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Abstract In this study, the inelastic buckling equation of a thin plate subjected to all in-plane loads is ana-
lytically solved and the inelastic buckling coefficient is explicitly estimated. Using the deformation theory of
plasticity, a multiaxial nonlinear stress—strain curve is supposed which is described by the Ramberg—Osgood
representation and the von Mises criterion. Due to buckling, the variations are applied on the secant modulus,
the Poisson’s ratio and the normal and shear strains. Then, the inelastic buckling equation of a perfect thin
rectangular plate subjected to combined biaxial and shear loads is completely developed. Applying the gen-
eralized integral transform technique, the equation is straightforwardly converted to an eigenvalue problem
in a dimensionless form. Initially, a geometrical solution and an algorithm are presented to find the lowest
inelastic buckling coefficient (k). The solution is successfully validated by some results in the literature. Then,
a semi-analytical solution is proposed to simplify the calculation of k;. The method of linear least squares is
applied in two stages on the obtained results and an approximate polynomial equation is found which is usually
solved by trial and error. The obtained results show good agreement between the proposed semi-analytical and
geometrical methods, so that the differences are < 12%. The semi-analytical solution is easily programmed in
usual scientific calculators and can be applied for practical purposes.

List of symbols

a Length of plate

b Width of plate

h Number of series terms in the GITT

kg, ky Inelastic buckling coefficients

k¢, kS Elastic buckling coefficients

mnrs Positive integers

q Shape parameter to describe the curvature of stress—strain curve in the Ramberg—Osgood
representation

q Integer of corresponding q in the boundary of linear and bilinear approximations (R =
0.999)

Sij, Ci Fundamental parameters to find Sy, S and C (i, j = 1, 2)

t Thickness of plate

Z Distance from the middle surface of plate

C Intercept of the second line in bilinear approximation of ks — & curve
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D;; Arrays of stiffness matrix (i, j = 1, 2, 3)

E Young’s modulus (or the slop of stress—stain curve at zero stress)

Esec Secant modulus

Eian Tangent modulus

M Arrays of coefficient matrix (m, n, r, s = 1,2, ..., h)

Ny, Ny, Nyy In-plane loads in the x-, y- and xy-directions per unit length

R Correlation coefficient of linear approximation in linear least squares

S1, $ Slope of the first and the second line for approximation of k; — & curve

Xm (%), Yn(¥) Kernels of double integral transform in x- and y-direction (m, n = 1, 2, ..., h)

U B Roots of transcendental beam frequency equations in x- and y- directions (m, n =1, 2, ...,
h)

y Shear strain

dw(x,y) Variation of out of plane displacements in z- direction

SWin Variation of transformed out of plane displacements (m, n = 1, 2, ..., h)

SM,,5M, Variation of bending moments in the x- and y-directions per unit length

SMyy Variation of twisting moment per unit length

Y0 Variation of middle surface shear strain

8eox, 820y Variation of middle surface strains in x- and y-directions

8k, Sk Variation of curvatures in x- and y-directions

8Ky Variation of twist

3oy, doy Variation of stresses in x- and y-directions

8t Variation of shear stress

Ex, Ey Strain in x- and y-directions

& Secant modulus-to-Young’s modulus ratio

n Tangent modulus-to-Secant modulus ratio

A Thickness ratio of plate

v Poisson’s ratio

Ve Elastic Poisson’s ratio

O7E Stress corresponding to intersection of the stress—strain curve and a secant of 0.7E in
Ramberg—Osgood representation

o; Stress intensity

Ox, Oy Stresses in x- and y-directions

T Shear stress

Ox.cr> Ter Critical stresses

¢ Aspect ratio of plate

Y, Yy, Wy, Exy Load ratios

1 Introduction

The stability of structural plates is one of the most important design criteria in mechanics, civil, aerospace
and marine engineering. During their lifetime, various loads are applied on them to perform in-plane stresses
on their edges. In addition to shear stress, the edges may experience compressive or tensile (biaxial) stresses
and due to the geometrical and material properties of the plate, inelastic buckling may occur. An analytical
procedure may be quite complicated for the solution of the inelastic buckling equation of the plate with diverse
boundary conditions and under multiaxial loadings. Thus, an explicit solution should be preferably developed
using the theories of plasticity to predict the inelastic buckling load of plates.

In the 1940s, two main plasticity models were applied to describe the inelastic buckling of plates. Ilyushin
[1], Stowell [2] and Bijlaard [3] used the deformation (total) theory of plasticity, while Handelman and Prager
[4] used the incremental (flow) theory of plasticity. In the deformation theory of plasticity, the total strain
is related to the total stress by the secant modulus without any consideration of stress history and then, the
surveyed path to get a particular point on the stress—strain curve is not important. As only the secant modulus
appears in the stress—strain relations, the hardening is isotropic in this theory. Nevertheless, in the incremental
theory of plasticity, the stress at any point and time is a function of the current strain as well as the history of
strain. In other words, increments in strain are related to increments of stress by the tangent modulus, leading to
a complicated nonlinear stress—strain relation. Applying the variational approach on the stress—strain relations,
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only the tangent modulus appears in the incremental theory, while both the secant and tangent modulus appear
in the deformation theory. Generally, the not very complicated deformation theory relations are comparable
with very complicated incremental theory relations for inelastic stress analysis. Although the incremental
theory is more general than the deformation theory, the latter can be successfully applied to proportional
loading problems in which the components of the stress tensor increase in a constant ratio to each other [5, 6].
In addition, the deformation theory is an acceptable approach for the bifurcation check in the buckling of plates
and provides good agreement with measured buckling loads for bars, plates and shells, while the incremental
theory predicts much higher than the measured buckling loads [7]. This discrepancy, which is called ‘plastic
buckling paradox’ [7], has not been solved generally until recently [8]. One of the oldest problems which
directly refers to this ‘paradox’ and reported in the literature is the inelastic stability of cruciform columns
[7-11]. Recently, Guarracino and Simonelli [12] showed that the torsional buckling of a cruciform column in
the inelastic range is not actually the ‘plastic buckling paradox’ if effects of the imperfections are accurately
computed up to the limit load. Their analytical procedure represented very good agreement between flow
and deformation theories for this problem. The ‘plastic buckling paradox’ was also tried to solve for circular
cylindrical shells under both axial and non-proportional loading [13, 14]. The results of finite element analysis
were compared with those of experimental studies and it was shown that the adaptation of flow theory of
plasticity with the experimental findings depends on the assumption of initial imperfections and buckling
shapes.

Shamass [15] reviewed in detail many aspects which affect on the ‘plastic buckling paradox’. In this review,
the considered aspects are the effective shear modulus, initial imperfections, different material constitutive
models, transverse shear deformation, deformations in the pre-bifurcation state, actual boundary conditions,
sensitivity of the predictions by different plasticity theories and effects of the kinematic constraints used in
analytical treatments. It is concluded that the incremental theory does not have any limitation and a number
of combined approximations affect the results predicted by the incremental theory.

Generally, the variations of strains and stresses during buckling are used to develop the inelastic buckling
equation of plates. In the initial studies of deformation theory of plasticity, the material was supposed to be
incompressible in the nonlinear (elastoplastic) region of the stress—strain curve and then, the Poisson’s ratio
was always Y2 for isotropic materials. As a result, the variation was only being applied on the strains and
the secant modulus in the stress—strain relations (Hooke’s law) as seen in the approaches of Ilyushin [1] and
Stowell [2]. Pifko and Isakson [16], Bradford and Azhari [17], Ibearugbulem et al. [18, 19], Onwuka et al.
[20] and Eziefula et al. [21] applied Stowell’s procedure in their studies. However, in several investigations
[22-35], Bijlaard’s formulation [3] was applied in which the Poisson’s ratio appears in the elastic value during
inelastic buckling. Gerard and Wildhorn [36] showed that for a nonlinear stress—strain curve such as the
Ramberg—Osgood representation [37], the Poisson’s ratio changes from the elastic value to the incompressible
value of ¥ as the stress is increased above the yield stress,
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where E is the Young’s modulus (or the slope of the stress—stain curve at zero stress), Egec is the secant
modulus and v, is the elastic Poisson’s ratio. Using Eq. (1), the variable Poisson’s ratio is considered in the
elastoplastic region of the stress—strain curve as well as the other parameters [38—43]. Jones [6] successfully
applied variation to the Poisson’s ratio and developed the inelastic buckling equation of a plate subjected to
biaxial loads, although the obtained equation was only solved for uniaxial loading.

The elastic/inelastic buckling of plates is analytically formulated with a fourth-order linear partial differ-
ential equation. In recent decades, several numerical and semi-analytical methods have been proposed to solve
this equation with different boundary conditions and mostly uniaxial loading. The most important of these
methods are finite element (FE) [16, 44, 45], finite difference [42], finite strip [31], spline finite strip [24],
isoparametric spline finite strip [29, 46], complex finite strip [17, 26, 47], finite layer (FL) [48], differential
quadrature (DQ) [30, 43], generalized differential quadrature (GDQ) [33-35], element-free Galerkin (EFG)
[32], funicular polygon (FP) [23], p-Ritz [49, 50], Rayleigh—-Ritz [51-53], and the virtual work principle
[18-21]. Integral transforms have already been used for solving complex boundary value problems in elastic
bending, buckling and vibration of beams. Fourier series were differentiated as many as four times to solve
the corresponding ordinary differential equations. In 1944, Green [54] extended the double Fourier series for
solving elastic problems of isotropic rectangular plates in which partial differential equations appear. Later,
this method was used for the buckling of simply supported orthotropic and isotropic skew plates, subjected
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to in-plane compressive and shear edge loads [55]. Afterward, double finite integral transform and the corre-
sponding inverstion were analytically used to solve the bending equation of rectangular thin/thick plates with
different boundary conditions [56—60]. As the double finite integral transform has some restrictions for com-
plex boundary conditions, it may be modified to the generalized integral transform technique (GITT) which is
mathematically more general and also faster convergence. This technique was previously applied in the auto-
matic and accuracy-controlled solution of nonlinear diffusion and convection—diffusion problems as well as the
solution of Navier—Stokes equations [61]. In the GITT, an appropriate auxiliary eigenvalue problem is solved
to find the kernel of the integral transform. Then, applying the integral transformation to an ordinary/a partial
differential equation, it is transformed into infinite algebraic/ordinary differential equations and then, they are
truncated at finite terms to allow the computational solution. Alternatively, the double integral transformation
can be directly applied to a PDE for obtaining the infinite algebraic equations. For bending, buckling and
vibration problems of rectangular plates, kernels of the double integral transform are similar to the vibrating
functions of two beams which have the same material properties and boundary conditions of plates in two
orthogonal directions. If the original PDE is linear, then the linear algebraic equations are naturally obtained,
so that they can be analytically solved for the bending problem and on the other hand, lead to an algebraic
eigenvalue problem for buckling/vibration of a plate. Thus, the buckling load/natural frequency is obtained for
each mode as well as the corresponding mode shape. An et al. [62] used the GITT as single integral transform,
so that the original PDE is transformed into a set of coupled ordinary differential equations. Ullah et al. [63]
employed the GITT and solved an eigenvalue problem to obtain the elastic buckling coefficient of uniaxial
loaded fully clamped plates (CCCC), plates with three clamped and one edge simply supported (CCCS), and
plates with two adjacent edges clamped and the other edges simply supported (CCSS). The GITT has been also
applied for the bending solution of orthotropic rectangular thin foundation plates [64] as well as free vibration
of orthotropic rectangular plates with free edges [65].

In this study, using the deformation theory of plasticity [6] and applying variations to all mechanical
components of an isotropic perfect rectangular plate, the complete equation of inelastic buckling of plates under
combined biaxial and shear stresses is developed. The parameters of the Ramberg—Osgood representation are
used to find the secant and tangent moduli in the nonlinear region of the stress—strain curve. Then, using
the generalized integral transform technique (GITT) [62—-65], the inelastic buckling equation is solved for
simply supported (SSSS) and fully clamped (CCCC) plates and the effect of variation of Poisson’s ratio on the
inelastic buckling load is compared with those of previous studies. The rectangular plate may be subjected to
compressive—compressive—shear (CCS), compressive—tensile—shear (CTS), tensile-compressive—shear (TCS)
or tensile—tensile—shear (TTS) loads. A geometrical solution and an algorithm are presented to find the inelastic
buckling coefficient of a plate based on the aspect ratio, thickness ratio, load ratios, secant to Young’s modules
ratio, elastic Poisson’s ratio and Ramberg—Osgood parameters. Using the obtained results and linear regression
technique (linear least squares), a semi-analytical procedure is also suggested to calculate the lowest inelastic
buckling coefficient. In this procedure, a gth-order equation must be solved using a trial and error method in
which ¢ is the shape parameter of the Ramberg—Osgood representation. The procedure is applicable to practical
purposes and can be easily programmed in usual scientific calculators.

2 Analytical approach
2.1 Inelastic buckling equation of a plate

Consider a rectangular plate with dimensions of a x b x t subjected to CCS, CTS, TCS or TTS loads as shown
in the Cartesian coordinate system of Fig. 1. In this figure, N, = toy, N, = toy and N,, = t7 are the applied
loads per unit length on the plate edges in the x-, y- and xy-directions, respectively. Also, oy, oy, and t are the
applied stresses in the x-, y- and xy-directions, respectively.

In the deformation theory of plasticity, using general nonlinear material properties (Ege. and v), the two-
dimensional stress—strain relations are established as shown in Eq. (2). In these relations, €y, £, and y are the
strains in the x-, y- and xy-directions, respectively, and v is obtained from Eq. (1):

Oy E I v O Ex
= 1v 1 0 . 2
% 1— 1)2 1—v €y ( )
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Fig. 1 A rectangular plate subjected to a CCS, b CTS, ¢ TCS and d TTS loads

After applying the variations to all components of Eq. (2),

doy Eqee Diy1 Dy D3 Seox + 28k,
5Uy = 5 D1y Dy Dy 58y0 + Z(Sky s
st I=v' D35 Dy Ds 8o + z8kyy

3)

where deoy, dey0 and 6)/0 are the variations of the middle surface strains in the x-, y- and xy-directions,

925w Sicy = _ 9%sw
T x> ay?
28 Sw

respectively, dk, =

respectively, 8k, =
as shown in Fig. 1. In addltlon,

K

Dy =1-— [2—v)o, — (1 —2v)0, ],

are the variations of the curvatures in the x- and y-directions,

is the variation of twist, and z is the distance from the middle surface of the plate

“4)
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K
W)

D3 =

Dip =v— 2 =)oy — (1 = 2v)oy |[2 = v)oy — (1 = 2v)0y ],

3Kt
4(1+v)

Dy =1-

[(2—v)ox — (1 —2v)oy],
K
m[(z — U)O'y — (1 — ZU)GX]Z,

3Kt
—m[(z —v)oy — (1 = 2v)0y ],

1—v 9K 12
Dyy3=—|[1——|.
2 2(1+v)

In Eq. 4), K = ﬁ(] — %:), where 0; = \/oxz — 0y0y + Uyz + 372 is the stress intensity based on von

Mises criteria and E,;, is the tangent modulus. Also,

Dy3 =

B |20, Ew Eur (1+ 21))(03 + 03) —2Q2+v)oyay +6(1 + )72
H=1-— - —[1-——)2v - 3 (5)
2(1 - Vz) E Egec 20[
Substituting Eq. (3) into Eq. (6), the moment—curvature relations can be determined:
i3
SM, Z| 8oy
My | = oy |zdz, (6)
SMyy Y 6T
M, Eqet? Dyy D1y Dy3 || Skx
M, D13 Dy D3 Sky |. @)

8Mxy 12(1 - UZ) D13 Dy3 D33 (Skxy
Then, substituting Eq. (7) into the equilibrium equation,
92(SMy)  3%(8Myy) 3%(SM 3%(8 9%(8 3%
@My | POMy) POMy) _ 526w) L,y 220w) ) 076w
9x2 0xdy 3y? dx2 0xdy dy?
the inelastic buckling equation of the plate is obtained:

9% (Sw) 3% (Sw) +2(Dip +2D )84(8w) .\ 9% (Sw)
x4 1 9x33y 12 33 dx29y? 3 9xdy3

9% (Sw) 12(1—1)2)[ 3% (Sw) 9% (Sw) 82(8w):|_0

’

Dy

+D + +2N +
2 ay4 Egect3 dx2 2 9xdy Y9y

@®)

2.2 Generalized integral transform technique (GITT)

When the GITT is used for a two-dimensional boundary value problem, two appropriate auxiliary ODEs must
be solved. Here, they are the vibrating beam equations (Eq. (9)) which satisfy the corresponding boundary
conditions (Egs. (10, 11)) and orthogonality (Eqs. (12, 13)) in the x- and y-directions:

4
R = o X ()

d*y, )
g = B )
Xm(x)=0
x=0, a— P
Xu(0) _ ()
d? . SS (10)
Ya(y) =0
y=0b= Y e
2 =
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X,(x)=0
x=0, a —>
dxm(x) :0
dx ; CC (11)
Ya(y) =0
yZO, b_) dYn(y) _0
dy —
a a. —
[Xn@X,ar =42 "7
0 0; m#“r
; SS (12)
b %’; n=s
fYn(y)Ys()’)dy =
0 0, n#£s
a a, m=r
[ X)X, (x)dx = {
0 0; m#“r
:CC (13)
b b, n=s
fYn(y)Ys(y)dy =
0 0; n#s

where SS and CC are used for simply supported and clamped beams, respectively, and m, i, r and s are positive
integers. Equations (9) are readily solved for the different boundary conditions (Egs. (10, 11)) to yield the
related eigenfunctions which are shown in Egs. (14) and (15) for SS and CC beams, respectively:

X (x) = sinay, x (14)

Yy(y) = sin By
X (x) = coshax — cosay,x — ¢ (sinh @, x — sin @, x) (15)
Y, (y) = cosh B,y — cos B,y — ¢, (sinh B,y — sin B, y)

where

__ coshaya—cosaya

Cm = sinh @, a—sinaa (16)
__ cosh B,b—cos B,,b

Cn = Sinh B,b—sin fpb

In Egs. (14) and (15), «;,, and B,, are the roots of transcendental beam frequency equations:

sina,,a - sinho,a =0 = aa = mm
sin B,b - sinh 8,b = 0 = B,b = nw

}; SSSS (17)

cosha,a - cosapa = 1 = apa = [(Zm +1)5 + 2(—1)m+le=@m+D3
) . CCCC (18)
cosh Bub - cos Bub = 1 = Byb = [(2n DI+ 2(—1)"+1e_(2”+1)7]

Using the obtained eigenfunctions in Eqgs. (14, 15), the two-dimensional generalized finite integral transform
and the corresponding inversion are defined as:

a b
S = / / Sw(x, )X (0) Yo (n)dxdy, (19)

0 01 00 00

Swery) = o0 ;;swmnxmum(y), (20)

where
1 ‘ o 1
I 2 | L ssss
0 0

and ¢ = ¢ is the plate aspect ratio.



1648 A. Jahanpour, R. Kouhia

2.3 Analytical procedure for inelastic buckling

The GITT should be applied to all terms of Eq. (8). Using integration by parts in the successive steps, the
fourth- and second-order partial derivatives in Eq. (8) are reduced and finally, Sw(x, y) is transformed to Sw,,,,
based on Eq. (19). In Egs. (22)—(29), these transformations are shown with the dimensionless coefficients.

a b
9*(Sw) ama\*
b“// = X ()Y (dxdy = (= ) Swy, 22)
0x )
a b 0
04 dw) ,
9x39 Xm ()Y (y)dxdy = 3 Zzswrs mra (era )]Lns, (23)
0 0 Y r=1 s=1
*(Sw)
b4f/ 28 2X () ¥y (y)dXdy - ¢2 Zzawrs(]mra)(})nsb) (24)
1 1
4 h 8 r=1 s=
b* X Y, (y)dxdy = Swys[(Fush?) + (Qns s 25
// dxdy3 ) Yn(y)dxdy = ;; it +(Qnsb )] (25)
0 a b 34 5
b4// 3( };U) Xm(x)Yn(y)dxdy = (ﬂnb)45wrnn, (26)
y
< b82(8 )O oo 00 K
w ns
bz// 8x2 Xm(x)Yn(y)dXdy_ ZZ wrs(lmra)<7>, (27)
oo r=1s=I
32(8w) 1 oo 00
bz// oxdy Xm(0)Yn(y)dxdy = ﬁZZSmem,LnS, (28)
aobo T
82 S 1 00
bZ// a(yw)X x)Y, (y)dxdy = ;ZZSw”< )(Pnsb) (29)
0 0 =1 s=1
with
a2er — 612(er dﬁ B dX, dX _ [1 — (- 1)m+r]mr7_[ fjsc 30)
dr |,—, dx [, dx |,—o dx x=0
im=r
a N SS
Gur 1 O;m #£r
_/Xr(x)Xm(x)dx = a (31)
a a I;m=r
0 . CC
O;m #r
2mr . _
a {rz = m:l:r—odd}; sS
m(x) 0; m*r =even
’ i LG S
leﬂz
5=, m=r , -
d2X,, (x) 0; m#r

o :a/X () 5 =
, cm(@ma)[2 — cp(apa)l;, m=r - CC

2 2
e e Lem (oma) — e (@ a)][1+ (D™ ] m A

(33)
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azf (x)
0
%; mxr=odd|. SS
. 0; mzLr=-cven ’ 34
- 0, m=r (34)
3 3 ; CC
e N
PE, — b dy; Ay, | dy| o dY, _ { [1— (=)™ ]nsm?; SS (35)
dy v=b = dy im0 dy |0 0; CC
1
5, NB=3§
b 2 : SS
K, 1 0; n#s
s / V()Y (y)dy = (36)
1, n=s
0 : CC
0; n#s
25 p4s =odd
b s“—n ; SS
dy,(y) 0; nts=eceven
Ly = f vy e gy, (37
5 dx 0, n=s cc
4(Bub)*(Bb)* [1 _ _1yn+s]. ’
Bl ~ DL n#s
b
d%y,
bP,,S:b/Y( yo ) (y)
0
n2n2
— sn=s¢s
i 2 ; SS
0; n#£s
= 7 (38)
Cn (,Bnb)[z - cn(ﬁnb)]; n=s . CC
4(Bub)*(Bsb)* n+s7. ’
W[Cn(ﬂnb) - cs(ﬂsb)][l +(=D) ], n#s
2”"2 “;2 :n+s =odd
. 0 + ; >
5 n § = even
sznszbZ/Ym ) gy = (39)
0 0; n=s ce
3 3 ) 5
e 1~ P

Applying the GITT into Eq. (8) and using Egs. (22)—(29), the characteristic equation in dimensionless form is

obtained:

4
{(%ﬁa) Dy + (ﬁnb)4D22:|5wmn

oo 0
LSy o,
M r=1s=1

+ %(Dlz +2D33)(aluy) (b Pug) +4D23[ (b* Frs) + (b* Qns) | H

G’"’)(b%)” =0
a

E(1—v?)

Vx
Esec(l - Vg) o [

¢

Kps
(a Imr)(

{ D[(@Bur) + (@) Lo

) +2Hypy Lys + ¢I/fy <

(40)
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_ 12(1-2) (l?,)z

72

where ¥, = —} and ¥, =
inelastic buckling coefﬁment v

Equation (40) establishes an infinite system of linear equations. For a practical calculation, the positive
integers m, n, r and s must be limited to an upper value, 4. Thus, Eq. (40) can be shown with a finite number
of linear equations in matrix form:

Xy :
7 18 the

Xy

(Ml oM oMy M Tewn ] 0]
S g || :
My, ..My .. My, . MY dwiy 0
: R o : =1: P (41)
11 1h 1 hh
Mhl"'Mhl"'Mhl"'Mhl Swp 0
'11.:1h‘:h1' hh ; (
My MM | Swpy | 1 0]
where
M’ = { (ama) Di1+ (Bub)* Dy + TS ;m =r andn = s “2)
mn .
T otherwise
and
rs 1 4 2 2 2
T, = ¢ ¢2 D13[(a er) + (a er)]Lns + E(DU +2D33) (@l ) (D Pps)
+ 4D23[(b2Fn§) + (szns)]Hmr
E(l _vZ) lbx Gmr
+——— k| —(al +2H,,; Lys + bP, . 43
Esec(l—vg) [¢( mr)( b ) mrtns ‘f”ﬁy( a )( VZS):I ( )

Supposing ¥y, ¥y, Ve, EE‘C, g““ ks, ¢ and h in Eq. (41), the eigenvalues of the coefficient matrix can be

calculated for SSSS or CCCC plates If the smallest eigenvalue is zero, the supposed ks will be the lowest

inelastic critical coefficient <k§lc), = ks). Likewise, if the second, third, .... or ith eigenvalue is zero, the inelastic

critical coefficient is obtained for the corresponding mode. Using the general software Python [66] and selecting
a few series terms (/) for the arrays of the coefficient matrix in Eq. (41), the inelastic critical coefficient (ks,cr)
can be obtained accurately enough for the different buckling modes. However, the secant and tangent moduli
relation obviously affects the inelastic buckling coefficient. For a Ramberg—Osgood stress—strain model, the
secant and tangent moduli are defined as [37]:

E

R —
3( o q
E

=7
143 (0!
7 \o7E

where o 7g is the stress at which the line with slope 0.7 E intersects the stress—strain curve and g is a shape
parameter which describes the curvature of the stress—strain curve. Considering two dimensionless parameters,

=L <landn= % < 1, Egs. (44) and (45) may be combined into
he— (46)
q(l —§)+§
so that all terms of the arrays of the coefficient matrix (Eq. 42) can be expressed by ¢, ¥, ¥y, &, g, ve and k;.
Then using an implicit function, kg can be briefly described as:

ks :f(¢v Vx, Wy,qu,ve) 47)

Egec = (44)

(45)
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Table 1 Boundary and loading conditions and mechanical properties in the considered studies (1 ksi = 6.895 MPa)

No.  Method B.C L.C Material E x 10* (ksi) o075 (ksi) q Ve
1 Experimental [67] SSSS Uniaxial Al 14S-T6 1.07 63.2 19 033
2 ANSYS and FEM [45]
3 Funicular polygon [23] CCCC  Shear 61.4 20
4 FEM [16] SSSS Uniaxial Al24S-T 1 100 10 033
Biaxial
Shear

CCCC  Uniaxial

On the other hand, using Eq. (44), ks can be expressed with an explicit function:

1

E 12(1 —12)2 -y
ks — g<)\(’ _ I//xs I//_)'y E’ q’ ve) — ( Ve) . O7E . |:3 <‘§ )] -, (48)
O7E E

v (2= vy +92+3)°

where A = 17’ is the plate thickness ratio.

In Eqs. (47) and (48), & is a mutual variable in both f and g as well as ¥, ¥y, ve and g. As & is a continuous
variable (0 < & < 1), both f and g can be plotted in the k; — & plane. The intersection of the two plotted
curves gives the inelastic buckling coefficient as well as the corresponding secant modulus. The described
geometrical solution may be summarized by an algorithm as shown in Fig. 2. In this algorithm, an initial value
of £ is assumed (&;;,; in Fig. 2). In the next steps, £ is increased by 6& unless & > 1. Here, &;,,; = 6§ = 0.025.

1
In addition, defining a dimensionless parameter, Q2 = (w% — Yy + wf, + 3) 2, Egs. (4) and (5) are briefly

rewritten and finally, the coefficients matrix in Eq. (41) is re-established. At the end of the procedure, the k; — &
curve will be found for the corresponding buckling mode based on the known parameters: ¢, Y., ¥y, ve and
g. In this study, the lowest buckling coefficient is calculated. The procedure can be repeated using the new
parameters to find new curves.

3 Results and discussion

In this study, the Ramberg—Osgood representation is used for the nonlinear mechanical properties of the
material, although this approach can also be developed for the other known models of nonlinear behavior.

3.1 Validation, effects of variation of Poisson’s ratio and number of series terms

In order to verify the analytical approach, four studies are considered. The first one is an experimental study for
plastic buckling of simply supported uniaxial compressed plates [67]. In the second study [45], the solution of
the ‘plastic buckling paradox’ was sought in the mode of testing which had previously been done in Ref. [67].
The authors applied the incremental theory of plate buckling and involved the boundary stresses introduced by
the friction between the plate and the testing machine heads. For the pre-buckling stress analysis, an incremental
finite element procedure was performed using ANSYS, so that the load was subdivided into a sequence of
small increments. The material properties and dimensions of the plates were the same or similar to those in
Ref. [67] as shown in Tables 1 and 2, respectively. The plate was divided into 80 rectangular elements and the
boundary conditions were zero force on the two longitudinal edges and zero displacement on the lower edge
in both directions. On the upper edge, uniform and zero displacements were applied in the longitudinal and
transverse directions, respectively. In the buckling analysis stage, the finite element procedure for plastic plate
buckling described in Ref. [16] was generalized to the case of nonuniform pre-buckling stress state. In the
third and fourth studies [16, 23], the finite element and funicular polygon methods are employed for plastic
buckling of simply supported and fully clamped plates under uniaxial, biaxial or shear loads.

The suggested algorithm (Fig. 2) can be changed for the uniaxial and biaxial loadings and N,, = 0. In

. - Ny - Ny
these cases, new load ratios are defined as wy = N—‘ and ny = =
X

= N The arrays of the stiffness matrix
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Table 2 Comparison of critical uniaxial stresses for SSSS plates

Specimen [67] la 6a 8a 9a 10a

b (in.) 6.69 4.68 3.94 3.44 3.19

¢ 4 4 4 45 45

A 425 30.1 25.6 22.5 20.8

Ox.cr (psi) [67] 21,200 42,800 53,300 57,800 61,400
[45] 21,900 43,200 54,600 58,600 61,400
Present 21,871 43,532 55,343 60,090 62,030

Table 3 Comparison of critical shear stresses for CCCC square plates (k;’ = 14,6)

A 56.3 59.3 62 64.5 66.9 68.9 70.7

Ter (PS1) [23] 34,000 33,000 32,000 31,000 30,000 29,000 28,000
Present 33,463 32,803 31,421 30,433 29,701 29,042 28,135

ks Present 10.74 11.68 12.23 12.82 13.46 13.96 14.24

(4) and the characteristic equation (40) should be rewritten by the new load ratios. As a result, k, will be

obtained instead of kg, and then oy o = % (%)2. Table 1 shows the boundary and load conditions and

Ramberg—Osgood parameters in the experimental and numerical studies. In this section, the dimensions of
parameters are represented by imperial units to match the results found from the literature.

In Tables 2 and 3, the results of the analytical approach (& = 20) are compared with those of the experimental
study [67], numerical analysis (ANSYS and FEM) [45] and funicular polygon method [23]. The results show
excellent agreement for both uniaxially loaded simply supported and shear loaded fully clamped plates. The
maximum differences are less than 4%, 2.6% and 2% for the experimental, FE (ANSYS) and funicular polygon
methods, respectively.

In the fourth study [16], a finite element technique is used in conjunction with the Stowell’s theory [2].
Thus, incompressible material is considered (the Poisson’s ratio is 0.5) during inelastic buckling. Here, the
analytical approach is applied for two states: initially, the incompressible material is used (v = 0.5) to compare
the analytical and numerical methods, and then, it is repeated using variable Poisson’s ratio (Eq. (1)) to compare
the results of the two situations. In Tables 4 and 5, the results are shown for the simply supported plates with
aspect ratios 1 and 1.5, respectively, which are under uniaxial and biaxial loads. Table 6 shows the results for
the fully clamped and simply supported square plates under uniaxial and pure shear loads, respectively. In
Tables 4 and 5, there is no difference between the analytical and numerical methods when the incompressible
material is supposed, likewise in Table 6, a negligible difference (< 0.5%) is seen.

In the last row of each section of Tables 4, 5 and 6, results of the second state are compared. These
comparisons show that due to the variation of the Poisson’s ratio, in both uniaxial and shear loadings, the
inelastic buckling loads decrease. As expected, increasing A makes a more slender plate and less plasticity
occurs prior to buckling. In Figs. 3, 4 and 5, the differences are obviously shown for the different aspect ratios,
thickness ratios, boundary and loading conditions. As seen in these figures, increasing the thickness ratio in
all cases, the difference increases up to 18.8%. This upper bound only depends on the elastic Poisson’s ratio

— 2 .. . . .
and can be analytically expressed as ! ? *eIn addition, increasing the plate aspect ratio, the slope of the

difference curve increases and reaches a constant value for ¢ > 1, ¢ > 4 and ¢ > 5 as seen in Figs. 3, 4 and
5, respectively.

The number of series terms (%) directly affects the accuracy of the GITT. Table 7 shows a sensitivity analysis
of the inelastic buckling coefficient (k) with ve = 0.33, HE = 100 and ¢ = 10. Considering this table, it
can be concluded that for small thickness ratios, k; converges with 1015 terms very well for all aspect ratios,
boundary conditions and loading combinations. For larger thickness ratios, 20 terms are usually necessary for
the convergence, although in TTS loading more terms may be used for more accuracy. However, 20 terms are

used for the considered cases in this study.
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Table 4 Comparison of critical stresses for SSSS square plates (¢ = b = 20 in.)

1 Uniaxial, (ax #0,0p=17= 0) (k;’ - 4)

£ (in.) 239053 1.76752 136678 1.12019  0.96449  0.858 0.77867
A 83664 113152 14.6329 17.8541 207363  23.31 25.6848
Ox.or(psi)  [16] 125000 115000 105000 95000 85000 75000 65,000

Present (@) v=05 125,000 115,000 105,000 95,000 85,000 75,000 65,000
(b) v(Eq.1) 124498 114,060 103,186 91,521 79,020 66,556 55,719

% x 100 0.4 0.82 1.8 3.8 7.6 12.7 16.7
ke Present v(Eq. 1) 0.944 1.58 2.39 3.16 3.68 3.92 3.98
2 Biaxial (6y = 0, 7 = 0) (k¢ =2)
t (in.) 526002  3.78569  2.77755  2.08258  1.60231  1.2998 1.125
A 3.8023 5.2831 7.2006 9.6035 12.4820  15.3870  17.7778
Ox.cr(psi)  [16] 125,000 115,000 105,000 95,000 85,000 75,000 65,000

Present (@) v=05 125,000 115,000 105,000 95,000 85,000 75,000 65,000
(b) v(Eq. 1) 125253 115,390 105,457 95,108 83,810 70,873 57,507

@=®) 100 0.2 0.35 0.44 0.11 14 5.8 13
ks Present v(Eq.1) 0196 0349 0592 095 141 1.82 1.97

3 Biaxial (o, = 0.50,, T = 0) (k¢ = 2.667)
¢ (in.) 242382 193707 158816  1.33364 1.15727 103884  0.94979
) 825144 103249 125932 149966 172821 192522  21.0573
Orer(psi)  [16] 125000 115000 105000 95000 85000 75000  65.000

Present (@) v=0.5 125,000 115,000 105,000 95,000 85,000 75,000 65,000
(@—b) (b) v(Eq. 1) 125,055 114,703 103,669 91,570 78,284 65,671 55,374
o % 100 0.04 0.26 1.3 3.8 8.6 14.2 17.4

ky Present v(Eq. 1) 0.923 1.325 1.78 2.23 2.53 2.64 2.66

Table 5 Comparison of critical stresses for SSSS plates with a = 30 in. and b = 20 in.

1 Uniaxial (ox # 0,0y =7 =0) (k¢ = 4.694)

t (in.) 245321 1.80884  1.39064 1.1271 0.95429  0.83518  0.75088
A 8.15258  11.0568  14.3819  17.7447  20.958 23.9469  26.6354
ox,er(psi)  [16] 125,000 115,000 105,000 95,000 85,000 75,000 65,000

Present (@) v=05 125,000 115,000 105,000 95,000 85,000 75,000 65,000
(b) v(Eq.1) 124,520 114,104 103,296 91,864 79,835 67,403 56,059

@) 100 039 0.9 1.7 34 6.5 113 15.9
ks Present (Eq.1) 0897 1511 2315 334 3799 4188 4309

2 Biaxial (Uy =0y, T = 0) (kﬁ = 2.778)
¢ (in.) 446327 321226 235683 176713 13506 110292  0.9546
2 4481 62261 8486 113178 147102 181337 209512
orer(psi)  [16] 125000 115000 105000 95000 85000  75.000  65.000

Present (@) v=05 125,000 115,000 105,000 95,000 85,000 75,000 65,000

(@—(b) (b) wv(Eq. 1) 125253 115,390 105457 95,108 83,810 70,873 57,507
OES 100 0.2 0.34 0.44 0.11 1.4 5.8 13
kx Present v(Eq. 1) 0272 0.485 0.823 1.320 1.965 2.525 2.735

3 Biaxial (cry =0.50y, 7 = 0) (kfc = 3.388)
t (in.) 2.35015 1.84729 1.48109 1.21632 1.03918 0.92558  0.8437
A 8.5101 10.8267 13.5036  16.443 19.2459  21.6081  23.7051
oy cr(psi)  [16] 125,000 115,000 105,000 95,000 85,000 75,000 65,000

Present (@) v=05 125,000 115,000 105,000 95,000 85,000 75,000 65,000
(@—b) (b) v(Eq. 1) 125,100 114,768 103,845 91,994 78,873 66,006 55,471
ORES 100 0.08 0.2 1.1 33 7.8 13.6 17.2

ky Present v(Eq.1) 0.982 1.458 2.052 2.695 3.165 3.339 3.377

3.2 Estimation of the inelastic buckling coefficient

In the proposed geometrical solution, the curves of k;, = f (E,q&,wx,wy,q,ve) and k;, = g

O.7E

and 7 show some interaction curves in which f and g are plotted with solid and dashed curves, respectively. In
each figure, %, Yy, ¥y, g and ve are constants and ¢ and A are variables to provide the interaction curves. In

addition, the intersections of ¢ = 1 curves and some A curves are highlighted which correspond to the shown

(E, Yu, ¥y, g, Ve, A, L) are intersected in the k; — & plane to find k; as well as the corresponding &. Figures 6
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Table 6 Comparison of critical stresses for square plates (¢ = b = 20 in.) with different boundary and loading conditions

1 CCCC-Uniaxial (0y # 0, 0y = 7 = 0) (k¢ = 10.078)
t (in.) 0.8 0.7 0.6 0.5
A 25 28.571 33.333 40
Ox.cr (pSi) [16] 97,549 91,234 81,712 66,414
Present (@) V=05 97,130 91,033 81,714 66,420
@) (b) v(Eq. 1) 94,216 86,932 75,525 57,528
& < 100 3.1 4.7 8.2 15.5
ke Present v(Eq. 1) 6.38 7.689 9.092 9.973
2 SSSS-Shear (ax =o0,=0,7 # 0) (kf = 9.34)
7 (in.) 0.7 0.6 0.5 0.4
A 28.571 33.333 40 50
Ter(psi) [16] 60,792 56,604 50,313 39,414
Present (@) v=05 60,760 56,565 50,251 39,335
@) (b v(Eq. 1) 57,132 52,690 45,578 33,991
o x 100 6.4 7.4 10.3 15.7
ks Present v(Eq. 1) 5.053 6.343 7.901 9.207
20
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Fig. 3 Difference of oy (v = 0.5) and oy (v < 0.5) for a SSSS square plate under uniaxial load

results in Table 3 and the second section of Table 6, respectively. The comparisons show the adequate accuracy
of the geometrical solution.

In addition to the geometrical solution, a semi-analytical approach may be supposed to simplify the cal-
culation of the inelastic buckling coefficient. The depicted figures in Appendix 1 show that the variation of f
with constant values of ve, ¥x, ¥y, ¢ and g may be estimated by linear or bilinear curves in the k; — & plane.
Equation (49) shows the general form of bilinear (or linear, if C = 0 and S| = S») description of k. If the
correlation coefficient of the linear approximation R < 0.999, then the bilinear curve is considered for the
estimation.

D

_ (49)
$25+C; & >E,
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Fig. 4 Difference of 7. (v = 0.5) and 7. (v < 0.5) for a SSSS square plate under pure shear load
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Fig. 5 Difference of oy (v = 0.5) and oy (v < 0.5) for a CCCC square plate under uniaxial stress
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Table 7 Convergence of kg with different geometrical, boundary and loading conditions
¢ A h  SSSS CCCC
Ve Wy Ve Yy Yx WYy Ve Yy Yo Wy Yo Yy Y Yy Ve WYy
-1 =05 —-1 05 1 —-05 1 05 -1 —-05 -1 05 1 —-05 1 0.5
1 10 5 0.9899 0.7417 0.6788 0.6715 1.0692 0.7768 0.7159 0.7335
10 0.9855 0.7415 0.6788 0.6717 1.0654 0.7762 0.7157 0.7334
15  0.9851 0.7414 0.6788 0.6717 1.0650 0.7761 0.7157 0.7334
20 0.9851 0.7414 0.6788 0.6717 1.0649 0.7761 0.7157 0.7334
25 0.9850 0.7414 0.6788 0.6717 1.0649 0.7761 0.7157 0.7334
30 0.9850 0.7414 0.6788 0.6717 1.0649 0.7761 0.7157 0.7334
100 5  55.087 12.0062 5.3478 2.4806 63.0118 18.1148 9.4169 5.7614
10 54.552 11.9748 5.3423 2.4798 62.6175 17.9889 9.3967 5.7577
15 54512 11.9732 5.342 2.4798 62.5731 17.9835 9.3958 5.7575
20 54.505 11.9730 5.342 2.4798 62.5625 17.9820 9.3956 5.7575
25 54.503 11.9729 5.342 2.4798 62.5586 17.9817 9.3955 5.7575
30 54.502 11.9729 5.342 2.4798 62.5574 17.9816 9.3955 5.7575
4 10 5 1.0799 0.6218 0.6629 0.6553 0.8936 0.7398 0.6727 0.7177
10 0.9270 0.6217 0.6552 0.6554 0.8894 0.7390 0.6549 0.6937
15 0.9266 0.6217 0.6551 0.6554 0.8894 0.7390 0.6548 0.6936
20 0.9265 0.6217 0.6551 0.6554 0.8893 0.7389 0.6548 0.6936
25 0.9265 0.6217 0.6551 0.6554 0.8893 0.7389 0.6548 0.6936
30 0.9265 0.6217 0.6551 0.6554 0.8893 0.7389 0.6548 0.6936
100 5  64.622 2.4320 4.5781 1.8840 21.6047 11.5113 4.6996 4.0538
10 44.575 2.4293 4.0996 1.8807 20.2025 11.4142 4.0029 3.6235
15 44.493 2.4290 4.0958 1.8804 20.1751 11.4095 4.0006 3.6222
20 44.482 2.4290 4.0951 1.8803 20.1699 11.4086 4.0002 3.6221
25 44479 2.4290 4.095 1.8803 20.1683 11.4083 4.0001 3.6221
30 44477 2.4290 4.095 1.8803 20.1677 11.4082 4.0001 3.6221
16 [+,
L .| ccec
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Fig. 6 Interaction curves for fully clamped plates with ¥y = 0 and ¥, =0
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where § = ﬁ The depicted figures in Appendix 2 show that S1, S and C with a constant value of ve, ¥y,
¥y, ¢ may be estimated by linear curves in the S| — Ing, S» — Ing and C — Ing planes, respectively. Thus,

S 511 812
1
S | = | s21 522 [flq], (50)
C cl ¢

where s11, S12, $21, $22, ¢1 and ¢y are numerically presented in Tables 8 and 9 for SSSS and CCCC plates,
respectively. The method of linear least squares (LLS) is applied in two stages on the results with ¢ =
1,1.5,2,4, ¢y, ¥y =—1,-05,0,0.5,1,9 = 2,3,5, 10, 15, 20 and ve = 0.33 to find Sy, S and C as well
as s;j(i, j =1,2) and ¢;(i =1,2). If Y, = ¥y = —1, then no shear buckling occurs in the plate, and this

case is naturally eliminated. In Tables 8 and 9, q is the smallest integer of ¢, so that R < 0.999. Therefore, if

q <C; (i.e., R > 0.999), then the linear approximation must be considered and vice versa.
Substituting Eq. (49) into Eq. (48), gth-order equations will be obtained (Eq. (51)) which can be solved

by a trial and error method and usual scientific calculators. It can be shown that each of them always has a
positive root which is the acceptable k;,

kI + A9 kg — A971S = 0; A<A, 1)
K — kI ¢ AT — AT, +C) =0, A > A,
where
12(1 — v2)22 7\ T
A — ( Vc) ° O—7E ’ q (52)
720 E \3
and
_q g1
A= S 5—_ . (53)
1- ¢

The semi-analytical approach can be summarized by a step-by-step procedure as follows:
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1. Selects;;(i, j =1,2),c;(i =1,2) and ¢ from Tables 8 and 9 according to the boundary conditions and
Ve, Yx, ¥y and ¢. In this study, the fundamental parameters (si . &ci) are obtained for SSSS and CCCC
plates with ve = 0.33, ¢ =1, 1.5,2&4 and ¢, ¥y, = —1, —0.5,0, 0.5&1 except ¥, = ¥y, = —1.Itis
evident that the fundamental parameters can also be found for the other states.

2. Ifg <q, then
2.1 using the first equation of Eqgs. (50), S is calculated.
2.2 using Eq. (52), A is calculated by the known parameters: —=— oo , 2, A, ve and g.
2.3 usmg the first equation of Eqs. (51), k; is calculated by trial and error.

3. Ifg zq, then
3.1 1, 8 and C are calculated using Eq. (50) and then é_ = ﬁ

3.2 Using Egs. (52) and (53), A and A are calculated, respectively, by the known parameters: %, Q, A,
Ve and g. ’

3.3 If A <A, then the first equation of Egs. (51) is solved and k; is calculated by trial and errors.
34 IfA > A, then the second equation of Egs. (51) is solved and k; is calculated by trial and error.

Note that if ¢ = 2 or ¢ = 3, Eq. (51) has explicit solutions.

The shown examples in Table 3 and the second section of Table 6 are resolved using the suggested step-by-
step procedure. Table 10 shows the obtained results for which the differences are less than 3%. In this table,
for CCCC and SSSS plates, £ > 0.8 and & > 0.6 are shown in Figs. 6 and 7, respectively. The semi-analytical
method is also applied for SSSS and CCCC plates with four aspect ratios and load ratios (TTS, CTS, TCS and
CCS) as shown in Tables 11 and 12, respectively. In these examples, the required Ramberg—Osgood parameters
are ¢ = 10 and ;= = 100. For each aspect ratio in SSSS and CCCC plates, a maximum of four thickness
ratios (A;, i = 1, 2 3 4) are selected provided that 1; = 5(j +1);j =1,2,3,... and:

A1 is the last A where & < 0.2, otherwise is the first A where 0.2 < & < 0.3.
A is the first A where 0.3 < & < 0.5.

A3 is the first A where 0.6 < & < 0.8.

Aq is the first A where 0.9 < &4 < 1.

Tables 11 and 12 show that the difference between two methods are less than 12% for all examples. For
each loading state, the maximum difference (M.D.) appears as follows:

e TTS loading: 10% <M.D.<12% where 0.1 < £ < 0.2 for all plates.

e CTS loading: 5% <M.D.<7% where 0.1 < & < 0.2 for SSSS plates and 5% <M.D.<8% where 0.1 < &
0.2 for CCCC plates.

e TCS loading: 7% <M.D.<11% where 0.1 < & < 0.3 for SSSS plates and 8% <M.D.<10% where 0.1
& < 0.2 for CCCC plates.

e CCS loading: 2% <M.D.<10% where 0.4 < £ < 0.7 for SSSS plates and 8% <M.D.<10% where 0.2
& < 0.3 for CCCC plates.

IA

A

IA

In addition, the results show that increasing the thickness ratio in each aspect ratio, the differences are
usually decreased. As a result, the semi-analytical method has better accuracy for A > 70 in TTS loading and
A > 20 in CTS, TCS and CCS loadings. Of course, if %, q, ¥y and vy are changed, the differences may
vary slowly.
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Table 9 Fundamental parameters for CCCC plates with ve = 0.33

Yy Yy q s s12 521 522 c1 ) q sn 512 21 522 cl e
=1 ¢=1.5
—1 -05 - - 131.36 - - - - - = 104.15 - - - -
1.459 1.147
0 20 — 37.53 6.014 3695 — 0378 - — 30.23 - — - -
0.803 6.475 0.649
0.5 9 — 1843 5967 1488 — 3379 10 — 15.04 4573 12.14 — 2.731
0.716 6.219 0.542 4.764
1 5 - 1143 5296 7.806 — 3456 7 — 9.339 3.632 6.833 -— 2.405
0.623 5.453 0.441 3.768
—-05 -1 - = 131.36 - - - - - = 89.15 - - - -
1.459 0.944
-05 - - 4757 - - - - - = 36.15 - — - -
0.945 0.697
0 10 — 2374 7.260 19.22 — 4269 11 - 18.58 4.885 16.62 — 1.835
0.855 7.567 0.623 5.141
0.5 5 - 1424 6472 9813 — 4253 6 — 11.23 4.359 8.882 — 2277
0.749 6.664 0.552 4.540
1 4 — 9.625 5239 6225 — 3310 5 -— 7572 3780 5013 -— 2.473
0.630 5.390 0.451 3.889
0 —1 20 — 37.53 6.014 36.947 — 0378 18 — 23.89 3941 2371 -— 0.082
0.803 6.475 0.531 4.248
—-05 10 — 2374 7.260 19.218 — 4269 11 — 16.56 4935 1342 — 2.958
0.855 7.567 0.577 5.145
0 5 — 15.11  7.113 10292 -— 4.640 6 — 11.86 4.657 9.308 — 2.474
0.825 7.323 0.588 4.849
0.5 4 - 10.30 6.172 6373 — 3849 4 — 8.503 5.076 5.237 — 3.196
0.751 6.349 0.617 5.220
1 3 - 7453  5.095 4300 — 3.091 3 -— 6.188 4.179 3.602 — 2.535
0.620 5.211 0.508 4275
0.5 —1 9 - 18.43 5967 1488 — 3379 8 — 11.31 3943 9.111 — 2.103
0.715 6.219 0.479 4.109
—-05 5 — 1424 6471 9814 — 4252 5 — 9.023 4339 6.113 - 2.809
0.749 6.663 0.505 4.468
0 4 — 10.30 6.172 6.373 — 3848 4 — 7316 4340 4492 — 2.760
0.751 6.348 0.528 4.462
0.5 3 - 7611 5723 4.097 — 3460 3 — 5984 4.088 3.342 — 2.576
0.704 5.850 0.503 4.177
1 3 - 5901 5.028 2739 — 3115 3 — 5.066 4.185 1.753 -— 3.162
0.636 5.134 0.543 4.252
1 -1 5 - 1140 5296 7.806 — 3456 5 — 6.702 3.348 4.520 -— 2.115
0.614 5.453 0.391 3.448
—-05 4 - 9.625 5239 6225 — 3310 4 — 5725 3.516 3.529 -— 2.156
0.630 5.390 0.427 3.617
0 3 - 7453  5.095 4300 — 3.091 3 -— 4900 3.684 2.661 — 2.207
0.620 5.211 0.450 3.767
0.5 3 - 5901 5.028 2739 — 3115 3 - 4271 3.696 1.932 -— 2.304
0.636 5.134 0.468 3.773
1 3 - 4810 4.785 1.670 — 308 3 -— 3.767 3433 1437 -— 2.274
0.624 4.878 0.451 3.499
$=2 ¢=4
-1 -05 - - 95.66 — - - - - = 8841 - — - -
1.044 0.948
0 - = 2775 - - - - - - 2545 - - - -
0.582 0.517
0.5 13 — 13.75 3.506 12.24 — 1.393 14 -— 12.57 3.089 11.12 -— 1.326
0.449 3.687 0.392 3.244
1 8§ - 8.494 2943 6.752 — 1.666 9 — 7.784 2578 6.186 — 1.518
0.366 3.064 0.318 2.683
—-05 -1 - = 77.12 - - - - - - 67.51 - — - —
0.798 0.664
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Table 9 continued

Yy Yy q s s12 521 522 c1 ) q sn S12 21 522 cl e
=1 ¢=1.5
-05 - - 3236 - - - - - = 2895 - — - -
0.587 0.519
0 12 — 17.00 4.366 15.14 — 1.728 14 -— 1540 3.797 13.57 — 1.676
0.553 4.594 0.473 3.987
0.5 7 — 10.34  3.920 8.160 — 2.107 8 — 9447 3374 7430 -— 1.931
0.494 4.082 0.420 3.511
1 5 - 6.999 3404 4.659 — 2257 6 — 6.443 2.680 4.894 — 1.504
0.405 3.501 0.346 2.786
0 —1 - = 20.50 - - - - - = 1776 - - - -
0.429 0.372
—-05 10 — 15.05 4675 12.10 — 2784 11 — 13.24  3.630 1152 -— 1.604
0.548 4.872 0.450 3.806
0 6 — 10.61 4.351 8310 — 2243 6 — 9.636 4.017 7.063 — 2.491
0.554 4.531 0.494 4.170
0.5 4 — 7.663 4.130 4.872 — 2708 4 — 6.990 3.799 4421 - 2.494
0.498 4.246 0.458 3.906
1 4 - 5.804 3968 2547 — 3.158 4 — 5249 3.193 2922 -— 2.254
0.472 4.059 0.394 3.275
0.5 —1 9 - 9.141 3.035 7.347 — 1.708 12 -— 8.055 2.680 5.335 — 2.596
0.364 3.163 0.279 2.775
—-05 6 -— 7.879 3238 6.113 — 1.720 6 — 7272 3.112 5394 -— 1.820
0.410 3.370 0.395 3.234
0 4 - 6.776  3.762 4.113 — 2575 4 — 6.230 3.860 3.704 — 2.469
0.457 3.864 0.473 3.968
0.5 3 - 5617 4322 3.035 — 2554 3 — 5.126 3.851 2770 -— 2.322
0.530 4.419 0.473 3.937
1 3 - 4533 3.626 2262 — 2236 3 — 4203 3.445 1.857 — 2.293
0.457 3.704 0.431 3.513
1 —1 5 - 5266 2.629 3.521 — 1.688 6 — 4336 1.697 3.396 — 0911
0.307 2.706 0.214 1.767
-05 4 - 4787 2.893 2924 — 1.824 5 — 4225 2.122 2680 — 1.483
0.351 2.975 0.257 2.180
0 3 — 4337 3.112 2379 — 1919 3 — 4,121 3.143 1.746 — 2.300
0.382 3.180 0.386 3.205
0.5 3 - 3978 3217 1821 — 2098 3 — 3789 3.562 1.538 -— 2.226
0.416 3.282 0.453 3.637
1 3 - 3.660 3937 0471 — 3.09 3 -— 3.359 3492 0967 -— 2.352
0.493 3.999 0.447 3.557

4 Conclusion

An analytical approach is presented to obtain the inelastic buckling coefficient of simply supported and fully
clamped rectangular plates subjected to combined biaxial (both compressive and tensile) and shear loads.
The deformation theory of plasticity, variations to all mechanical properties of plate, the generalized integral
transform technique (GITT) and eigenvalue solution are applied in the different sequences to obtain the inelastic
buckling coefficient of plate. The Ramberg—Osgood parameters are used to describe the nonlinear stress—strain
behavior of material, although the solution can be generalized for the other nonlinear behaviors. Then, applying
the method of linear least squares (LLS) on the obtained results, a semi-analytical solution is also proposed. An
approximate polynomial equation is obtained and solved by trial and error method to simplify the calculation
of the inelastic buckling coefficient. The proposed semi-analytical solution is simple and applicable for the
practical purposes. The calculated results show that good accuracy may be obtained for all loading cases, so
that the maximum difference (< 12%) is seen in tensile—tensile—shear loading state; nevertheless, increasing
thickness ratio of plate, the accuracy increases.
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Appendix 1: Linear/bilinear approximation of ks = f(£;¢, ¥, ¥, ¢, v.)

Supposing the boundary conditions of the plate and the specific values for 0 < ve < 0.5, 1 < ¢ < 4,
-1 =<9 =1, -1=<4v, <land2 < g < 20, the suggested algorithm (Fig. 2) is applied and several
examples may be solved to obtain the curves of k; — &. Figures 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 and
19 show the obtained curves for some examples in which the curves of SSSS and CCCC plates are drawn in
Figs. 8,9, 10, 11, 12 and 13 and Figs. 14, 15, 16, 17, 18 and 19, respectively. In these figures, ve = 0.33,
¢ =1,152,4, 4%, =—-05,1, %y, = —1,1 and g = 3, 10, 20. Initially, the method of linear least squares
(LLS) is used and the correlation coefficient (R) of linear estimation is obtained for each curve as shown in
Figs. 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18 and 19. If R > 0.999 the linear estimation is proposed; otherwise,
the bilinear estimation (Eq. (49)) is used to improve the approximation. In Figs. 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18 and 19, the linear/bilinear approximations are only plotted for ¢ = 1 (the dashed lines). Similarly
approximated curves can be evidently plotted for the other aspect ratios. Supposing constant values of ¢ and ¢
and increasing v/, and vy, the linear estimations are mostly converted to the bilinear estimations. If R = 0.999,

the boundary of conversion is found for which only the integer value of the corresponding ¢ is considered (5

in Tables 8, 9). For example, if ¢ = 4 and ¥, = v, = 1, then g= 5 for SSSS plates; thus, if ¢ = 3 org = 10,
then R = 0.9996 (linear estimation, Fig. 9) or R = 0.9964 (bilinear estimation, Fig. 11) respectively.
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Fig. 8 Linear approximations of the k; — & curves for all aspect ratios
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Fig. 9 Bilinear and linear approximations of the ks — & curves for ¢ = 1, 1.5, 2 and ¢ = 4 respectively
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Fig. 10 Linear approximations of the ks — & curves for all aspect ratios
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Fig. 11 Bilinear approximations of the k; — & curves for all aspect ratios
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Fig. 12 Linear approximations of the ks — & curves for all aspect ratios
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Fig. 13 Bilinear approximations of the k; — & curves for all aspect ratios
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Fig. 14 Linear approximations of the ks — & curves for all aspect ratios



1673

An explicit solution for inelastic buckling of rectangular plates subjected to combined biaxial and shear loads

i i i i i N\ i i i
i i i i i oA\ i i i i
i i ] ] i POW\ i i i
! : ! ! i i ! ! i i
e (W ...... AN\ - o L—
i i i i i i i h i i
i i i i P — R i i
i ' i \
: : : : Pl s AN ; :
! ! ! ! ! E] ! ‘\! _ I
T R L — L —— KR I ~J S doisia) B G | 1 ———
i i i i Pl E i ) i
i i i i i x i h ] i
i i ] ! { N i M) ) 4
i ; m ; s m P\ i
WU (NUSIE | SU—" S— . SO SEVHRU SN ), ., 3, TR B,
i P R A f o P P A\ i i
i i i i i I~ i i d i
i : i i i ] ! i \ i
; " _ E- : " A\
i i i i i «Q i i i) i
i i i i [ — i i i i
brmemmitizmmntmaaad i sneme s s e NN
2 i i i i i PN
i i i i i \
(] ! _ ! f ! "
I N N N B T
a w Ve Ll e S T ievoomens levosoni AN
Q o X &N i i i i i i
C >3 o | ! ! ! ! ! ! !
! ! ! i i i i i i i
n < n o0 n ~ n — n ]
< o N - =)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Fig. 15 Bilinear approximations of the k; — & curves for all aspect ratios
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Fig. 16 Linear approximations of the ks — & curves for all aspect ratios
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Fig. 17 Bilinear approximations of the k; — & curves for all aspect ratios
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Fig. 18 Linear approximations of the ks — & curves for all aspect ratios
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Fig. 19 Bilinear approximations of the k; — & curves for all aspect ratios

Appendix 2: Semi-logarithm estimation of S1, S2 and C

In Appendix 1 and Eq. (49), a bilinear approximation is described with slopes of both lines (S; and S>) and
intercept of the second line (C), while a linear approximation is only described with the slope of one line
(S1). Reapplying the method of linear least squares (LLS) on several examples, Sy, S and C can be linearly
estimated versus Ing. Figures 20-23 and 24-27 show the estimations for SSSS and CCCC plates, respectively.
If linear approximation is applied on the ks — & curves, then S is only estimated as shown in Figs. 20 and 24
(¥x = —0.5, ¥y = —1); if bilinear approximation is applied, then S (Figs. 21, 25), S (Figs. 22, 26) and C
(Figs. 23, 27) are estimated (y7y = v, = 1). Equation (54) shows the semi-logarithm estimation,

S] = 511 lnq + 512
SQ = szllnq + 522 (54)
C=cilng+c

where 511, s21 and ¢ are the slopes and 512, 522 and ¢; are the intercept of the Sy, S» and C curves, respectively.
For SSSS plates with ¢ = 1, ¥, = —0.5 and ¥y, = —1, Fig. 20 shows that s1; = —1.294 and 51, = 117.37.
Similarly, the parameters of Eq. (54) will be obtained for the different boundary and load conditions as shown
in Tables 8 and 9. The obtained correlation coefficients show that the semi-logarithm estimation is acceptable
in this step.
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Fig. 23 Linear approximation of C — Ing in Figs. 9, 11 and 13



A. Jahanpour, R. Kouhia

2.7

1678

i R SR e R e — — ﬁ e e —— e— 0
; © ; i i : ; ; ; ;
i el i i P i i H i i
i — i H i i i H i i
i ] i i i i i H i i
i - i ; i i i i i
Lo F B e [ IO U I, N
i S ; ; ; T I ; ; o
i g R i H i i -1 i i
- ; ; ; - - S
S : : : ¥ -y -
i ¥ i i i i R i i o
L ; ; ; ; Ak IR
B T S 3 [ SEIR N AR SRS X I
LW m : : m m ; I
SN N NN WU SO SO AU A SO B S -
i i : : . «~
i i ™ Do
w M 0 Pl -
JW . .M....... .@. _— “‘.¢ - m c
i i i i 0
i ; i i —
i i i i =l
i i i i =]
i i i i <
P n N}
H ; H | - -
i i i i <
i i i i —
; i ; i %
i i i i o0
i i i i =
! [ ! ! 59
; | I =
i i i i — =
i H i i H i i S
i i i i i H i i =
: : : : : : : : : _
i i h i : i m : i 2
i i i i ) i i o -
T I on N T i Sy I R I I =1 o
i Mo = i i i i i g
' a 4 , ' ' 1 ' 1 '
i ; QS ] : ) ; ; B=|
i i S L I i i H i m
i i Q o P i i i i
i i SIS i i i i ! i g,
i i - - i i i i i i © S
s &
n o n =) n o n o n o )
o0 o ~N ~ - - o =1 o =) © < 1 n n
- - - - - - - - Mm < o ~N
~ 151
“ £
—
<
[o\]
)
o=
=

24

2.1

1.8
Ing

15

12

0.9

0.6

Fig. 25 Linear approximation of S; — Ing in Figs. 15, 17 and 19



1679

An explicit solution for inelastic buckling of rectangular plates subjected to combined biaxial and shear loads

2.5

175

1.5

Ing

Fig. 26 Linear approximation of S — Ing in Figs. 15, 17 and 19

2.75

2.5

Ing

Fig. 27 Linear approximation of C — Ing in Figs. 15, 17 and 19



1680 A. Jahanpour, R. Kouhia

References

~ W N —

0NN W

10.

11.
12.
13.
14.
15.
16.
17.
18.
19.

20.

21.
22.
23.
24.

25.
26.

27.
28.

29.

30.
31.

32.

. Ilyushin, A.A.: The elastic—plastic stability of plates. NACA, Technical Memorandum, No. 1188 (1947)
. Stowell, E.Z.: A unified theory of plastic buckling. NACA, Technical Note, No. 1556 (1948)
. Bijlaard, P.P.: Theory and tests on the plastic stability of plates and shells. J. Aeronaut. Sci. 16(9), 529-541 (1949). https://

doi.org/10.2514/8.11851

. Handelman, G., Prager, W.: Plastic buckling of a rectangular plate under edge thrusts. NACA, Technical Note, No. 1530

(1948)

. Budiansky, B.: A reassessment of deformation theories of plasticity. J. Appl. Mech. 26(2), 259 (1959)

. Jones, R.M.: Deformation Theory of Plasticity. Bull Ridge Corporation (2009)

. Hutchinson, J.W.: Plastic buckling. Adv. Appl. Mech. 14, 67-144 (1974). https://doi.org/10.1016/S0065-2156(08)70031-0
. Guarracino, F.: Remarks on the stability analysis of some thin-walled structures in the elastic—plastic range. Thin-Walled

Struct. 138, 208-214 (2019). https://doi.org/10.1016/j.tws.2019.01.044

. Becque, J.: The application of plastic flow theory to inelastic column buckling. Int. J. Mech. Sci. 111-112, 116-124 (2016).

https://doi.org/10.1016/j.ijmecsci.2016.04.005

Hutchinson, J.W., Budiansky, B.: Analytical and numerical study of the effects of initial imperfections on the inelastic
buckling of a cruciform column. In: Budiansky, B. (ed.) Buckling of structures, pp. 98—105. Springer, Berlin (1976). https://
doi.org/10.1007/978-3-642-50992-6_10

Onat, E.T., Drucker, D.C.: Inelastic instability and incremental theories of plasticity. J. Aeronaut. Sci. 20(3), 181-186 (1953).
https://doi.org/10.2514/8.2585

Guarracino, F., Simonelli, M.G.: The torsional instability of a cruciform column in the plastic range: analysis of an old
conundrum. Thin-Walled Struct. 113, 273-286 (2017). https://doi.org/10.1016/j.tws.2016.11.007

Shamass, R., Alfano, G., Guarracino, F.: A numerical investigation into the plastic buckling paradox for circular cylindrical
shells under axial compression. Eng. Struct. 75, 429-447 (2014). https://doi.org/10.1016/j.engstruct.2014.05.050

Shamass, R., Alfano, G., Guarracino, F.: An investigation into the plastic buckling paradox for circular cylindrical shells
under non-proportional loading. Thin-Walled Struct. 95, 347-362 (2015). https://doi.org/10.1016/j.tws.2015.07.020
Shamass, R.: Plastic buckling paradox: an updated review. Front. Built Environ. (2020). https://doi.org/10.3389/fbuil.2020.
00035

Pifko, A., Isakson, G.: A finite-element method for the plastic buckling analysis of plates. AIAA J. 7(10), 1950-1957 (1969).
https://doi.org/10.2514/3.5487

Bradford, M.A., Azhari, M.: Inelastic local buckling of plates and plate assemblies using bubble functions. Eng. Struct. 17(2),
95-103 (1995). https://doi.org/10.1016/0141-0296(95)92640-T

Ibearugbulem, O., Eziefula, U., Onwuka, D.: Inelastic stability analysis of uniaxially compressed flat rectangular isotropic
CCSS plate. Int. J. Appl. Mech. Eng. 20(3), 637-645 (2015). https://doi.org/10.1515/ijame-2015-0042

Ibearugbulem, O., Onwuka, D., Eziefula, U.: Inelastic buckling analysis of axially compressed thin CCCC plates using
Taylor—-Maclaurin displacement function. Acad. Res. Int. 4(6), 594 (2013)

Onwuka, D., Eziefula, U., Ibearugbulem, O.: Inelastic buckling of rectangular panel with a simply supported edge and three
clamped edges under uniaxial loads. Int. J. Appl. Sci. Eng. 14(1), 39-48 (2016). https://doi.org/10.6703/IJASE.2016.14(1).
39

Eziefula, U., Onwuka, D., Ibearugbulem, O.: Work principle in inelastic buckling analysis of axially compressed rectangular
plates. World J. Eng. (2017). https://doi.org/10.1108/WJE-12-2016-0171

Shrivastava, S.C.: Inelastic buckling of plates including shear effects. Int. J. Solids Struct. 15(7), 567-575 (1979). https://
doi.org/10.1016/0020-7683(79)90084-2

Guran, A., Rimrott, F.P.J.: Application of funicular polygon method to inelastic buckling analysis of plates. Comput. Methods
Appl. Mech. Eng. 76(2), 157-170 (1989). https://doi.org/10.1016/0045-7825(89)90093-5

Lau, S.C.W., Hancock, G.J.: Inelastic buckling analyses of beams, columns and plates using the spline finite strip method.
Thin-Walled Struct. 7(3), 213-238 (1989). https://doi.org/10.1016/0263-8231(89)90026-8

Rio, G.: Inelastic buckling of plate. Arch. Mech. 44(1), 105-116 (1992)

Azhari, M., Bradford, M.A.: Inelastic initial local buckling of plates with and without residual stresses. Eng. Struct. 15(1),
31-39 (1993). https://doi.org/10.1016/0141-0296(93)90014-U

Wang, C.M., Xiang, Y., Chakrabarty, J.: Elastic/plastic buckling of thick plates. Int. J. Solids Struct. 38(48), 8617-8640
(2001). https://doi.org/10.1016/S0020-7683(01)00144-5

Wang, C.M., Aung, T.M.: Plastic buckling analysis of thick plates using p-Ritz method. Int.J. Solids Struct. 44(18), 6239-6255
(2007). https://doi.org/10.1016/j.ijsolstr.2007.02.026

Lotfi, S., Azhari, M., Heidarpour, A.: Inelastic initial local buckling of skew thin thickness-tapered plates with and without
intermediate supports using the isoparametric spline finite strip method. Thin-Walled Struct. 49(11), 1475-1482 (2011).
https://doi.org/10.1016/j.tws.2011.07.013

Zhang, W., Wang, X.: Elastoplastic buckling analysis of thick rectangular plates by using the differential quadrature method.
Comput. Math. Appl. 61(1), 44-61 (2011). https://doi.org/10.1016/j.camwa.2010.10.028

Kasaeian, S., Azhari, M., Heidarpour, A., Hajiannia, A.: Inelastic local buckling of curved plates with or without thickness-
tapered sections using finite strip method. Int. J. Steel Struct. 12(3), 427-442 (2012). https://doi.org/10.1007/s13296-012-3
011-9

Jaberzadeh, E., Azhari, M., Boroomand, B.: Inelastic buckling of skew and rhombic thin thickness-tapered plates with and
without intermediate supports using the element-free Galerkin method. Appl. Math. Model. 37(10), 6838-6854 (2013).
https://doi.org/10.1016/j.apm.2013.01.055


https://doi.org/10.2514/8.11851
https://doi.org/10.1016/S0065-2156(08)70031-0
https://doi.org/10.1016/j.tws.2019.01.044
https://doi.org/10.1016/j.ijmecsci.2016.04.005
https://doi.org/10.1007/978-3-642-50992-6_10
https://doi.org/10.2514/8.2585
https://doi.org/10.1016/j.tws.2016.11.007
https://doi.org/10.1016/j.engstruct.2014.05.050
https://doi.org/10.1016/j.tws.2015.07.020
https://doi.org/10.3389/fbuil.2020.00035
https://doi.org/10.2514/3.5487
https://doi.org/10.1016/0141-0296(95)92640-T
https://doi.org/10.1515/ijame-2015-0042
https://doi.org/10.6703/IJASE.2016.14(1).39
https://doi.org/10.1108/WJE-12-2016-0171
https://doi.org/10.1016/0020-7683(79)90084-2
https://doi.org/10.1016/0045-7825(89)90093-5
https://doi.org/10.1016/0263-8231(89)90026-8
https://doi.org/10.1016/0141-0296(93)90014-U
https://doi.org/10.1016/S0020-7683(01)00144-5
https://doi.org/10.1016/j.ijsolstr.2007.02.026
https://doi.org/10.1016/j.tws.2011.07.013
https://doi.org/10.1016/j.camwa.2010.10.028
https://doi.org/10.1007/s13296-012-3011-9
https://doi.org/10.1016/j.apm.2013.01.055

An explicit solution for inelastic buckling of rectangular plates subjected to combined biaxial and shear loads 1681

33.

34.

35.

36.
37.
38.
39.
40.
41.
42.
43.
44,
45,
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.

58.

59.
60.
61.
62.

63.
64.

Kadkhodayan, M., Maarefdoust, M.: Elastic/plastic buckling of isotropic thin plates subjected to uniform and linearly varying
in-plane loading using incremental and deformation theories. Aerosp. Sci. Technol. 32(1), 66-83 (2014). https://doi.org/10.
1016/j.ast.2013.12.003

Maarefdoust, M., Kadkhodayan, M.: Elastoplastic buckling analysis of rectangular thick plates by incremental and defor-
mation theories of plasticity. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 229(7), 1280-1299 (2015). https://doi.org/10.11
77/0954410014550047

Maarefdoust, M., Kadkhodayan, M.: Elastic/plastic buckling analysis of skew plates under in-plane shear loading with
incremental and deformation theories of plasticity by GDQ method. J. Braz. So. Mech. Sci. Eng. 37(2), 761-776 (2015).
https://doi.org/10.1007/s40430-014-0203-6

Gerard, G., Wildhorn, S.: A study of Poisson’s ratio in the yield region. NACA, Technical Note, No. 2561 (1952)
Ramberg, W., Osgood, W.: Description of stress—strain curves by three parameters. NACA, Technical Note, No. 902 (1943)
Durban, D.: Plastic buckling of rectangular plates under biaxial loading. In: Elishakoft, L. (ed.) Studies in Applied Mechanics,
pp. 183-194. Elsevier, Amsterdam (1988). https://doi.org/10.1016/B978-0-444-70474-0.50013-6

Ore, E., Durban, D.: Elastoplastic buckling of annular plates in pure shear. J. Appl. Mech. 56(3), 644-651 (1989). https://
doi.org/10.1115/1.3176141

Durban, D., Zuckerman, Z.: Elastoplastic buckling of rectangular plates in biaxial compression/tension. Int. J. Mech. Sci.
41(7), 751-765 (1999). https://doi.org/10.1016/S0020-7403(98)00055-1

Betten, J., Shin, C.H.: Elastic—plastic buckling analysis of rectangular plates subjected to biaxial loads. Forsch. Ingenieurwes.
65(9), 273-278 (2000). https://doi.org/10.1007/s100109900023

Kosel, F., Bremec, B.: Elastoplastic buckling of circular annular plates under uniform in-plane loading. Thin-Walled Struct.
42(1), 101-117 (2004). https://doi.org/10.1016/S0263-8231(03)00126-5

Wang, X., Huang, J.: Elastoplastic buckling analyses of rectangular plates under biaxial loadings by the differential qudrature
method. Thin-Walled Struct. 47(1), 14-20 (2009). https://doi.org/10.1016/j.tws.2008.04.006

Ahmed, M.Z., DaDeppo, D.A.: Stress distribution and buckling stress of plates including edge contact-frictional force effects.
Int. J. Solids Struct. 31(14), 1967-1979 (1994). https://doi.org/10.1016/0020-7683(94)90202-X

Gjelsvik, A., Lin, G.: Plastic buckling of plates with edge frictional shear effects. J. Eng. Mech. 113(7), 953-964 (1987).
https://doi.org/10.1061/(ASCE)0733-9399(1987)113:7(953)

Yao, Z., Rasmussen, K.J.R.: Inelastic local buckling behaviour of perforated plates and sections under compression. Thin-
Walled Struct. 61, 49-70 (2012). https://doi.org/10.1016/j.tws.2012.07.002

Azhari, M., Saadatpour, M.M., Bradford, M.A.: Inelastic local buckling of flat, thin-walled structures containing thickness-
tapered plates. Thin-Walled Struct. 42(3), 351-368 (2004). https://doi.org/10.1016/j.tws.2003.09.002

Samadi Dinani, A., Azhari, M., Sarrami Foroushani, S.: Elastic and inelastic buckling analysis of thick isotropic and laminated
plates using finite layer method. Civ. Eng. Res. J. (2017). https://doi.org/10.19080/CERJ.2017.02.555593

Alinia, M.M., Gheitasi, A., Erfani, S.: Plastic shear buckling of unstiffened stocky plates. J. Constr. Steel Res. 65(8),
1631-1643 (2009). https://doi.org/10.1016/j.jcsr.2009.04.001

Alinia, M.M., Soltanieh, G., Amani, M.: Inelastic buckling behavior of stocky plates under interactive shear and in-plane
bending. Thin-Walled Struct. 55, 76-84 (2012). https://doi.org/10.1016/j.tws.2012.03.007

Smith, S.T., Bradford, M., Oehlers, D.J.: Inelastic buckling of rectangular steel plates using a Rayleigh—Ritz method. Int. J.
Struct. Stab. Dyn. 3(04), 503-521 (2003). https://doi.org/10.1142/S021945540300102

Uenoya, M., Redwood, R.G.: Elasto-plastic shear buckling of square plates with circular holes. Comput. Struct. 8(2), 291-300
(1978). https://doi.org/10.1016/0045-7949(78)90036-6

Wang, C., Aung, T.M., Kitipornchai, S., Xiang, Y.: Plastic-buckling of rectangular plates under combined uniaxial and shear
stresses. J. Eng. Mech. 135(8), 892-895 (2009). https://doi.org/10.1061/(ASCE)0733-9399(2009)135:8(892)

Green, A.E.: Double Fourier series and boundary value problems. Math. Proc. Camb. Philos. Soc. 40(3), 222-228 (1944).
https://doi.org/10.1017/S0305004100018375

Kennedy, J.B., Prabhakara, M.K.: Buckling of simply supported orthotropic skew plates. Aeronaut. Q.29(3), 161-174 (1978).
https://doi.org/10.1017/S0001925900008428

Li, R., Zhong, Y., Tian, B., Du, J.: Exact bending solutions of orthotropic rectangular cantilever thin plates subjected to
arbitrary loads. Int. Appl. Mech. 47(1), 107-119 (2011). https://doi.org/10.1007/s10778-011-0448-z

Li, R., Zhong, Y., Tian, B., Liu, Y.: On the finite integral transform method for exact bending solutions of fully clamped
orthotropic rectangular thin plates. Appl. Math. Lett. 22(12), 1821-1827 (2009). https://doi.org/10.1016/j.am1.2009.07.003
Tian, B., Li, R., Zhong, Y.: Integral transform solutions to the bending problems of moderately thick rectangular plates with
all edges free resting on elastic foundations. Appl. Math. Model 39(1), 128-136 (2015). https://doi.org/10.1016/j.apm.201
4.05.012

Tian, B., Zhong, Y., Li, R.: Analytic bending solutions of rectangular cantilever thin plates. Arch. Civ. Mech. Eng. 11(4),
1043-1052 (2011). https://doi.org/10.1016/S1644-9665(12)60094-6

Zhang, S., Xu, L.: Bending of rectangular orthotropic thin plates with rotationally restrained edges: a finite integral transform
solution. Appl. Math. Model. 46, 48—62 (2017). https://doi.org/10.1016/j.apm.2017.01.053

Guerrero, J.S.P., Cotta, R.M.: Integral transform solution for the lid-driven cavity flow problem in stream function-only
formulation. Int. J. Numer. Methods Fluids 15(4), 399-409 (1992). https://doi.org/10.1002/fld.1650150403

An, C, Gu, J.-]., Su, J.: Integral transform solution of bending problem of clamped orthotropic rectangular plates. In:
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M &
C). 2011. Rio de Janeiro, RJ, Brazil: American Nuclear Society (ANS).

Ullah, S., Zhong, Y., Zhang, J.: Analytical buckling solutions of rectangular thin plates by straightforward generalized integral
transform method. Int. J. Mech. Sci. 152, 535-544 (2019). https://doi.org/10.1016/j.ijmecsci.2019.01.025

Zhang, J., Zhou, C., Ullah, S., Zhong, Y., Li, R.: Two-dimensional generalized finite integral transform method for new
analytic bending solutions of orthotropic rectangular thin foundation plates. Appl. Math. Lett. 92, 8-14 (2019). https://doi.
org/10.1016/j.aml1.2018.12.019


https://doi.org/10.1016/j.ast.2013.12.003
https://doi.org/10.1177/0954410014550047
https://doi.org/10.1007/s40430-014-0203-6
https://doi.org/10.1016/B978-0-444-70474-0.50013-6
https://doi.org/10.1115/1.3176141
https://doi.org/10.1016/S0020-7403(98)00055-1
https://doi.org/10.1007/s100109900023
https://doi.org/10.1016/S0263-8231(03)00126-5
https://doi.org/10.1016/j.tws.2008.04.006
https://doi.org/10.1016/0020-7683(94)90202-X
https://doi.org/10.1061/(ASCE)0733-9399(1987)113:7(953)
https://doi.org/10.1016/j.tws.2012.07.002
https://doi.org/10.1016/j.tws.2003.09.002
https://doi.org/10.19080/CERJ.2017.02.555593
https://doi.org/10.1016/j.jcsr.2009.04.001
https://doi.org/10.1016/j.tws.2012.03.007
https://doi.org/10.1142/S021945540300102
https://doi.org/10.1016/0045-7949(78)90036-6
https://doi.org/10.1061/(ASCE)0733-9399(2009)135:8(892)
https://doi.org/10.1017/S0305004100018375
https://doi.org/10.1017/S0001925900008428
https://doi.org/10.1007/s10778-011-0448-z
https://doi.org/10.1016/j.aml.2009.07.003
https://doi.org/10.1016/j.apm.2014.05.012
https://doi.org/10.1016/S1644-9665(12)60094-6
https://doi.org/10.1016/j.apm.2017.01.053
https://doi.org/10.1002/fld.1650150403
https://doi.org/10.1016/j.ijmecsci.2019.01.025
https://doi.org/10.1016/j.aml.2018.12.019

1682 A. Jahanpour, R. Kouhia

65. He, Y., An, C., Su, J.: Generalized integral transform solution for free vibration of orthotropic rectangular plates with free
edges. J. Braz. Soc. Mech. Sci. Eng. 42(4), 183 (2020). https://doi.org/10.1007/s40430-020-2271-0

66. Python Language Reference: Python Software Foundation. http://www.python.org (2019)

67. Pride, R., Heimerl, G.: Plastic buckling of simply supported compressed plates. NACA, Technical Note, No. 1817 (1948)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.


https://doi.org/10.1007/s40430-020-2271-0
http://www.python.org

	An explicit solution for inelastic buckling of rectangular plates subjected to combined biaxial and shear loads
	Abstract
	References




