
Acta Mech 232, 1273–1283 (2021)
https://doi.org/10.1007/s00707-020-02915-0

ORIGINAL PAPER

Bhagwan Singh · Santwana Mukhopadhyay

Galerkin-type solution for the Moore–Gibson–Thompson
thermoelasticity theory

Received: 9 October 2020 / Revised: 18 November 2020 / Accepted: 6 December 2020 / Published online: 28 January 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021

Abstract It is prominent that the Galerkin-type representation plays a dominant role in probing various
challenges of mathematical physics, continuum mechanics and occupies an important place in the field of
partial differential equations (PDEs). Thus, the contemporary analysis of different boundary value problems
(BVPs) in thermoelasticity theory commonly begins by analyzing the Galerkin-type representation of the field
equations in terms of elementary functions (harmonic, biharmonic, andmetaharmonic, etc). This work is aimed
at formulating the representation of a Galerkin-type solution by means of elementary functions for the recently
developed Moore–Gibson–Thompson (MGT) thermoelasticity theory. The MGT theory is a generalized form
of the Lord–Shulman (LS)model as well as of theGreen–Naghdi (GN) thermoelasticmodel. Here, we establish
a theorem and derive the Galerkin-type solution for the basic governing equations under this theory. Later, the
Galerkin representation of a system of equations for steady oscillations is derived. Based on this representation,
we finally establish the general solution (GS) for the system of homogeneous equations of stable oscillation,
neglecting the extrinsic body force and extrinsic heat supply.

1 Introduction

During the last few decades, various fields of science (geophysics, plasma physics, and acoustics) received
significant attention for thermoelastic theory due to the development of pulsed lasers, rapid burst nuclear
reactors, etc., which can supply heat pulses at a very instant time. The thermoelasticity theory is an extension
of classical elasticity, which reveals the effect of thermal disturbances and mechanical effects on an elastic
body. The uncoupled thermoelasticity theory suffers from two defects for an elastic body. First of all, this
theory suffers from a physically unacceptable result related to infinite speed for thermal signals because of
its heat equation having parabolic characteristics within the continuum field, which contradicts the theory of
relativity. Secondly, it does not predict the temperature effect of the mechanical state of the elastic substance.
For certain times, the solutions which are derived from the classical theory, differ slightly from those derived
from the theory of coupled thermoelasticity. Biot [1] introduced a classical coupled thermoelasticity theory
(CTE) based on Fourier’s law which leads to a diffusion-type heat conduction model. This theory shows
the mutual presence of the effect of temperature and strain on an elastic body. This theory suggests a finite
speed for predominantly elastic disturbances but predicts an infinite speed for mostly thermal disturbances,
which are coupled together. This paradox has aroused immense interest from the mathematical and technical
point of view by the researchers, which suggested the classical theory needed an appropriate modification.
The generalized Fourier’s law of heat conduction came into existence due to the same. To prevail over the
apparent drawback in the classical theory, many generalized thermoelasticity theories have been advocated by
alternative formulations of the theory surpassing the classical thermoelasticity theory.
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The generalized thermoelasticity theories are considered to be more efficient than conventional
thermoelasticity theories in the treatment of practical problems specially involving short time intervals and
high heat fluxes because of their experimental evidence supporting the finite speed of propagation of heat
waves. The first significant contribution to this new era of thermoelasticity theories was an observation of
Lord and Shulman (LS) [2]. They employed a new theory dependent on the CV (Cattaneo–Vernotte) heat
conduction model [3–5] in which Fourier’s thermal conductivity law is modified by incorporating one new
relaxation parameter along with the derivative of heat flux with respect to time. This modified theory was an
attempt to remove the drawback of the Biot theory [1]. Later, some generalized thermoelasticity theories have
been proposed without any alteration in Fourier’s law. For example, Green and Lindsay (GL) [6] advocated
an alternative theory involving the temperature rate term and two thermal relaxation time parameters in the
constitutive relations. This theory is labeled as temperature-rate-dependent thermoelasticity theory (TRDTE)
or GL theory. The linearized version of GL theory does not oppose the classical Fourier’s law, whereas the
stress–strain–temperature relation and the classical energy equation are modified. Due to the involvement of
temperature rate terms in the constitutive relations, the heat conduction equation and the equation of motion
under this theory are of hyperbolic type differential equations, and the propagation speed of a heat wave is pre-
dicted to be finite (see Refs. [6, 7]). The LS and GL models are found to have extensive uses in wave reflection
problems for thermoelastic solids [8–10]. However, in some cases, GL theory fails to explain the existence
of a discontinuity in the displacement field [11–15], which refutes the continuity hypothesis in continuum
mechanics (see Refs. [7–15]). In order to overcome this jump discontinuity in the displacement field in the GL
model, Yu et al. [16] have made an attempt and modified the Green and Lindsay (GL) [6] theory with the aid
of the strain rate term in the basic equations and developed a new model of thermoelasticity theoretically. This
modified Green–Lindsay (MGL) theory is also known as strain and temperature-rate-dependent thermoelas-
ticity theory. Furthermore, by introducing thermal displacement in Fourier’s law as a new variable, Green and
Naghdi (GN) [17–19] made an alternative advancement in the thermoelasticity theory. Their theory is divided
into three different parts which are subsequently termed as thermoelasticity theories of type GN-I, GN-II, and
GN-III. For each of these theories, the constitutive assumptions for the heat flux vector are different. Here,
we also refer to the dual-phase-lag (DPL) thermoelasticity theory introduced by Chandrasekharaiah [7]. This
theory is based on a different heat conduction equation, called a dual-phase-lag model given by Tzou [20].

In recent years, the area of fluid mechanics [21] has gained a lot of interest for the Moore–Gibson–Thomp-
son (MGT) heat conduction equation, which is considered by the adjoining energy equation to the equation
−→q + τ

∂
−→q
∂t � −

(
K

−→∇ Θ + K ∗−→∇ ν
)
, where −→q , τ, Θ , and ν are heat flux, relaxation time parameter, tem-

perature, and thermal displacement, respectively. Here, K denotes thermal conductivity and K ∗ is termed as
thermal conductivity rate. In 2019, Quintanilla [22] has derived the constitutive equations for coupled ther-
moelasticity theory based on this MGT heat conduction equation and developed an alternative theory called
as the Moore–Gibson–Thompson (MGT) thermoelasticity theory. The uniqueness of the solution and expo-
nential stability of this generalized thermoelasticity theory are also discussed by Quintanilla [22]. The MGT
theory can be seen as a fusion of both LS [2] and GN-III [19] thermoelasticity theories. Under the MGT
thermoelasticity theory, Pellicer and Quintanilla [23] proved the uniqueness and instability of some thermo-
mechanical problems. The domain of influence results for this MGT theory are recently discussed by Jangid
and Mukhopadhyay [24, 25]. Further, the theoretical aspects and other practical applicabilities of the MGT
thermoelasticity theory can be found in Refs. [26–28].

When studied to some problems of continuum mechanics, we obtain the solutions of BVPs in the con-
text of the convolution type integral by the potential method. Solving for various boundary value problems
in mathematical physics and continuum mechanics, the potential method is a powerful and refined tool. A
theoretical tool of this method is for proving the existence and construction of solutions for BVPs, and a prac-
tical tool is to construct analytical and numerical solutions. The potential method’s significant utilization is to
reduce three-dimensional (3D) boundary value problems to a lower-dimensional boundary integral equation
of Fredholm’s type. For specific domains, some conventional methods gave exact elaboration of a numerical
solution but fraught with few difficulties for an arbitrary domain. The fundamental solutions gained a special
place in the partial differential equation for the investigation of various BVPs. In the studies of elasticity and
thermoelasticity theories, the contemporary treatment for several BVPs normally involves the construction
of the Galerkin-type representation [29] of field equations by means of various elementary functions like
harmonic, metaharmonic, and biharmonic, etc. These are the foundations to obtain the fundamental solution
of the theory. These elementary functions are also known as the solution of Helmholtz’s equation. On the
basis of the classical theory of elasticity, some representations of solution-related dynamical problems can
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be found in [30–33] and the references therein. In the context of the isothermal theory, the Boussinesq–Pap-
kovitch–Neuber (BPN) [31], Green–Lamé (GL) [32], and Cauchy–Kovalevski–Somigliana (CKS) [33] types
solutions for materials with voids were elaborated by Chandrasekharaiah [34, 35]. Ciarletta [36] discussed a
Galerkin-type representation of the solution for the linear theory of micropolar thermoelasticity ([37–40]) by
considering the GN-II theory. For a Kelvin–Voigt material with void, Svanadze [41] established the represen-
tation of the solution in case of the linear theory of thermo-viscoelasticity. Scalia and Svanadze [42] presented
the Galerkin-type representation of thermoelasticity theory with micro-temperatures. Iacovache [43] presented
the Galerkin-type solution of the equations in the field of elastokinetics. Svanadze and de Boer [44] established
the Galerkin-type representation for an incompressible solid skeleton in the linear theory of the liquid-saturated
porous medium. Ciarletta [45] derived fundamental solutions and general solutions for the dynamical theory of
the binary mixture of an elastic solid. The Galerkin-type solution of the equation for the three-phase-lag (TPL)
thermoelasticity theory was established by Mukhopadhyay et al. [46]. Recently, Gupta and Mukhopadhyay
[47] and Singh et al. [48] derived the Galerkin-type representation and fundamental solutions for the modified
Green–Lindsay (MGL) thermoelasticity theory [16].

The present work is aimed at deriving the Galerkin-type representation of the solution in the context of
the recently developed MGT thermoelasticity theory. The work is presented as follows. For isotropic elastic
material, the field equations for theMoore–Gibson–Thompson thermoelasticity theory [22] are formed in Sect.
2. We derive the Galerkin-type solution of basic governing equations in terms of the elementary functions
in Sect. 3. In Sect. 4, we form a theorem representing the Galerkin-type solution of equations for the stable
oscillations. Finally, we develop the general solution of the system of equations in the case of stable oscillations
in terms of elementary functions in Sect. 5.

2 Governing equations

We consider an arbitrary point x � (x1, x2, x3) in 3D Euclidean space Ξ3. With the time variable t, we
examine an isotropic elastic material that occupies the region W. By following Quintanilla [22], the field
equations for the Moore–Gibson–Thompson thermoelasticity theory in the presence of body force and heat
source are considered in the form

μ(�u) − α grad Θ + (λ + μ){grad div u} + ρ′ f � ρ′ü, (1)

K�Θ̇ + K ∗�Θ − αΘ0{div ü + τ div
...
u} − ρ′cE

{
Θ̈ + τ

...
Θ
} � −

(
1 + τ

∂

∂t

)
r, (2)

where u � (u1, u2, u3), Θ , f , and r � ρ′ẇ are the displacement vector, temperature measured from the
constant reference temperature Θ0(> 0), body force vector, and heat source, respectively. ω is an external rate
of heat supply.� is the Laplacian operator, and α � (3λ + 2μ)α′ is the thermoelasticity constant with α′ being
the coefficient of linear thermal expansion. λ, μ, K, and K ∗ are constitutive coefficients. Here, cE represents
the specific heat capacity, ρ′(>0) is the reference mass density, and τ denotes the relaxation time parameter.
The superposed dot represents the derivative with respect to time.

We introduce the following notations:

n1 �
(

λ + μ

ρ′

)
, n2 � μ

ρ′ , n3 � α

ρ′ ,

g1(�, T ) � n2� − T 2, g2(�, T ) � (
K T + K ∗)� − ρ′cE�1,

T k � ∂k

∂tk
for k � 1, 2, 3,

�1 � (
T 2 + τ T 3).

Therefore, Eqs. (1) and (2) take the following form:

n1 grad div u + g1u − n3 grad Θ � − f , (3)

g2Θ − αΘ0�1div u � −(1 + τT )r. (4)
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3 Galerkin-type solution of the equations of motion

We use the matrix differential operators as:

�[Dx, T ] �
[

�(1) �(2)

�(3) �(4)

]

4×4
,

�(1)(Dx, T ) �
[
�
(1)
k j

]
3×3

, �(2) �
[
�
(2)
k1

]
3×1

, �(3) �
[
�
(3)
1 j

]
1×3

, �(4) � [�44]1×1,

�
(1)
k j (Dx, T ) � g1δk j + n1

∂2

∂xk∂x j
,

�
(2)
k1 (Dx, T ) � −n3

∂

∂xk
,

�
(3)
1 j (Dx, T ) � −(αΘ0�1)

∂

∂x j
,

�44(Dx, T ) � g2 and Dx �
{

∂

∂x1
,

∂

∂x2,
,

∂

∂x3

}
, (5)

where δk j represents the Kronecker delta for k, j � 1, 2, 3.
After implementing the above operators, we write Eqs. (3) and (4) as:

�(Dx, T )U(x, t) � F(x, t), (6)

with U � (u, Θ), F� [− f , −(1 + τ T ) r ] , where (x, t) ∈ W × (0,∞).

Now, we set the system of equations as follows:

g1u + n1 grad div u − αΘ0�1grad Θ �F′, (7)

g2Θ − n3 div u �F0, (8)

where F′ � (F ′
1, F

′
2, F

′
3) and F0 are the vector component and scalar function, respectively, on the domain

W × (0,∞).

Using the matrix operator as defined above, Eqs. (7) and (8) can be reformulated as:

Γ T (Dx, T )U(x, T ) � M(x, t), (9)

where Γ T represents the transpose of the matrix � and M=
(
F′, F0

)
.

Implementing the operator “divergence” to Eq. (7) yields

Ω1 div u − αΘ0�1�Θ � div F′, (10)

where Ω1 �
(

λ+2μ
ρ′
)
� − T 2.

Then the above Eqs. (8) and (10) take the matrix form as

Ω(�, T )V � F̃, (11)

where

V � (div u, Θ), F̃ � ( f1, f2) � (
div F′, F0

)
, with Ω(�, T ) � [

Ωk j (�, T )
]
2×2

�
[

Ω1 − αΘ0�1�
−n3 g2

]

2×2
.

Now system (11) yields

�1(�, T )V � Φ, (12)
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where

Φ � (Φ1, Φ2), Φ j �
2∑

k�1

Ω∗
k j fk, �1(�, T ) � det Ω(�, T ), (13)

for j � 1, 2, and Ω∗
k j are the co-factors of the elements of the matrix Ω .

With the use of operator �1(�, T ) to Eq. (7), and utilizing Eq. (12), we find

�1(�, T )g1u � Φ
′
, (14)

where

Φ
′ � �1F′ − grad(n1Φ1 − αΘ0�1Φ2). (15)

Next, in view of Eqs. (12) and (14), we obtain

�(�, T )U(x, T ) � Φ̃, (16)

where Φ̃ �
(
Φ

′
, Φ2

)
and

�(�, T ) � [
�k j (�, T )

]
4×4,

�yy � �1(�, T )g1, for y � 1, 2, 3,

�44 � �1(�, T ), �k j � 0, for k, j � 1, 2, 3, 4, k 	� j. (17)

Further, introducing the new operators as

ηk1(�, T ) � −(n1Ω∗
k1 − αΘ0�1Ω

∗
k2

)
,

ηk2(�, T ) � Ω∗
k2, k � 1, 2, (18)

it follows from Eqs. (13) and (15) that

Φ ′ � (�1 I + η11 grad div )F′ + η21 grad F0, (19)

Φ2 � η12 div F′ + η22F0, (20)

where I denotes the identity matrix.
Clearly, in view of Eqs. (19) and (20), we get

Φ̃(x, t) � ZT (Dx, T )M(x, t), (21)

where

Z[Dx, T ] �
[
Z(1) Z(2)

Z(3) Z(4)

]

4×4
,

Z(1)(Dx, T ) �
[
Z (1)
k j

]
3×3

, Z(2) �
[
Z (2)
k1

]
3×1

, Z(3) �
[
Z (3)
1 j

]
1×3

, Z(4) � [Z44]1×1,

Z (1)
k j (Dx, T ) � �1(�, T )δk j + η11(�, T )

∂2

∂xk∂x j
,

Z (2)
k1 (Dx, T ) � η12(�, T )

∂

∂xk
,

Z (3)
1 j (Dx, T ) � η21(�, T )

∂

∂x j
,

Z44 � η22(�, T ), for k, j � 1, 2, 3. (22)

Now, by virtue of Eqs. (9), (16), and (21), we obtain

� U� ZT�TU.

Hence, we get

�(Dx, T )Z(Dx, T ) � �(�, T ), as ZT�T � �. (23)

Therefore, we have proved the following lemma.
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Lemma A The matrix differential operators �, Z, and � satisfy Eq. (23), where �, Z, and � are defined by
Eqs. (5), (22), and (17), respectively.

Now, M ′
y(x, t) for y � 1, 2, 3 and h(x, t) are functions on the region W × (0,∞) with M ′ � M ′

y for
y � 1, 2, 3 and M̃ � (

M ′, h
)
.

Then we establish the following theorem that gives the Galerkin-type solution of Eqs. (3) and (4):

Theorem A Let

u� Z(1)M ′ + Z(2)h, (24)

Θ � Z(3)M ′ + Z (4)h, (25)

where the M ′
y , h are fields of class C7 and C5, respectively, and also satisfy the following equations:

�1(�, T )g1M ′ � − f , (26)

�1(�, T )h � −(1 + τ T )r (27)

on the region W × (0, ∞). Then, U � (u, Θ) yields the solution of Eqs. (3) and (4).

Proof From Eqs. (24) and (25), we have

U(x, t) � Z(Dx, T )M̃(x, t). (28)

Also, from Eqs. (26) and (27), we get

�(�, T )M̃(x, t) � F(�, T ). (29)

In view of Eqs. (23), (28), and (29), we obtain �U � �ZM̃ � �M̃ � F.
This completes the proof of the theorem. �

4 Galerkin-type solution of the system of equations for steady oscillations

If we assume

u(x, t) � Re
[
ũ(x)e−iωt

]
, Θ(x, t) � Re

[
Θ̃(x)e−iωt

]
,

f (x, t) � Re
[
f̃ (x)e−iωt

]
, r(x, t) � Re

[
r̃(x)e−iωt

]
,

then, from Eqs. (1) and (2), the system of equations of the stable oscillations for theMoore–Gibson–Thompson
thermoelasticity theory is obtained as follows:

μ(�ũ) + (λ + μ){grad div ũ} − α gradΘ̃ + ρ′ f̃ � −ω2ρ′ũ, (30)
{
K�(−iω) + K ∗� + ρ′cE

(
ω2 + iτω3)}Θ̃ + αΘ0

{
ω2 div ũ + iτω3 div ũ

}

� −(1 − iτω)̃r , (31)

where (x, t) ∈ W × (0,∞), i � √ − 1, and ω(> 0) represents the frequency of oscillation.
Now, we use the following notations:

Υ (�) � [
Υk j (�)

]
2×2

�
[

ω2ρ′ + (λ + 2μ)� αΘ0
(
ω2 + iτω3

)
�

−α (K ∗ − iωK )� + ρ′ cE
(
ω2 + iτω3

)
]

2×2
,

�̃1(�) � detΥ (�),

ek1(�) � −[(λ + μ)Υ ∗
k1 + αΘ0

(
ω2 + iτω3)Υ ∗

k2

]
,

ek2(�) � Υ ∗
k2 for k � 1, 2.

If the equation �̃1(−λ) � 0 has two roots, namely λ21 and λ22, then �̃1(�) can be written as

�̃1(�) � (
� + λ21

)(
� + λ22

)
.

Further, we introduce the matrix differential operators R and �̃, defined by
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(a)

R[Dx, T ] �
[
R(1) R(2)

R(3) R(4)

]

4×4
,

R(1)(Dx, T ) �
[
R(1)
k j

]
3×3

, R(2) �
[
R(2)
k1

]
3×1

, R(3) �
[
R(3)
1k

]
1×3

, R(4) � [R44]1×1,

R(1)
k j (DX ) � �̃1(�)δk j + e11(�)

∂2

∂xk∂x j
,

R(2)
k1 (DX ) � e12(�)

∂

∂xk
,

R(3)
1k (DX ) � e21(�)

∂

∂xk
,

R44 � e22(�), for k, j � 1, 2, 3. (32)

(b)

�̃(�, T ) � [
�̃k j (�)

]
4×4,

�̃yy � �̃1(�)
[
ω2ρ′ + μ�

]
, y � 1, 2, 3,

�̃44 � �̃1(�), �̃k j � 0, k, j � 1, 2, 3, 4, k 	� j. (33)

Let Q̃y, for y � 1, 2, 3 and s be functions on W. Here Q̃ � (
Q̃1, Q̃2 ,̃ Q3

)
and Q � (

Q̃, s
)
. Hence, by

taking into account the Theorem A, we conclude the Galerkin-type solution to the system of equations for
steady oscillations by the following theorem for the system of equations given by (30) and (31):

Theorem B Let

ũ � R(1) Q̃ + R(2)s, (34)

Θ̃ � R(3) Q̃ + R(4)s, (35)

where the Q̃y and s are fields of class C6 and C4, respectively, and also satisfy the following equations:

�̃1(�)
[
ω2ρ′ + μ�

]
Q̃ � − f̃ , (36)

�̃1(�)s � −(1 − iτ ω)̃r (37)

on W. Then,
(̃
u, Θ̃

)
is the solution of Eqs. (30) and (31).

5 General solution of the system of equations for steady oscillations

If external body force f̃ and external heat source r̃ are assumed to be neglected, then Eqs. (30) and (31) can
be written as

(
ω2ρ′ + μ�

)̃
u + (λ + μ){grad div ũ} − α grad Θ̃ � 0, (38)

{(
K ∗ − iωK

)
�+ρ′cE

(
ω2 + iτω3)}Θ̃ + αΘ0

{
ω2+i τ ω3}div ũ � 0. (39)

Then, we propose the, subsequent lemma for the above system of equations:

Lemma B If
(̃
u, Θ̃

)
is yielded as a solution of Eqs. (38) and (39), then

�̃1(�)div ũ � 0, (40)

�̃1(�)Θ̃ � 0, (41)
(
ω2ρ′ + μ�

)
curl ũ � 0. (42)



1280 B. Singh, S. Mukhopadhyay

Proof By applying the operator “divergence” to Eq. (38), we get
{
ω2ρ′ + (λ + 2μ)�

}
div ũ − α �Θ̃ � 0. (43)

After eliminating Θ̃ from Eqs. (39) and (43), we obtain

�̃1div ũ � 0.

Again, eliminating div ũ from Eqs. (39) and (43) gives

�̃1Θ̃ � 0.

Additionally, by applying the “curl” operator to Eq. (38), we obtain
(
ω2ρ′ + μ�

)
curl ũ � 0.

Thus, this proves Lemma B. �

Theorem C If
(̃
u, Θ̃

)
is evaluated as a solution of Eqs. (38) and (39), then

ũ(x) � α grad
2∑

k�1

φk(x) + Ψ (x), (44)

Θ̃(x) �
2∑

k�1

akφk(x), (45)

where φk (k � 1, 2) and 	 � (	1, 	2, 	3) satisfy the following equations:
(
� + λ2k

)
φk(x) � 0, (46)

(
� +

ω2ρ′

μ

)
Ψ (x) � 0, x ∈ W, (47)

divΨ (x) � 0, (48)

and

ak � −(λ + 2μ)λ2k + ω2ρ′, for k � 1, 2. (49)

Proof Suppose
(̃
u, Θ̃

)
to be a solution of Eqs. (38) and (39). Then, by taking into consideration �ũ �

grad divũ − curl curl ũ, from Eq. (38), we have

ũ � 1

ω2ρ′
[
grad

{−(λ + 2μ)div ũ + αΘ̃
}
+ μ curl curl ũ

]
. (50)

Now, introducing the notation Ψ (x) as

Ψ (x) � μ

ω2ρ′ curl curl ũ (51)

and with Eq. (42), by using div curl ũ � 0 for x ∈ W , we see that Eqs. (47) and (48) can be easily obtained.
Now, let

φy � by

⎡
⎢⎢⎢⎢⎢⎣

2∏

k � 1
k 	� y

(
� + λ2k

)

⎤
⎥⎥⎥⎥⎥⎦

Θ̃, (52)
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by �

⎡
⎢⎢⎢⎢⎢⎣
ay

2∏

k � 1
k 	� y

(
λ2k − λ2y

)

⎤
⎥⎥⎥⎥⎥⎦

−1

, y � 1, 2. (53)

Hence, in view of Eqs. (41), (52) yields Eqs. (45) and (46).
By using Eqs. (38), (45), (46), and (49), we obtain

div ũ � −α

2∑
k�1

λ2kφk . (54)

Hence, Eq. (50) yields

ũ � 1

ω2ρ′

[
grad

{
(λ + 2μ)α

2∑
k�1

λ2kφk + αΘ̃

}
+ μ curl curl ũ

]
. (55)

With the help of Eqs. (49) and (51), Eq. (55) yields

ũ(x) � α grad
2∑

i�1

φk(x) + Ψ (x). (56)

It satisfy the complete proof of Theorem C.

Theorem D If
(̃
u, Θ̃

)
is provided as in Eqs. (44) and (45), where φk and	 satisfy Eqs. (46)–(48), then

(̃
u, Θ̃

)
will be considered as the solution of Eqs. (38) and (39) onW.

Proof With the help of Eqs. (46) and (47), (44) can be presented as:

�ũ � −α grad
2∑

k�1

λ2kφk − ω2ρ′

μ
Ψ ,

grad div ũ � −α grad
2∑

k�1

λ2kφk . (57)

Firstly, we change ũ and Θ̃ as delivered in Eqs. (44) and (45) on the left side of Eq. (38). Then, by using Eqs.
(46), (49), and (57), we get

(
ω2ρ′ + μ�

)̃
u + (λ + μ)grad div ũ − α grad Θ̃

� ω2ρ′
(

α grad
2∑

k�1

φk + Ψ

)
− α grad

2∑
k�1

{
(λ + 2μ)λ2k + ak

}
φk − ω2ρ′Ψ .

After rearranging the above expression, we obtain
(
ω2ρ′ + μ�

)̃
u + (λ + μ)grad div ũ − α grad Θ̃ � 0,

which is the field Eq. (38).
Similarly, substituting ũ and Θ̃ on the left-hand side of Eq. (39) as given in (44) and (45) and utilizing

(46), (49), and (54), finally we get
{(
K ∗ − iωK

)
� + ρ′cE

(
ω2 + iτω3)}Θ̃

+ αΘ0
(
ω2 + iτω3)div ũ

� {(
K ∗ − iωK

)
� + ρ′cE

(
ω2 + iτω3)}

(
2∑

k�1

akφk

)
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+ α2Θ0
(
ω2 + iτω3)

(
−

2∑
k�1

λ2kφk

)

�
2∑

k�1

[
ak
{(
K ∗ − iωK

)
(−λ2k) + ρ′cE

(
ω2 + iτω3)}

+α2Θ0
(
ω2 + iτω3)(−λ2k)

]
φk

� 0 (by using �̃1
(−λ2k

) � 0 for k � 1, 2).

Hence, the field equation (39) is satisfied.
Therefore, we obtain the general solution of the system of Eqs. (38) and (39) in terms of the metaharmonic

functions φk and Ψ . �

Funding One of the authors, Bhagwan Singh, is grateful to the DST - INSPIRE Fellowship/2018/IF.170983.
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