. (22)–(29), these transformations are shown with the dimensionless coefficients.

b4
a∫

0

b∫
0

∂4(δw)

∂x4
Xm(x)Yn(y)dxdy �

(
αma

φ

)4
δwmn, (22)

b4
a∫

0

b∫
0

∂4(δw)

∂x3∂y
Xm(x)Yn(y)dxdy � 1

μφ3

∞∑
r�1

∞∑
s�1

δwrs
[(
Bmra

2) + (Jmra
2)]Lns, (23)

b4
a∫

0

b∫
0

∂4(δw)

∂x2∂y2
Xm(x)Yn(y)dxdy � 1

μφ2

∞∑
r�1

∞∑
s�1

δwrs(Imra)(Pnsb), (24)

b4
a∫

0

b∫
0

∂4(δw)

∂x∂y3
Xm(x)Yn(y)dxdy � 1

μφ

∞∑
r�1

∞∑
s�1

δwrs
[(
Fnsb

2) + (Qnsb
2)]Hmr , (25)

b4
a∫

0

b∫
0

∂4(δw)

∂y4
Xm(x)Yn(y)dxdy � (βnb)

4δwmn, (26)

b2
a∫

0

b∫
0

∂2(δw)

∂x2
Xm(x)Yn(y)dxdy � 1

μφ2

∞∑
r�1

∞∑
s�1

δwrs(Imra)

(
Kns

b

)
, (27)

b2
a∫

0

b∫
0

∂2(δw)

∂x∂y
Xm(x)Yn(y)dxdy � 1

μφ

∞∑
r�1

∞∑
s�1

δwrs Hmr Lns, (28)

b2
a∫

0

b∫
0

∂2(δw)

∂y2
Xm(x)Yn(y)dxdy � 1

μ

∞∑
r�1

∞∑
s�1

δwrs

(
Gmr

a

)
(Pnsb), (29)

with

a2Bmr � a2
(
dXr

dx

∣∣∣∣
x�a

· dXm

dx

∣∣∣∣
x�a

− dXr

dx

∣∣∣∣
x�0

· dXm

dx

∣∣∣∣
x�0

)
�
{−[1 − (−1)m+r ]mrπ2; SS
0; CC

(30)

Gmr

a
� 1

a

a∫
0

Xr (x)Xm(x)dx �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎧⎨
⎩

1
2 ;m � r

0;m �� r

⎫⎬
⎭; SS⎧⎨

⎩
1;m � r

0;m �� r

⎫⎬
⎭; CC

(31)

Hmr �
a∫

0

Xr (x)
dXm(x)

dx
dx �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{ 2mr
r2−m2 ; m ± r � odd
0; m ± r � even

}
; SS{

0; m � r
4(αma)2(αr a)2

(αr a)4−(αma)4

[
1 − (−1)m+r ]; m �� r

}
; CC

(32)

aImr � a

a∫
0

Xr (x)
d2Xm(x)

dx2
dx �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎧⎨
⎩

−m2π2

2 ; m � r

0; m �� r

⎫⎬
⎭; SS

⎧⎨
⎩
cm(αma)[2 − cm(αma)]; m � r
4(αma)2(αr a)2

(αma)4−(αr a)4
[cm(αma) − cr (αr a)]

[
1 + (−1)m+r ]; m �� r

⎫⎬
⎭; CC

(33)
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a2 Jmr � a2
a∫

0

Xr (x)
d3Xm(x)

dx3
dx

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
2m3rπ2

m2−r2
; m ± r � odd

0; m ± r � even

}
; SS

{
0; m � r
4(αma)3(αr a)3

(αma)4−(αr a)4
cmcr
[
1 − (−1)m+r ]; m �� r

}
; CC

(34)

b2Fns � b2
(
dYs
dy

∣∣∣∣
y�b

· dYn
dy

∣∣∣∣
y�b

− dYs
dy

∣∣∣∣
y�0

· dYn
dy

∣∣∣∣
y�0

)
�
{−[1 − (−1)n+s

]
nsπ2; SS

0; CC
(35)

Kns

b
� 1

b

b∫
0

Ys(y)Yn(y)dy �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎧⎨
⎩

1
2 ; n � s

0; n �� s

⎫⎬
⎭; SS⎧⎨

⎩
1; n � s

0; n �� s

⎫⎬
⎭; CC

(36)

Lns �
b∫

0

Ys(y)
dYn(y)

dx
dy �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎧⎨
⎩

2ns
s2−n2

; n ± s � odd

0; n ± s � even

⎫⎬
⎭; SS

⎧⎨
⎩
0; n � s
4(βnb)2(βsb)2

(βsb)4−(βnb)4
[
1 − (−1)n+s

]
; n �� s

⎫⎬
⎭; CC

(37)

bPns � b

b∫
0

Ys(y)
d2Yn(y)

dy2
dy

�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎧⎨
⎩

− n2π2

2 ; n � s

0; n �� s

⎫⎬
⎭; SS

⎧⎨
⎩
cn(βnb)[2 − cn(βnb)]; n � s
4(βnb)2(βsb)2

(βnb)4−(βsb)4
[cn(βnb) − cs(βsb)]

[
1 + (−1)n+s

]
; n �� s

⎫⎬
⎭; CC

(38)

b2Qns � b2
b∫

0

Ys(y)
d3Yn(y)

dy3
dy �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎧⎨
⎩

2n3sπ2

n2−s2
; n ± s � odd

0; n ± s � even

⎫⎬
⎭; SS

⎧⎨
⎩
0; n � s
4(βnb)3(βsb)3

(βnb)4−(βsb)4
cncs
[
1 − (−1)n+s

]
; n �� s

⎫⎬
⎭; CC

(39)

Applying the GITT into Eq. (8) and using Eqs. (22)–(29), the characteristic equation in dimensionless form is
obtained: [(

αma

φ

)4
D11 + (βnb)

4D22

]
δwmn

+
1

μφ

∞∑
r�1

∞∑
s�1

δwrs

{
4

φ2 D13
[(
a2Bmr
)
+
(
a2 Jmr
)]
Lns

+
2

φ
(D12 + 2D33)(aImr )(bPns) + 4D23

[(
b2Fns
)
+
(
b2Qns
)]
Hmr

+
E
(
1 − ν2
)

Esec
(
1 − ν2e
)ksπ2
[
ψx

φ
(aImr )

(
Kns

b

)
+ 2Hmr Lns + φψy

(
Gmr

a

)
(bPns)

]}
� 0, (40)
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where ψx � Nx
Nxy

and ψy � Ny
Nxy

are the load ratios supposing that Nxy �� 0 and ks � 12
(
1−ν2e
)

π2

( b
t

)2 Nxy
Et is the

inelastic buckling coefficient.
Equation (40) establishes an infinite system of linear equations. For a practical calculation, the positive

integers m, n, r and s must be limited to an upper value, h. Thus, Eq. (40) can be shown with a finite number
of linear equations in matrix form:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11
11

...
M11

1h
...
M11

h1
...
M11

hh

. . .

. . .

. . .

. . .

. . .

. . .

. . .

M1h
11

...
M1h

1h
...
M1h

h1
...
M1h

hh

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Mh1
11

...
Mh1

1h
...
Mh1

h1
...
Mh1

hh

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Mhh
11

...
Mhh

1h
...
Mhh

h1
...
Mhh

hh

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δw11
...
δw1h
...
δwh1
...
δwhh

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
...
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (41)

where

Mrs
mn �
{(

αma
φ

)4
D11 + (βnb)4D22 + T rs

mn; m � r and n � s

T rs
mn; otherwise

(42)

and

T rs
mn � 1

μφ

{
4

φ2 D13
[(
a2Bmr
)
+
(
a2 Jmr
)]
Lns +

2

φ
(D12 + 2D33)(aImr )(bPns)

+ 4D23
[(
b2Fns
)
+
(
b2Qns
)]
Hmr

+
E
(
1 − ν2
)

Esec
(
1 − ν2e
)ksπ2
[
ψx

φ
(aImr )

(
Kns

b

)
+ 2Hmr Lns + φψy

(
Gmr

a

)
(bPns)

]}
. (43)

Supposing ψx , ψy , νe,
Esec
E , Etan

Esec
, ks , φ and h in Eq. (41), the eigenvalues of the coefficient matrix can be

calculated for SSSS or CCCC plates. If the smallest eigenvalue is zero, the supposed ks will be the lowest

inelastic critical coefficient
(
k(1)
s,cr � ks

)
. Likewise, if the second, third,…. or ith eigenvalue is zero, the inelastic

critical coefficient is obtained for the correspondingmode.Using the general software Python [66] and selecting
a few series terms (h) for the arrays of the coefficient matrix in Eq. (41), the inelastic critical coefficient

(
ks,cr
)

can be obtained accurately enough for the different buckling modes. However, the secant and tangent moduli
relation obviously affects the inelastic buckling coefficient. For a Ramberg–Osgood stress–strain model, the
secant and tangent moduli are defined as [37]:

Esec � E

1 + 3
7

(
σi

σ.7E

)q−1 , (44)

Etan � E

1 + 3q
7

(
σi

σ.7E

)q−1 , (45)

where σ.7E is the stress at which the line with slope 0.7E intersects the stress–strain curve and q is a shape
parameter which describes the curvature of the stress–strain curve. Considering two dimensionless parameters,
ξ � Esec

E ≤ 1 and η � Etan
Esec

≤ 1, Eqs. (44) and (45) may be combined into

η � 1

q(1 − ξ) + ξ
(46)

so that all terms of the arrays of the coefficient matrix (Eq. 42) can be expressed by φ, ψx , ψy, ξ, q, νe and ks .
Then using an implicit function, ks can be briefly described as:

ks � f
(
φ, ψx , ψy, ξ, q, νe

)
. (47)
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Table 1 Boundary and loading conditions and mechanical properties in the considered studies (1 ksi � 6.895 MPa)

No. Method B.C L.C Material E ×104 (ksi) σ.7E (ksi) q νe

1 Experimental [67] SSSS Uniaxial Al 14S-T6 1.07 63.2 19 0.33
2 ANSYS and FEM [45]
3 Funicular polygon [23] CCCC Shear 61.4 20
4 FEM [16] SSSS Uniaxial

Biaxial
Shear

Al 24S-T 1 100 10 0.33

CCCC Uniaxial

On the other hand, using Eq. (44), ks can be expressed with an explicit function:

ks � g

(
λ,

E

σ.7E
, ψx , ψy, ξ, q, νe

)
� 12
(
1 − ν2e
)
λ2

π2 · σ.7E

E
·
[
7
3

(
1
ξ

− 1
)] 1

q−1

(
ψ2
x − ψxψy + ψ2

y + 3
) 1

2

, (48)

where λ � b
t is the plate thickness ratio.

In Eqs. (47) and (48), ξ is a mutual variable in both f and g as well asψx , ψy, νe and q. As ξ is a continuous
variable (0 ≤ ξ ≤ 1), both f and g can be plotted in the ks − ξ plane. The intersection of the two plotted
curves gives the inelastic buckling coefficient as well as the corresponding secant modulus. The described
geometrical solution may be summarized by an algorithm as shown in Fig. 2. In this algorithm, an initial value
of ξ is assumed (ξini in Fig. 2). In the next steps, ξ is increased by δξ unless ξ > 1. Here, ξini � δξ � 0.025.

In addition, defining a dimensionless parameter, � �
(
ψ2
x − ψxψy + ψ2

y + 3
) 1

2
, Eqs. (4) and (5) are briefly

rewritten and finally, the coefficients matrix in Eq. (41) is re-established. At the end of the procedure, the ks −ξ
curve will be found for the corresponding buckling mode based on the known parameters: φ, ψx , ψy, νe and
q . In this study, the lowest buckling coefficient is calculated. The procedure can be repeated using the new
parameters to find new curves.

3 Results and discussion

In this study, the Ramberg–Osgood representation is used for the nonlinear mechanical properties of the
material, although this approach can also be developed for the other known models of nonlinear behavior.

3.1 Validation, effects of variation of Poisson’s ratio and number of series terms

In order to verify the analytical approach, four studies are considered. The first one is an experimental study for
plastic buckling of simply supported uniaxial compressed plates [67]. In the second study [45], the solution of
the ‘plastic buckling paradox’ was sought in the mode of testing which had previously been done in Ref. [67].
The authors applied the incremental theory of plate buckling and involved the boundary stresses introduced by
the friction between the plate and the testingmachine heads. For the pre-buckling stress analysis, an incremental
finite element procedure was performed using ANSYS, so that the load was subdivided into a sequence of
small increments. The material properties and dimensions of the plates were the same or similar to those in
Ref. [67] as shown in Tables 1 and 2, respectively. The plate was divided into 80 rectangular elements and the
boundary conditions were zero force on the two longitudinal edges and zero displacement on the lower edge
in both directions. On the upper edge, uniform and zero displacements were applied in the longitudinal and
transverse directions, respectively. In the buckling analysis stage, the finite element procedure for plastic plate
buckling described in Ref. [16] was generalized to the case of nonuniform pre-buckling stress state. In the
third and fourth studies [16, 23], the finite element and funicular polygon methods are employed for plastic
buckling of simply supported and fully clamped plates under uniaxial, biaxial or shear loads.

The suggested algorithm (Fig. 2) can be changed for the uniaxial and biaxial loadings and Nxy � 0. In

these cases, new load ratios are defined as
−
ψ y � Ny

Nx
and

−
ψ xy � Nxy

Nx
. The arrays of the stiffness matrix
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Fig. 2 An algorithm to plot the ks − ξ curve of the plate
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Table 2 Comparison of critical uniaxial stresses for SSSS plates

Specimen [67] 1a 6a 8a 9a 10a

b (in.) 6.69 4.68 3.94 3.44 3.19
φ 4 4 4 4.5 4.5
λ 42.5 30.1 25.6 22.5 20.8
σx,cr (psi) [67] 21,200 42,800 53,300 57,800 61,400

[45] 21,900 43,200 54,600 58,600 61,400
Present 21,871 43,532 55,343 60,090 62,030

Table 3 Comparison of critical shear stresses for CCCC square plates
(
kes � 14.6

)

λ 56.3 59.3 62 64.5 66.9 68.9 70.7

τcr (psi) [23] 34,000 33,000 32,000 31,000 30,000 29,000 28,000
Present 33,463 32,803 31,421 30,433 29,701 29,042 28,135

ks Present 10.74 11.68 12.23 12.82 13.46 13.96 14.24

(4) and the characteristic equation (40) should be rewritten by the new load ratios. As a result, kx will be

obtained instead of ks , and then σx,cr � kxπ2E
12(1−ν2e )

( t
b

)2. Table 1 shows the boundary and load conditions and

Ramberg–Osgood parameters in the experimental and numerical studies. In this section, the dimensions of
parameters are represented by imperial units to match the results found from the literature.

In Tables 2 and 3, the results of the analytical approach (h� 20) are comparedwith those of the experimental
study [67], numerical analysis (ANSYS and FEM) [45] and funicular polygon method [23]. The results show
excellent agreement for both uniaxially loaded simply supported and shear loaded fully clamped plates. The
maximum differences are less than 4%, 2.6% and 2% for the experimental, FE (ANSYS) and funicular polygon
methods, respectively.

In the fourth study [16], a finite element technique is used in conjunction with the Stowell’s theory [2].
Thus, incompressible material is considered (the Poisson’s ratio is 0.5) during inelastic buckling. Here, the
analytical approach is applied for two states: initially, the incompressible material is used (ν � 0.5) to compare
the analytical and numerical methods, and then, it is repeated using variable Poisson’s ratio (Eq. (1)) to compare
the results of the two situations. In Tables 4 and 5, the results are shown for the simply supported plates with
aspect ratios 1 and 1.5, respectively, which are under uniaxial and biaxial loads. Table 6 shows the results for
the fully clamped and simply supported square plates under uniaxial and pure shear loads, respectively. In
Tables 4 and 5, there is no difference between the analytical and numerical methods when the incompressible
material is supposed, likewise in Table 6, a negligible difference (< 0.5%) is seen.

In the last row of each section of Tables 4, 5 and 6, results of the second state are compared. These
comparisons show that due to the variation of the Poisson’s ratio, in both uniaxial and shear loadings, the
inelastic buckling loads decrease. As expected, increasing λ makes a more slender plate and less plasticity
occurs prior to buckling. In Figs. 3, 4 and 5, the differences are obviously shown for the different aspect ratios,
thickness ratios, boundary and loading conditions. As seen in these figures, increasing the thickness ratio in
all cases, the difference increases up to 18.8%. This upper bound only depends on the elastic Poisson’s ratio

and can be analytically expressed as 1−4ν2e
3 . In addition, increasing the plate aspect ratio, the slope of the

difference curve increases and reaches a constant value for φ ≥ 1, φ ≥ 4 and φ ≥ 5 as seen in Figs. 3, 4 and
5, respectively.

The number of series terms (h) directly affects the accuracy of theGITT. Table 7 shows a sensitivity analysis
of the inelastic buckling coefficient (ks) with νe � 0.33, E

σ0.7E
� 100 and q � 10. Considering this table, it

can be concluded that for small thickness ratios, ks converges with 10–15 terms very well for all aspect ratios,
boundary conditions and loading combinations. For larger thickness ratios, 20 terms are usually necessary for
the convergence, although in TTS loading more terms may be used for more accuracy. However, 20 terms are
used for the considered cases in this study.
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Table 4 Comparison of critical stresses for SSSS square plates (a � b � 20 in.)

1 Uniaxial,
(
σx �� 0, σy � τ � 0

) (
kex � 4
)

t (in.) 2.39053 1.76752 1.36678 1.12019 0.96449 0.858 0.77867
λ 8.3664 11.3152 14.6329 17.8541 20.7363 23.31 25.6848
σx,cr (psi) [16] 125,000 115,000 105,000 95,000 85,000 75,000 65,000

Present (a) ν � 0.5 125,000 115,000 105,000 95,000 85,000 75,000 65,000
(b) ν(Eq. 1) 124,498 114,060 103,186 91,521 79,020 66,556 55,719

(a)−(b)
(b) × 100 0.4 0.82 1.8 3.8 7.6 12.7 16.7

kx Present ν(Eq. 1) 0.944 1.58 2.39 3.16 3.68 3.92 3.98
2 Biaxial

(
σy � σx , τ � 0

) (
kex � 2
)

t (in.) 5.26002 3.78569 2.77755 2.08258 1.60231 1.2998 1.125
λ 3.8023 5.2831 7.2006 9.6035 12.4820 15.3870 17.7778
σx,cr (psi) [16] 125,000 115,000 105,000 95,000 85,000 75,000 65,000

Present (a) ν � 0.5 125,000 115,000 105,000 95,000 85,000 75,000 65,000
(b) ν(Eq. 1) 125,253 115,390 105,457 95,108 83,810 70,873 57,507

(a)−(b)
(b) × 100 0.2 0.35 0.44 0.11 1.4 5.8 13

kx Present ν(Eq. 1) 0.196 0.349 0.592 0.95 1.41 1.82 1.97
3 Biaxial

(
σy � 0.5σx , τ � 0

) (
kex � 2.667

)
t (in.) 2.42382 1.93707 1.58816 1.33364 1.15727 1.03884 0.94979
λ 8.25144 10.3249 12.5932 14.9966 17.2821 19.2522 21.0573
σx,cr (psi) [16] 125,000 115,000 105,000 95,000 85,000 75,000 65,000

Present (a) ν � 0.5 125,000 115,000 105,000 95,000 85,000 75,000 65,000
(b) ν(Eq. 1) 125,055 114,703 103,669 91,570 78,284 65,671 55,374

(a)−(b)
(b) × 100 0.04 0.26 1.3 3.8 8.6 14.2 17.4

kx Present ν(Eq. 1) 0.923 1.325 1.78 2.23 2.53 2.64 2.66

Table 5 Comparison of critical stresses for SSSS plates with a � 30 in. and b � 20 in.

1 Uniaxial
(
σx �� 0, σy � τ � 0

) (
kex � 4.694

)
t (in.) 2.45321 1.80884 1.39064 1.1271 0.95429 0.83518 0.75088
λ 8.15258 11.0568 14.3819 17.7447 20.958 23.9469 26.6354
σx,cr (psi) [16] 125,000 115,000 105,000 95,000 85,000 75,000 65,000

Present (a) ν � 0.5 125,000 115,000 105,000 95,000 85,000 75,000 65,000
(b) ν(Eq. 1) 124,520 114,104 103,296 91,864 79,835 67,403 56,059

(a)−(b)
(b) × 100 0.39 0.79 1.7 3.4 6.5 11.3 15.9

kx Present ν(Eq. 1) 0.897 1.511 2.315 3.134 3.799 4.188 4.309
2 Biaxial

(
σy � σx , τ � 0

) (
kex � 2.778

)
t (in.) 4.46327 3.21226 2.35683 1.76713 1.3596 1.10292 0.9546
λ 4.481 6.2261 8.486 11.3178 14.7102 18.1337 20.9512
σx,cr (psi) [16] 125,000 115,000 105,000 95,000 85,000 75,000 65,000

Present (a) ν � 0.5 125,000 115,000 105,000 95,000 85,000 75,000 65,000
(b) ν(Eq. 1) 125,253 115,390 105,457 95,108 83,810 70,873 57,507

(a)−(b)
(b) × 100 0.2 0.34 0.44 0.11 1.4 5.8 13

kx Present ν(Eq. 1) 0.272 0.485 0.823 1.320 1.965 2.525 2.735
3 Biaxial

(
σy � 0.5σx , τ � 0

) (
kex � 3.388

)
t (in.) 2.35015 1.84729 1.48109 1.21632 1.03918 0.92558 0.8437
λ 8.5101 10.8267 13.5036 16.443 19.2459 21.6081 23.7051
σx,cr (psi) [16] 125,000 115,000 105,000 95,000 85,000 75,000 65,000

Present (a) ν � 0.5 125,000 115,000 105,000 95,000 85,000 75,000 65,000
(b) ν(Eq. 1) 125,100 114,768 103,845 91,994 78,873 66,006 55,471

(a)−(b)
(b) × 100 0.08 0.2 1.1 3.3 7.8 13.6 17.2

kx Present ν(Eq. 1) 0.982 1.458 2.052 2.695 3.165 3.339 3.377

3.2 Estimation of the inelastic buckling coefficient

In the proposed geometrical solution, the curves of ks � f
(
ξ, φ, ψx , ψy, q, νe

)
and ks � g(

ξ, ψx , ψy, q, νe, λ, E
σ.7E

)
are intersected in the ks−ξ plane to find ks as well as the corresponding ξ . Figures 6

and 7 show some interaction curves in which f and g are plotted with solid and dashed curves, respectively. In
each figure, E

σ.7E
, ψx , ψy, q and νe are constants and φ and λ are variables to provide the interaction curves. In

addition, the intersections of φ � 1 curves and some λ curves are highlighted which correspond to the shown
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Table 6 Comparison of critical stresses for square plates (a � b � 20 in.) with different boundary and loading conditions

1 CCCC-Uniaxial
(
σx �� 0, σy � τ � 0

)(
kex � 10.078

)
t (in.) 0.8 0.7 0.6 0.5
λ 25 28.571 33.333 40
σx,cr (psi) [16] 97,549 91,234 81,712 66,414

Present (a) ν � 0.5 97,130 91,033 81,714 66,420
(b) ν(Eq. 1) 94,216 86,932 75,525 57,528

(a)−(b)
(b) × 100 3.1 4.7 8.2 15.5

kx Present ν(Eq. 1) 6.38 7.689 9.092 9.973
2 SSSS-Shear

(
σx � σy � 0, τ �� 0

)(
kes � 9.34

)
t (in.) 0.7 0.6 0.5 0.4
λ 28.571 33.333 40 50
τcr (psi) [16] 60,792 56,604 50,313 39,414

Present (a) ν � 0.5 60,760 56,565 50,251 39,335
(b) ν(Eq. 1) 57,132 52,690 45,578 33,991

(a)−(b)
(b) × 100 6.4 7.4 10.3 15.7

ks Present ν(Eq. 1) 5.053 6.343 7.901 9.207

Fig. 3 Difference of σx,cr (ν � 0.5) and σx,cr (ν < 0.5) for a SSSS square plate under uniaxial load

results in Table 3 and the second section of Table 6, respectively. The comparisons show the adequate accuracy
of the geometrical solution.

In addition to the geometrical solution, a semi-analytical approach may be supposed to simplify the cal-
culation of the inelastic buckling coefficient. The depicted figures in Appendix 1 show that the variation of f
with constant values of νe, ψx , ψy , φ and q may be estimated by linear or bilinear curves in the ks − ξ plane.
Equation (49) shows the general form of bilinear (or linear, if C � 0 and S1 � S2) description of ks . If the
correlation coefficient of the linear approximation R < 0.999, then the bilinear curve is considered for the
estimation.

ks �
⎧⎨
⎩
S1ξ ; ξ ≤−

ξ ,

S2ξ + C ; ξ >
−
ξ ,

(49)
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Fig. 4 Difference of τcr (ν � 0.5) and τcr (ν < 0.5) for a SSSS square plate under pure shear load

Fig. 5 Difference of σx,cr (ν � 0.5) and σx,cr (ν < 0.5) for a CCCC square plate under uniaxial stress
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Table 7 Convergence of ks with different geometrical, boundary and loading conditions

φ λ h SSSS CCCC

ψx ψy ψx ψy ψx ψy ψx ψy ψx ψy ψx ψy ψx ψy ψx ψy

− 1 − 0.5 − 1 0.5 1 − 0.5 1 0.5 − 1 − 0.5 − 1 0.5 1 − 0.5 1 0.5

1 10 5 0.9899 0.7417 0.6788 0.6715 1.0692 0.7768 0.7159 0.7335
10 0.9855 0.7415 0.6788 0.6717 1.0654 0.7762 0.7157 0.7334
15 0.9851 0.7414 0.6788 0.6717 1.0650 0.7761 0.7157 0.7334
20 0.9851 0.7414 0.6788 0.6717 1.0649 0.7761 0.7157 0.7334
25 0.9850 0.7414 0.6788 0.6717 1.0649 0.7761 0.7157 0.7334
30 0.9850 0.7414 0.6788 0.6717 1.0649 0.7761 0.7157 0.7334

100 5 55.087 12.0062 5.3478 2.4806 63.0118 18.1148 9.4169 5.7614
10 54.552 11.9748 5.3423 2.4798 62.6175 17.9889 9.3967 5.7577
15 54.512 11.9732 5.342 2.4798 62.5731 17.9835 9.3958 5.7575
20 54.505 11.9730 5.342 2.4798 62.5625 17.9820 9.3956 5.7575
25 54.503 11.9729 5.342 2.4798 62.5586 17.9817 9.3955 5.7575
30 54.502 11.9729 5.342 2.4798 62.5574 17.9816 9.3955 5.7575

4 10 5 1.0799 0.6218 0.6629 0.6553 0.8936 0.7398 0.6727 0.7177
10 0.9270 0.6217 0.6552 0.6554 0.8894 0.7390 0.6549 0.6937
15 0.9266 0.6217 0.6551 0.6554 0.8894 0.7390 0.6548 0.6936
20 0.9265 0.6217 0.6551 0.6554 0.8893 0.7389 0.6548 0.6936
25 0.9265 0.6217 0.6551 0.6554 0.8893 0.7389 0.6548 0.6936
30 0.9265 0.6217 0.6551 0.6554 0.8893 0.7389 0.6548 0.6936

100 5 64.622 2.4320 4.5781 1.8840 21.6047 11.5113 4.6996 4.0538
10 44.575 2.4293 4.0996 1.8807 20.2025 11.4142 4.0029 3.6235
15 44.493 2.4290 4.0958 1.8804 20.1751 11.4095 4.0006 3.6222
20 44.482 2.4290 4.0951 1.8803 20.1699 11.4086 4.0002 3.6221
25 44.479 2.4290 4.095 1.8803 20.1683 11.4083 4.0001 3.6221
30 44.477 2.4290 4.095 1.8803 20.1677 11.4082 4.0001 3.6221

Fig. 6 Interaction curves for fully clamped plates with ψx � 0 and ψy � 0
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Fig. 7 Interaction curves for simply supported plates with ψx � 0 and ψy � 0

where
−
ξ� C

S1−S2
. The depicted figures in Appendix 2 show that S1, S2 and C with a constant value of νe, ψx ,

ψy , φ may be estimated by linear curves in the S1 − lnq , S2 − lnq and C − lnq planes, respectively. Thus,⎡
⎣ S1S2
C

⎤
⎦ �
⎡
⎣ s11s21
c1

s12
s22
c2

⎤
⎦
[
lnq
1

]
, (50)

where s11, s12, s21, s22, c1 and c2 are numerically presented in Tables 8 and 9 for SSSS and CCCC plates,
respectively. The method of linear least squares (LLS) is applied in two stages on the results with φ �
1, 1.5, 2, 4, ψx , ψy � −1,−0.5, 0, 0.5, 1, q � 2, 3, 5, 10, 15, 20 and νe � 0.33 to find S1, S2 and C as well
as si j (i, j � 1, 2) and ci (i � 1, 2). If ψx � ψy � −1, then no shear buckling occurs in the plate, and this

case is naturally eliminated. In Tables 8 and 9,
−
q is the smallest integer of q , so that R < 0.999. Therefore, if

q <
−
q (i.e., R ≥ 0.999), then the linear approximation must be considered and vice versa.
Substituting Eq. (49) into Eq. (48), qth-order equations will be obtained (Eq. (51)) which can be solved

by a trial and error method and usual scientific calculators. It can be shown that each of them always has a
positive root which is the acceptable ks,{

kqs + Aq−1ks − Aq−1S1 � 0; A ≤ A,

kqs − Ckq−1
s + Aq−1ks − Aq−1(S2 + C) � 0; A > A,

(51)

where

A � 12
(
1 − ν2e
)
λ2

π2�
• σ.7E

E

(
7

3

) 1
q−1

(52)

and

−
A� S1

⎛
⎝

−
ξ

q

1− −
ξ

⎞
⎠

1
q−1

. (53)

The semi-analytical approach can be summarized by a step-by-step procedure as follows:
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1. Select si j (i, j � 1, 2), ci (i � 1, 2) and
−
q from Tables 8 and 9 according to the boundary conditions and

νe, ψx , ψy and φ. In this study, the fundamental parameters
(
si j&ci
)
are obtained for SSSS and CCCC

plates with νe � 0.33, φ � 1, 1.5, 2&4 and ψx , ψy � −1,−0.5, 0, 0.5&1 except ψx � ψy � −1. It is
evident that the fundamental parameters can also be found for the other states.

2. If q <
−
q , then

2.1 using the first equation of Eqs. (50), S1 is calculated.
2.2 using Eq. (52), A is calculated by the known parameters: E

σ.7E
, �, λ, νe and q .

2.3 using the first equation of Eqs. (51), ks is calculated by trial and error.

3. If q ≥−
q , then

3.1 S1, S2 and C are calculated using Eq. (50) and then
−
ξ� C

S1−S2
.

3.2 Using Eqs. (52) and (53), A and
−
A are calculated, respectively, by the known parameters: E

σ.7E
, �, λ,

νe and q .

3.3 If A ≤−
A, then the first equation of Eqs. (51) is solved and ks is calculated by trial and errors.

3.4 If A >
−
A, then the second equation of Eqs. (51) is solved and ks is calculated by trial and error.

Note that if q � 2 or q � 3, Eq. (51) has explicit solutions.
The shown examples in Table 3 and the second section of Table 6 are resolved using the suggested step-by-

step procedure. Table 10 shows the obtained results for which the differences are less than 3%. In this table,
for CCCC and SSSS plates, ξ > 0.8 and ξ > 0.6 are shown in Figs. 6 and 7, respectively. The semi-analytical
method is also applied for SSSS and CCCC plates with four aspect ratios and load ratios (TTS, CTS, TCS and
CCS) as shown in Tables 11 and 12, respectively. In these examples, the required Ramberg–Osgood parameters
are q � 10 and E

σ.7E
� 100. For each aspect ratio in SSSS and CCCC plates, a maximum of four thickness

ratios (λi , i � 1, 2, 3, 4) are selected provided that λi � 5( j + 1); j � 1, 2, 3, . . . and:

λ1 is the last λ where ξ1 ≤ 0.2, otherwise is the first λ where 0.2 ≤ ξ1 ≤ 0.3.
λ2 is the first λ where 0.3 ≤ ξ2 ≤ 0.5.
λ3 is the first λ where 0.6 ≤ ξ3 ≤ 0.8.
λ4 is the first λ where 0.9 ≤ ξ4 ≤ 1.

Tables 11 and 12 show that the difference between two methods are less than 12% for all examples. For
each loading state, the maximum difference (M.D.) appears as follows:

• TTS loading: 10%<M.D.<12% where 0.1 ≤ ξ ≤ 0.2 for all plates.
• CTS loading: 5%<M.D.<7% where 0.1 ≤ ξ ≤ 0.2 for SSSS plates and 5%<M.D.<8% where 0.1 ≤ ξ ≤
0.2 for CCCC plates.

• TCS loading: 7%<M.D.<11% where 0.1 ≤ ξ ≤ 0.3 for SSSS plates and 8%<M.D.<10% where 0.1 ≤
ξ ≤ 0.2 for CCCC plates.

• CCS loading: 2%<M.D.<10% where 0.4 ≤ ξ ≤ 0.7 for SSSS plates and 8%<M.D.<10% where 0.2 ≤
ξ ≤ 0.3 for CCCC plates.

In addition, the results show that increasing the thickness ratio in each aspect ratio, the differences are
usually decreased. As a result, the semi-analytical method has better accuracy for λ > 70 in TTS loading and
λ > 20 in CTS, TCS and CCS loadings. Of course, if E

σ.7E
, q , ψx and ψy are changed, the differences may

vary slowly.
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Table 9 Fundamental parameters for CCCC plates with νe � 0.33

ψy ψx q s11 s12 s21 s22 c1 c2 q s11 s12 s21 s22 c1 c2
φ � 1 φ � 1.5

− 1 − 0.5 – −
1.459

131.36 – – – – – −
1.147

104.15 – – – –

0 20 −
0.803

37.53 6.014 36.95 −
6.475

0.378 – −
0.649

30.23 – – – –

0.5 9 −
0.716

18.43 5.967 14.88 −
6.219

3.379 10 −
0.542

15.04 4.573 12.14 −
4.764

2.731

1 5 −
0.623

11.43 5.296 7.806 −
5.453

3.456 7 −
0.441

9.339 3.632 6.833 −
3.768

2.405

− 0.5 − 1 – −
1.459

131.36 – – – – – −
0.944

89.15 – – – –

− 0.5 – −
0.945

47.57 – – – – – −
0.697

36.15 – – – –

0 10 −
0.855

23.74 7.260 19.22 −
7.567

4.269 11 −
0.623

18.58 4.885 16.62 −
5.141

1.835

0.5 5 −
0.749

14.24 6.472 9.813 −
6.664

4.253 6 −
0.552

11.23 4.359 8.882 −
4.540

2.277

1 4 −
0.630

9.625 5.239 6.225 −
5.390

3.310 5 −
0.451

7.572 3.780 5.013 −
3.889

2.473

0 − 1 20 −
0.803

37.53 6.014 36.947 −
6.475

0.378 18 −
0.531

23.89 3.941 23.71 −
4.248

0.082

− 0.5 10 −
0.855

23.74 7.260 19.218 −
7.567

4.269 11 −
0.577

16.56 4.935 13.42 −
5.145

2.958

0 5 −
0.825

15.11 7.113 10.292 −
7.323

4.640 6 −
0.588

11.86 4.657 9.308 −
4.849

2.474

0.5 4 −
0.751

10.30 6.172 6.373 −
6.349

3.849 4 −
0.617

8.503 5.076 5.237 −
5.220

3.196

1 3 −
0.620

7.453 5.095 4.300 −
5.211

3.091 3 −
0.508

6.188 4.179 3.602 −
4.275

2.535

0.5 − 1 9 −
0.715

18.43 5.967 14.88 −
6.219

3.379 8 −
0.479

11.31 3.943 9.111 −
4.109

2.103

− 0.5 5 −
0.749

14.24 6.471 9.814 −
6.663

4.252 5 −
0.505

9.023 4.339 6.113 −
4.468

2.809

0 4 −
0.751

10.30 6.172 6.373 −
6.348

3.848 4 −
0.528

7.316 4.340 4.492 −
4.462

2.760

0.5 3 −
0.704

7.611 5.723 4.097 −
5.850

3.460 3 −
0.503

5.984 4.088 3.342 −
4.177

2.576

1 3 −
0.636

5.901 5.028 2.739 −
5.134

3.115 3 −
0.543

5.066 4.185 1.753 −
4.252

3.162

1 − 1 5 −
0.614

11.40 5.296 7.806 −
5.453

3.456 5 −
0.391

6.702 3.348 4.520 −
3.448

2.115

− 0.5 4 −
0.630

9.625 5.239 6.225 −
5.390

3.310 4 −
0.427

5.725 3.516 3.529 −
3.617

2.156

0 3 −
0.620

7.453 5.095 4.300 −
5.211

3.091 3 −
0.450

4.900 3.684 2.661 −
3.767

2.207

0.5 3 −
0.636

5.901 5.028 2.739 −
5.134

3.115 3 −
0.468

4.271 3.696 1.932 −
3.773

2.304

1 3 −
0.624

4.810 4.785 1.670 −
4.878

3.085 3 −
0.451

3.767 3.433 1.437 −
3.499

2.274

φ � 2 φ � 4
− 1 − 0.5 – −

1.044
95.66 – – – – – −

0.948
88.41 – – – –

0 – −
0.582

27.75 – – – – – −
0.517

25.45 – – – –

0.5 13 −
0.449

13.75 3.506 12.24 −
3.687

1.393 14 −
0.392

12.57 3.089 11.12 −
3.244

1.326

1 8 −
0.366

8.494 2.943 6.752 −
3.064

1.666 9 −
0.318

7.784 2.578 6.186 −
2.683

1.518

− 0.5 − 1 – −
0.798

77.12 – – – – – −
0.664

67.51 – – – –



An explicit solution for inelastic buckling of rectangular plates subjected to combined biaxial and shear loads 1663

Table 9 continued

ψy ψx q s11 s12 s21 s22 c1 c2 q s11 s12 s21 s22 c1 c2
φ � 1 φ � 1.5

− 0.5 – −
0.587

32.36 – – – – – −
0.519

28.95 – – – –

0 12 −
0.553

17.00 4.366 15.14 −
4.594

1.728 14 −
0.473

15.40 3.797 13.57 −
3.987

1.676

0.5 7 −
0.494

10.34 3.920 8.160 −
4.082

2.107 8 −
0.420

9.447 3.374 7.430 −
3.511

1.931

1 5 −
0.405

6.999 3.404 4.659 −
3.501

2.257 6 −
0.346

6.443 2.680 4.894 −
2.786

1.504

0 − 1 – −
0.429

20.50 – – – – – −
0.372

17.76 – – – –

− 0.5 10 −
0.548

15.05 4.675 12.10 −
4.872

2.784 11 −
0.450

13.24 3.630 11.52 −
3.806

1.604

0 6 −
0.554

10.61 4.351 8.310 −
4.531

2.243 6 −
0.494

9.636 4.017 7.063 −
4.170

2.491

0.5 4 −
0.498

7.663 4.130 4.872 −
4.246

2.708 4 −
0.458

6.990 3.799 4.421 −
3.906

2.494

1 4 −
0.472

5.804 3.968 2.547 −
4.059

3.158 4 −
0.394

5.249 3.193 2.922 −
3.275

2.254

0.5 − 1 9 −
0.364

9.141 3.035 7.347 −
3.163

1.708 12 −
0.279

8.055 2.680 5.335 −
2.775

2.596

− 0.5 6 −
0.410

7.879 3.238 6.113 −
3.370

1.720 6 −
0.395

7.272 3.112 5.394 −
3.234

1.820

0 4 −
0.457

6.776 3.762 4.113 −
3.864

2.575 4 −
0.473

6.230 3.860 3.704 −
3.968

2.469

0.5 3 −
0.530

5.617 4.322 3.035 −
4.419

2.554 3 −
0.473

5.126 3.851 2.770 −
3.937

2.322

1 3 −
0.457

4.533 3.626 2.262 −
3.704

2.236 3 −
0.431

4.203 3.445 1.857 −
3.513

2.293

1 − 1 5 −
0.307

5.266 2.629 3.521 −
2.706

1.688 6 −
0.214

4.336 1.697 3.396 −
1.767

0.911

− 0.5 4 −
0.351

4.787 2.893 2.924 −
2.975

1.824 5 −
0.257

4.225 2.122 2.680 −
2.180

1.483

0 3 −
0.382

4.337 3.112 2.379 −
3.180

1.919 3 −
0.386

4.121 3.143 1.746 −
3.205

2.300

0.5 3 −
0.416

3.978 3.217 1.821 −
3.282

2.098 3 −
0.453

3.789 3.562 1.538 −
3.637

2.226

1 3 −
0.493

3.660 3.937 0.471 −
3.999

3.099 3 −
0.447

3.359 3.492 0.967 −
3.557

2.352

4 Conclusion

An analytical approach is presented to obtain the inelastic buckling coefficient of simply supported and fully
clamped rectangular plates subjected to combined biaxial (both compressive and tensile) and shear loads.
The deformation theory of plasticity, variations to all mechanical properties of plate, the generalized integral
transform technique (GITT) and eigenvalue solution are applied in the different sequences to obtain the inelastic
buckling coefficient of plate. The Ramberg–Osgood parameters are used to describe the nonlinear stress–strain
behavior of material, although the solution can be generalized for the other nonlinear behaviors. Then, applying
the method of linear least squares (LLS) on the obtained results, a semi-analytical solution is also proposed. An
approximate polynomial equation is obtained and solved by trial and error method to simplify the calculation
of the inelastic buckling coefficient. The proposed semi-analytical solution is simple and applicable for the
practical purposes. The calculated results show that good accuracy may be obtained for all loading cases, so
that the maximum difference (< 12%) is seen in tensile–tensile–shear loading state; nevertheless, increasing
thickness ratio of plate, the accuracy increases.
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Appendix 1: Linear/bilinear approximation of ks � f
(
ξ ;φ, ψ x, ψ y, q, νe

)

Supposing the boundary conditions of the plate and the specific values for 0 < νe < 0.5, 1 ≤ φ ≤ 4,
−1 ≤ ψx ≤ 1, −1 ≤ ψy ≤ 1 and 2 ≤ q ≤ 20, the suggested algorithm (Fig. 2) is applied and several
examples may be solved to obtain the curves of ks − ξ . Figures 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 and
19 show the obtained curves for some examples in which the curves of SSSS and CCCC plates are drawn in
Figs. 8, 9, 10, 11, 12 and 13 and Figs. 14, 15, 16, 17, 18 and 19, respectively. In these figures, νe � 0.33,
φ � 1, 1.5, 2, 4, ψx � −0.5, 1, ψy � −1, 1 and q � 3, 10, 20. Initially, the method of linear least squares
(LLS) is used and the correlation coefficient (R) of linear estimation is obtained for each curve as shown in
Figs. 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 and 19. If R ≥ 0.999 the linear estimation is proposed; otherwise,
the bilinear estimation (Eq. (49)) is used to improve the approximation. In Figs. 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18 and 19, the linear/bilinear approximations are only plotted for φ � 1 (the dashed lines). Similarly
approximated curves can be evidently plotted for the other aspect ratios. Supposing constant values of q and φ
and increasingψx andψy , the linear estimations are mostly converted to the bilinear estimations. If R � 0.999,

the boundary of conversion is found for which only the integer value of the corresponding q is considered (
−
q

in Tables 8, 9). For example, if φ � 4 and ψx � ψy � 1, then
−
q� 5 for SSSS plates; thus, if q � 3 or q � 10,

then R � 0.9996 (linear estimation, Fig. 9) or R � 0.9964 (bilinear estimation, Fig. 11) respectively.

Fig. 8 Linear approximations of the ks − ξ curves for all aspect ratios
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Fig. 9 Bilinear and linear approximations of the ks − ξ curves for φ � 1, 1.5, 2 and φ � 4 respectively

Fig. 10 Linear approximations of the ks − ξ curves for all aspect ratios
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Fig. 11 Bilinear approximations of the ks − ξ curves for all aspect ratios

Fig. 12 Linear approximations of the ks − ξ curves for all aspect ratios
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Fig. 13 Bilinear approximations of the ks − ξ curves for all aspect ratios

Fig. 14 Linear approximations of the ks − ξ curves for all aspect ratios
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Fig. 15 Bilinear approximations of the ks − ξ curves for all aspect ratios

Fig. 16 Linear approximations of the ks − ξ curves for all aspect ratios
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Fig. 17 Bilinear approximations of the ks − ξ curves for all aspect ratios

Fig. 18 Linear approximations of the ks − ξ curves for all aspect ratios
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Fig. 19 Bilinear approximations of the ks − ξ curves for all aspect ratios

Appendix 2: Semi-logarithm estimation of S1, S2 and C

In Appendix 1 and Eq. (49), a bilinear approximation is described with slopes of both lines (S1 and S2) and
intercept of the second line (C), while a linear approximation is only described with the slope of one line
(S1). Reapplying the method of linear least squares (LLS) on several examples, S1, S2 and C can be linearly
estimated versus lnq . Figures 20–23 and 24–27 show the estimations for SSSS and CCCC plates, respectively.
If linear approximation is applied on the ks − ξ curves, then S1 is only estimated as shown in Figs. 20 and 24
(ψx � −0.5, ψy � −1); if bilinear approximation is applied, then S1 (Figs. 21, 25), S2 (Figs. 22, 26) and C
(Figs. 23, 27) are estimated (ψx � ψy � 1). Equation (54) shows the semi-logarithm estimation,⎧⎨

⎩
S1 � s11 ln q + s12
S2 � s21 ln q + s22
C � c1 ln q + c2

(54)

where s11, s21 and c1 are the slopes and s12, s22 and c2 are the intercept of the S1, S2 andC curves, respectively.
For SSSS plates with φ � 1, ψx � −0.5 and ψy � −1, Fig. 20 shows that s11 � −1.294 and s12 � 117.37.
Similarly, the parameters of Eq. (54) will be obtained for the different boundary and load conditions as shown
in Tables 8 and 9. The obtained correlation coefficients show that the semi-logarithm estimation is acceptable
in this step.
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Fig. 20 Linear approximation of S1 − lnq in Figs. 8, 10 and 12

Fig. 21 Linear approximation of S1 − lnq in Figs. 9, 11 and 13
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Fig. 22 Linear approximation of S2 − lnq in Figs. 9, 11 and 13

Fig. 23 Linear approximation of C − lnq in Figs. 9, 11 and 13
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Fig. 24 Linear approximation of S1 − lnq in Figs. 14, 16 and 18

Fig. 25 Linear approximation of S1 − lnq in Figs. 15, 17 and 19
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Fig. 26 Linear approximation of S2 − lnq in Figs. 15, 17 and 19

Fig. 27 Linear approximation of C − lnq in Figs. 15, 17 and 19
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