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Abstract Indentation scaling relationships provide normalized guidance for measuring and predicting
mechanical properties in indentation experiments. At the nano-scale, the material size-effect is significant,
while conventional scaling relationships fail to depict this phenomenon in nanoindentation precisely. In the
present research, cross-scale indentation scaling relationships are investigated using a strain gradient theory.
The nanoindentation response is found to be sensitive to different material parameters, including the material
intrinsic length, yield stress, and work-hardening exponent across size-scales. If the strain gradient effect is
ignored, the nanoindentation scaling relationships approach the macroscopic conventional ones. The cross-
scale indentation scaling relationships obtained in the form of dimensionless functions in this work provide
quantitative references to instrumented indentation tests on multiple size-scales, coinciding well with experi-
mental results. The understanding of nanoindentation hardness is enhanced by the present work.

1 Introduction

The indentation test is an extensively usedmaterial testing technique to determine the properties ofmacroscopic
bulk materials and novel nano-materials [1–4]. The indentation test quickly obtains material properties by
instrumented experiments within a local area of the material. This advantage is especially remarkable when
performing tests on a small size-scale, where other methods, e.g., tension, bending, and torsion, are difficult
to implement technically. Hence the indentation test methods have attracted extensive attention in the past
decades [5–7].

Much emphasis has been put on research works of the methods, techniques, and especially the precision
and normalization of the instrumented indentation tests. For macroscopic indentation tests, with the benefit of
the self-similarity of the conical indenter, Cheng et al. suggested a series of indentation scaling relationships
considering many aspects of the elastic–plastic material properties [8–12]. These results are widely used to
explain indentation results and understand the physical meaning of the indentation hardness. Also, with the
help of the indentation scaling relationships, determining material properties from experiments and validating
numerical indentation results become more accessible and reliable. The scaling approach also guides inden-
tation tests of various materials and multiple research fields, exhibiting greater expansibility than individual
instrumented experiments [13, 14]. Kang and Yan performed a study on the indentation scaling relationships
in shape memory alloys [15]. Rodriguez et al. researched the amorphous materials by the scaling approach
from experiments of multiple samples [16]. Bazzaz et al. implemented the scaling analysis and numerical
simulation to test the alloy thin film [17]. The scaling relationships help to analyze and discuss the indentation
results more intuitively.
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Fig. 1 Illustration of the conical indentation, (left) pile-up hc > h, (right) sink-in hc < h

Moreover, many specific works have also been performed based on the convenience and intuitiveness of
the indentation scaling relationships [18, 19]. Li et al. developed an analytical software for a new portable
instrumented indentation device using multiple approaches including the scaling approach [20]. Recently, Yu
and Wei studied the scaling relationships considering the influence of the inclusion near the indenter tip in
macroscopic bulk materials [21]. Besides the straightforward application of the scaling relationships, the spirit
of this indentation scaling approach is also adopted and integrated with novel research interest [22]. Zhang
et al. suggested an indentation method to test a hyper-elastic soft biomaterial with the scaling analysis [23].
Lee et al. combined the scaling approach with the artificial neural network to investigate the properties of
materials from indentation tests [24].

In recent years, mechanical behavior measurements of micro- or nano-structured materials as well as
conventional materials at the nano-scale also attract much research interest. Many investigations showed
different properties of materials among size-scales [25, 26]. This size-effect also emerges in most testing
methods. Micro- and nano-scale testing techniques, represented by atomic force microscope (AFM) and
nanoindentation, have therefore been further used to measure the size-effects [5, 27]. Many size-dependent
nanoindentation results have been presented and discussed [7, 28, 29]. Corresponding theories and methods
emerged rapidly in order to characterize the nanoindentation test results [30, 31]. Fisher has reviewed the
nanoindentation test on film coating materials [32]. Recently, Lin et al. suggested a measurement method
for polymers considering the indenter tip adhesion effects of AFM [33]. Long et al. used reverse analysis and
numerical simulation to study thematerial properties in nanoindentation [34]. Novel phenomena have also been
exhibited in the indentation tests at small size-scales [35–38]. Yang et al. have reviewed the recent progress and
challenges in determining the size-effect in nanoindentation [39]. Nevertheless,manymacroscopic theories and
methods, including the scaling method of the indentation scaling relationships, face considerable challenges in
handling novel materials at the nano-scale and advanced nano-testing techniques [40]. The indentation scaling
relationships of an elastic–plastic solid considering the material size-effect remain blank.

In the present work, a strain gradient-based model [41] is used to depict the size-effect during the nanoin-
dentation process, which well characterizes the cross-scale behavior of elastic–plastic materials [42–45]. With
the dimensional analysis and the corresponding finite element analysis [46, 47], the cross-scale indentation
scaling relationships can be presented in the form of dimensionless functions, extending the reference value
of the macroscopic indentation scaling relationships to multiple size-scales. Comparisons of the cross-scale
indentation scaling relationships with several nanoindentation experimental results are also presented, which
exhibits a good coincidence and validates the present work.

2 Model description

2.1 Indentation model

The conical indentation is illustrated in Fig. 1. When a load F is applied, the indenter penetrates the materials
with vertical displacement h. The contact depth hc represents the actual interaction depth between the indenter
and the indented material, and correspondingly the radius of the projected contact area is r . hc > h represents
the pile-up phenomenon, as illustrated in the left part of Fig. 1, and hc < h represents sink-in, shown in the
right part of the Figure.
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The half-angle of the conical indenter is taken to be 68°, which is commonly adopted in similar studies of the
indentation scaling relationships [48–50], and this is a close estimate of either Vickers or triangular pyramidal
indenters. Assuming the indenter tip is ideally sharp, this problem is perfectly self-similar in geometry. The
conical indenter is assumed to be rigid. The interface between the indenter and the material is assumed to be
frictionless unless otherwise stated [51].

2.2 Constitutive model

Metals andmetal-based compositematerials have awide range ofmechanical and non-mechanical applications
at the micro- and nano-scale [52, 53]. A straightforward constitutive model for metals is the elastic–plastic
model combined with certain work-hardening. However, since no parameter on the length-dimension exists,
the conventional elastic–plastic theories cannot describe the size-effect of materials. To extend this widely used
method to multiple size-scales, a size-relevant strain gradient plasticity model (CMSG) suggested by Huang
et al. [41] is adopted in this work.

The detailed derivation of theCMSGmodel is appended inAppendixA, and a brief illustration is introduced
below. Equation (1) shows the stress–strain relation between flow stress σflow, plastic strain ε p, and plastic strain
gradient ηp, where E denotes the elastic modulus, Y the initial yield stress, n the power-law work-hardening
exponent, and l the material intrinsic length,

σflow � Y ·
√(

1 +
Eε p

Y

)2n

+ lηp. (1)

Together with Poisson’s ratio ν, the material can be determined by the parameters mentioned above. In the
present work, the range of material parameters is selected similarly with Cheng et al. [8], namely, Y/E has
a value between 0.001 and 0.1, n between 0 and 0.5, and ν between 0.2 and 0.4. The range of the material
intrinsic length is related to the maximum indentation depth, which will be discussed in part 2.3.

2.3 Dimensional analysis

With the application of the � theorem [47, 54], the primary dependent variables, the load F and the contact
depth hc, can be expressed as functions of other independent variables by

F � fα(E, Y, ν, n, l, θ, h), (2)

hc � fβ (E, Y, ν, n, l, θ, h). (3)

A constant maximum indentation depth hmax is set for all indentation tests. Among the above variables
and constants, at least two independent dimensions are necessary to describe all other ones as

[F] � [E]1 · [h]2,
[Y ] � [E]1 · [h]0,
[hc] � [hmax] � [l] � [E]0 · [h]1,
[n] � [θ ] � [ν] � [E]0 · [h]0.

(4)

Hence, the load F and the contact depth hc can be expressed by

F � Eh2 · �1

(
Y

E
,

l

hmax
, ν, n, θ

)
, (5)

hc � h · �2

(
Y

E
,

l

hmax
, ν, n, θ

)
, (6)

and all variables in �1 and �2 are dimensionless.
The indentation hardness H is another most concerned material parameter in indentation tests, which is

defined by Eq. (7), and correspondingly written in its dimensionless form by Eq. (8),

H � F

A
� F

πr2
� F

πh2c tan
2 θ

, (7)
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H � F
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π tan2 θ
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� Y ·
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Y · 1

π tan2 θ
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�2
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)
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)
.

(8)

In some circumstances, the hardness can also be nondimensionalized by the elastic modulus as

H � F
πh2c tan

2 θ
� E

π tan2 θ
· h2·�1

(h·�2)
2

� E · �4

(
Y
E , l

hmax
, ν, n, θ

)
.

(9)

The range of material constants Y/E , ν, n, and a fixed half-angle θ were given previously. And the last
material constant is thematerial intrinsic length l, which is then given a value in the range of 0 ≤ l/hmax ≤ 100.
The material intrinsic length is the parameter characterizing the size-effect of materials. The material intrinsic
length of most metals is around microns; therefore, the range given above covers most nano-, micro-, and even
macroscopic indentation tests. A larger dimensionless material intrinsic length represents that the extent of the
material size-effect is stronger, or correspondingly, the indentation test is implemented at a smaller size-scale.
Particularly, l/hmax � 0 represents cases that ignore the material size-effect, which is consistent with Cheng
et al.’s previous works [8, 12].

2.4 Finite element model

To evaluate the dimensionless functions and illustrate the scaling relationships given above, finite element
analysis is implemented on ABAQUS 6.14 [46], with the usage of the user material subroutine (UMAT)
for the constitutive model mentioned in 2.2 and Appendix A. The finite element model consists of 17,351
axisymmetric 4-node continuum elements. The meshes not only reach the mesh convergence but also have a
proper distribution to capture the deformation and the strain gradient near the indenter. All cases share the same
mesh division when the material parameters vary, keeping the numerical error to a minimum. The indentation
area is relatively small enough to minimize the influence of the model boundary.

3 Results and discussion

Based on the dimensionless functions derived previously, the result of the indentation scaling relationships can
be collected into figures of the dimensionless functions. The indentation scaling relationships and influences
of material properties are summarized qualitatively and quantitatively. An experimental application is also
implemented on some metal materials.

3.1 Intuitive influence of the material size-effect

Figure 2 shows the relationship between the dimensionless functions�1,�2, �3 and the dimensionless inden-
tation depth, with a fixed Poisson’s ratio and dimensionless yield stress. Larger l/hmax represents intenser
material size-effect. The black line is plotted based on the size-independent model of Cheng et al. [8]. The
size-effect is significant in materials of l/hmax ≥ 1, and the dimensionless functions are depth-sensitive dur-
ing indentation. It also shows that when the material intrinsic length is more considerable, the contact depth
is smaller while the indentation load is larger. Hence, the indentation hardness ascends distinctly when the
dimensionless material intrinsic length increases, up to ten times that of the macroscopic result. Besides, the
l/hmax �� 0 cases gradually degenerate to the l/hmax � 0 case with increasing indentation depth.

The influence of the material size-effect on the dimensionless functions is monotonic, as shown in Fig. 2.
Therefore, each curve can be integrated into one single data point by its mean value throughout the entire
indentation process. Using this scheme, cases with a minimum value l/hmax � 0 and a maximum value
l/hmax � 100 are plotted in Fig. 3 with different power-law work-hardening exponents n and Poisson’s ratios
ν. Results in Fig. 3a coincidewell with that of the same result of Cheng et al. [8]. In Fig. 3a and b, it is shown that
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Fig. 2 Dimensionless functions, a dimensionless load �1, b dimensionless contact depth �2, c dimensionless hardness �3,
against the indentation depth at different dimensionless material intrinsic lengths, with ν � 0.3, n � 0, Y/E � 0.005. Different
symbols represent the extent of the material size-effect (l/hmax). Larger l/hmax represents the more evident size-effect, where
the material is more indentation depth-dependent

the material size-effect comprehensively raises the indentation hardness, especially one with smaller power-
law work-hardening exponent n and lower dimensionless yield stress Y/E . In Fig. 3c and d, noting that the
value of the Y-axis is different, it can also be found that materials of any Poisson’s ratio ν all have higher
indentation hardness when the material size-effect is considered. The influence of Poisson’s ratio is found not
as significant as other material parameters. Hence in the following discussion, ν is fixed at ν � 0.3. Generally,
whether the material size-effect is considered or not, the work-hardening exponent influences the hardness
more significantly when the dimensionless yield stress is lower, while Poisson’s ratio influences a bit onlywhen
Y/E is relatively large. And specifically, for materials of intense size-effect (l/hmax � 100) and a relatively
large dimensionless yield stress (Y/E ≥ 0.04), the dimensionless indentation hardness shows no relevance
with the work-hardening exponent. In such cases of intense size-effect, the indentation scaling relationships
shifts a lot, and the macroscopic dominating material parameter n will not affect the nanoindentation hardness
anymore.

3.2 Influence of the material intrinsic length

Themonotonicity of thematerial size-effect is comparatively intuitive.Hence the quantitative analysis is needed
to capture when and how its influence involves. Relationships between dimensionless functions �1, �2, �3,
and the material intrinsic length with different work-hardening exponents are plotted in Fig. 4. All three
dimensionless functions are found deviated from the Cheng et al. size-independent scaling relationships when



1484 Z. Yu et al.

Fig. 3 Dimensionless hardness �3 of the size-independent model of Cheng et al. [8] (a & c), and with the consideration of the
size-effect (b& d). The work-hardening exponent varies with fixed ν � 0.3 (a& b), and Poisson’s ratio varies with fixed n � 0.1
(c & d). Each symbol represents the mean value of the dimensionless hardness throughout each single indentation test (h from 0
to hmax). The work-hardening induced material hardening is suppressed when the size-effect is considered (a& b). The influence
of Poisson’s ratio is not as distinguishable as the work-hardening exponent and the dimensionless yield stress (c & d). Note that
the value of the Y -axis is different in (c) and (d)

the material size-effect becomes stronger. And this size-dependent deviation is larger in materials of less
work-hardening effect. The material size-effect is found to start influencing the dimensionless functions at a
relatively low value when the work-hardening effect is insignificant. Materials without work-hardening begin
to respond when l/hmax ≥ 10−1, while typical work-hardening materials respond earlier since l/hmax ≥ 101.
Hence in the next Figure, the range of l/hmax is chosen to be 10−1 ≤ l/hmax ≤ 102. In addition, the size-effect
suppresses the influence of different work-hardening exponents, especially in the dimensionless contact depth.

Figure 5 shows the relationships between the dimensionless indentation hardness and the size-effect
(l/hmax) of different materials. Larger work-hardening exponent and material intrinsic length both enlarge
the indentation hardness. The hardening effect of the material work-hardening is evident only when the dimen-
sionless yield stress is low, whereas the hardening from the size-effect is more uniform for all materials. For
those materials without work-hardening, the difference of hardness is ignorable among various yield stresses
when the size-effect is not considered. However, the intenser material size-effect generates a more significant
difference of hardness among materials of different yield stresses after l/hmax ≥ 1.

3.3 Scaling relationships related to the dimensionless yield stress

Relationships between dimensionless functions and yield stress also need to be discussed in detail with differ-
ent material size-effects considered. Figure 6 shows the dimensionless hardness at different work-hardening
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Fig. 4 Dimensionless functions a �1, b �2, c �3 against dimensionless material intrinsic length l/hmax with ν � 0.3 and
Y/E � 0.01. Results from the size-independent model of Cheng et al. [8] are given in the dashed lines. The scaling relationships
gradually deviate with the increasing material size-effect. When l/hmax or n is larger, the dimensionless load and hardness are
larger, while the contact depth is smaller

exponents and different material intrinsic lengths. The black line at the bottom is the result of the Cheng et al.
size-independent model. It can be found that materials of lower yield stress are more sensitive to the work-
hardening effect. The influence of the size-effect is more considerable in materials of lower dimensionless
yield stress when the work-hardening exponent is small (Fig. 6a and b). When the work-hardening effect is
intense (Fig. 6c and d), materials of medial dimensionless yield stress become most size-sensitive. Moreover,
for materials without work-hardening, as shown in Fig. 6a, their dimensionless indentation hardness seems
to have no relution with the yield stress when l/hmax � 0, but linear relations appear when the size-effect is
considered.

From Eq. (8), the dimensionless hardness is calculated from the dimensionless load and contact depth.
Therefore, to find out the cause of the hardness response, the dimensionless load and contact depth are plotted,
respectively, in Figs. 7 and 8. Four subfigures in Fig. 7 show little difference with each other. Compared
with the indentation load, the dimensionless contact depth exhibits divergent patterns, as shown in Fig. 8.
The work-hardening effect reduces the contact depth, while this phenomenon is magnified when the material
size-effect is considered. To be specific, the dimensionless contact depth of materials of lower yield stress
decreases more evidently when the work-hardening exponent is small (n � 0, 0.1), while less evidently when
it is large (n � 0.3, 0.5). Materials of lower yield stress are generally more sensitive to the work-hardening
effect and the size-effect. However, when the yield stress is small and the work-hardening exponent is large
(Y/E � 0.001, n � 0.5), the material size-effect seems no longer affecting the indentation contact depth, as
well as the indentation load. This answers the result in Fig. 6d that the indentation hardness of the material with
Y/E � 0.001, n � 0.5 varies in a narrow range of H/Y � 27(±10%) with different extent of the size-effect.
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Fig. 5 Dimensionless hardness �3 against dimensionless material intrinsic length l/hmax with ν � 0.3 and a n � 0, b n � 0.1,
c n � 0.3. The size-independent model of Cheng et al. [8] is presented in dashed lines of Y/E � 0.001, 0.1 for compactness.
Dimensionless hardness ascends rapidly with increasing dimensionless material intrinsic length

In contrast, for other materials, the influence of the material size-effect is usually enlarged to 100% or even
more. From Figs. 7 and 8, it can be inferred that the nanoindentation hardness is even more influenced by the
contact morphology rather than the indentation load.

Figure 9 exhibits the relationships of dimensionless hardness �4 � H/E as in Eq. (9). The material
size-effect comprehensively raises the dimensionless hardness, and also gradually minimizes the influence of
the work-hardening effect. Moreover, whether considering the material size-effect or not, materials of higher
dimensionless yield stress exhibit less relativity with the work-hardening exponent. When the size-effect is
evident (Fig. 9c), the work-hardening effect does not influence the materials of a high dimensionless yield
stress.

3.4 Effect of friction across size-scales

The influence of friction between the indenter and the material surface is briefly exhibited in Fig. 10. It can
be found that the influence of friction is becoming smaller when the material size-effect becomes stronger.
Difference between the frictionless case and the friction considered cases are about 20% when the size-effect
is ignorable, while that is only at about 3~5% when the friction is considered together with the size-effect.
The reason is that the friction affects indentation by resisting the tangential deformation at the contact surface;
however, this deformation has been restricted by the hardening effect of the work-hardening as well as the
material size-effect. It has been indicated that the friction needs to be concerned when a considerable pile-up
phenomenon happens (hc

/
h > 1.12), when hc

/
h ≤ 1.12, the frictionless assumption might be a reasonable

approximation [51, 55].
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Fig. 6 Dimensionless hardness�3 against dimensionless yield stress Y
/
E for different l/hmax with ν � 0.3, a n � 0, b n � 0.1,

c n � 0.3, d n � 0.5. The baseline of the size-independent model [8] is plotted in black lines. The hardness, nondimensionalized
by the initial stress Y , decreases when the dimensionless yield stress increases. This trend is more evident in materials of larger
work-hardening exponent

3.5 Application on instrumented nanoindentation

One of the remarkable applications of the scaling relationships is to predict the instrumented indentation
experiments. The results ofmost nanoindentation tests are intensely size-dependent at an indentation depth from
tens of nanometers to several micrometers [28, 29, 56–63]. The nanoindentation hardness of these materials
against the dimensionless indentation depth is shown in Fig. 11 together with the corresponding scaling
relationships. The experimental results better coincide with the cross-scale scaling relationships throughout
the entire indentation process compared with the conventional size-independent model. Experiments of Al
by Wei et al. [56] and Cu by McElhaney et al. [61] have a different dimensionless material intrinsic length
(calculated by Eq. (19) in “Appendix A”) of 8 and 4, whose influence on the dimensionless hardness is more
evident when the indentation depth is smaller. The hardness tested from instrumented indentation is a bit higher
than the prediction of scaling relationships when the indentation depth is small, and a kind of lower when that
is large, while the mean value coincides better with the indentation scaling relationships.

Themean value of the dimensionless hardness during the indentation ofmore experimental results is plotted
in Fig. 12. The dimensionless yield stress of these metal materials is generally 0.001 ≤ Y/E ≤ 0.01. The
experimental results well match the prediction of the indentation scaling relationships across size-scales. The
dimensionless material intrinsic length has a broad application range of the indentation depth from microns
to tens of nanometers. With the integration of the indentation depth and the material intrinsic length, the
prediction and validation of instrumented indentation at different size-scales can be much easier. By using the
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Fig. 7 Dimensionless load �1 against dimensionless yield stress Y
/
E of different l/hmax with ν � 0.3 and a n � 0, b n � 0.1,

c n � 0.3, d n � 0.5. The baseline of the size-independent model [8] is plotted in black lines. The dimensionless load is higher
in materials of larger dimensionless yield stress and intrinsic length. This trend changes very little among materials of different
work-hardening exponents

cross-scale indentation scaling relationships, the result of an arbitrary indentation depth can be used to estimate
the corresponding result of any other indentation depth, significantly reducing the experiment workload.

4 Conclusions

In the present work, the cross-scale indentation scaling relationships are proposed with the application of a
size-dependent constitutive model. This cross-scale result can be therefore applied to multiple size-scales,
extending the usage of the macroscopic indentation scaling relationships. The relative comparison between the
scaling relationships with and without the material size-effect is discussed in detail. The deviation caused by
the material size-effect is quantitatively captured. The hardness and the associated load and contact depth are
discussed separately.Manyquantitative results can be extracted directly from theFigures of those dimensionless
functions, guiding the indentation test at multiple size-scales.

The material size-effect affects the macroscopic scaling relationships by increasing the indentation load
and reducing the contact area; hence, the nanoindentation hardness ascends significantly. As the indentation
depth increases, the size-effect considered results approach the macroscopic ones. Specifically, when the
material yield stress is relatively low, the power-law work-hardening exponent has considerable influence on
the indentation hardness. For the size-effect involved materials of a high yield stress, the influence from the
work-hardening is ignorable. Furthermore, the influence of the size-effect works differently in materials of
different yield stress and work-hardening exponent. Materials of lower yield stress and lower work-hardening
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Fig. 8 Dimensionless contact depth �2 against dimensionless yield stress Y
/
E of different l/hmax with ν � 0.3 and a n � 0,

b n � 0.1, c n � 0.3, d n � 0.5. The baseline of the size-independent model [8] is plotted in black lines. The dimensionless
contact depth is lower when the dimensionless intrinsic length or yield stress is larger. The influence of the intrinsic length is
distinct in materials of any yield stress when the work-hardening exponent is low, while only evident in materials of low yield
stress when the work-hardening effect is strong

exponent aremore likely to be affected by the size-effect. In comparison, thosewith lower yield stress but higher
work-hardening exponent are almost irrelevant for the size-effect. Thematerial size-effect alsoweakens the role
thework-hardening effect plays but enhances that of the yield stress. Therefore,materials of different properties
and size-scales have different dominating parameters: the dimensionless yield stress dominates the indentation
response when the work-hardening exponent is large; the dimensionless material intrinsic length dominates
when the dimensionless yield stress or material intrinsic length itself is considerable; the work-hardening
exponent dominates when the dimensionless yield stress or material intrinsic length is small. Capturing these
dominating parameters helps to evaluate the indentation test with the least effort. The nondimensionalized
material intrinsic length makes it possible to predict the result of any indentation depth from a test of arbitrary
depth.

At the nano-scale, the significant increase in nanoindentation hardness is caused by the increase of the
indentation load on the one hand and the rapid decrease of the contact area on the other hand. Meanwhile, the
friction between the indenter and material surface is found to be less influential compared with the material
size-effect. The decrease in the contact area also answers why the friction affects less when the size-effect is
more remarkable.

A procedure for indentation tests at multiple size-scales is presented by the results of the dimensionless
functions with the consideration of the material size-effect. Furthermore, the quantitative results can be used to
instruct instrumented indentation tests across size-scales or alternatively estimate the material intrinsic length
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Fig. 9 Dimensionless hardness �4 against dimensionless yield stress Y
/
E of different n with ν � 0.3 and a l/hmax � 0 (Cheng

et al. size-independent model [8]), b l/hmax � 10, c l/hmax � 100. The hardness, nondimensionalized by the elastic modulus,
increases with the dimensionless yield stress. When l/hmax is larger, the dimensionless hardness is higher but less affected by
the work-hardening effect

Fig. 10 Dimensionless hardness �3 against dimensionless material intrinsic length l/hmax with different friction coefficient
between the indenter and material surface. Other material parameters are Y/E � 0.003, ν � 0.3, and n � 0.1. The influence of
friction is restricted by the material size-effect
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Fig. 11 Nanoindentation hardness �3 against the dimensionless indentation depth of some metal materials and corresponding
scaling relationships. Lines are for the same material parameters as in Fig. 2c except for n�0.1 and Y/E � 0.002
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Fig. 12 Nanoindentation hardness �3 against the dimensionless material intrinsic length of some metal materials and corre-
sponding scaling relationships. Lines are for the same material parameters as in Fig. 5 of n�0.1

experimentally. The qualitative deduction also helps to design and test novel materials in various size-scales
and enhances the understanding of the indentation hardness across size-scales.
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Appendix A: Conventional theory of mechanism-based strain gradient

Multiple material models have been suggested by many researchers to overcome the limitation that the con-
ventional theory failed to predict the size-effect of materials. A strain gradient term together with a length-
dimension parameter were introduced into the continuum constitutive relation, which was suggested by many
scholars [64, 65]. Wei and Hutchinson performed a strain gradient plasticity theory on the crack growth and
fracture problem [66], and Nix and Gao applied it with the indentation of crystalline materials [42]. Gao et al.
proposed a mechanism-based strain gradient plasticity (MSG) theory [67, 68] established from the Taylor dis-
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location model [69, 70]. This mechanism-based theory gave a reasonable explanation of the length parameter
introduced by the strain gradient. Based on the MSG theory, Huang et al. introduced a conventional theory of
mechanism-based strain gradient plasticity (CMSG) [43, 44, 71, 72], which avoids the higher-order boundary
conditions and hence is more feasible than earlier theories.

The taylor dislocation model gives the relation between dislocation density and the shear flow stress τ as

τ � αμb
√

ρ � αμb
√

ρS + ρG (10)

where b is the magnitude of the Burgers vector, and μ the shear modulus, α an empirical parameter taking
a value in the range from 0.2 to 0.5 for most materials, and ρ the total dislocation density, composed by the
statistically stored dislocation (SSD) density ρS and the geometrically necessary dislocation (GND) density
ρG.

The flow stress σflow is related to the shear flow stress by

σflow � Mτ � Mαμb
√

ρS + ρG (11)

with the Taylor factor M � 3.06 for most face-centered-cubic (fcc) metals. In the uniaxial test, ρS can be
determined where ρG equals zero,

ρS �
(

σflow

Mαμb

)2

, (12)

and ρG is related to the effective plastic strain gradient ηp by

ρG � r
ηp

b
(13)

introduced by Nye with a factor of r � 1.90 for fcc metals. Thus, in a microscopic view, the flow stress is

σflow � Mτ � Mαμb

√
ρS + r

ηp

b
. (14)

Meanwhile, in a macroscopic view, the flow stress is also

σflow � σY f
(
ε p) (15)

where σY is the initial yield stress, ε p is the effective plastic strain, and the function f between them can be
determined by the uniaxial tension test. One of the most used models is the power-law work-hardening model,

f
(
ε p) �

(
1 +

Eε p

σY

)n

, (16)

where E is the elastic modulus and n the work-hardening exponent. Linking the microscopic laws with the
macroscopic ones, the SSD density ρS is

ρS �
(

σY f (ε p)

Mαμb

)2

, (17)

and from Eq. (14),

σflow �
√
[σY f (ε p)]2 + (Mαμb)2r

ηp

b
� σY

√
f 2(ε p) + lηp (18)

where l is introduced as the material intrinsic length by Gao et al. [67], where

l � M2rα2
(

μ

σY

)2

b ≈ 18α2
(

μ

σY

)2

b. (19)
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The calculation of the effective plastic strain gradient ηp in Eq. (13) is proposed by Gao et al. as

ηp �
√
1

4
η
p
i jkη

p
i jk, (20)

η
p
i jk � ε

p
ik, j + ε

p
jk,i − ε

p
i j,k (21)

where ε
p
i j is the plastic strain tensor. The numerical calculation of ηp in an axisymmetric model could be

referred to Swaddiwudhipong et al.’s work [45].
Huang et al. suggested a visco-plastic formula to relate the effective stress σe directly to the plastic strain

rate ε̇ p to avoid the involvement of the higher-order effective stress rate σ̇e by setting a large value of the
exponent m,m ≥ 20. Together with Eq. (18), the effective strain gradient is introduced by the flow stress as

ε̇ p � ε̇

(
σe

σflow

)m

� ε̇

(
σe

σY
√

f 2(ε p) + lηp

)m

(22)

where ε̇ �
√

2
3 ε̇

′
i j ε̇

′
i j is the effective strain rate.

Thus, similar to the conventional plasticity theory, the strain rate is composed of the elastic part and the
plastic part as

ε̇i j � ε̇ei j + ε̇
p
i j � 1

2μ
σ̇ ′
i j +

σ̇kk

9K
δi j +

3ε̇ p

2σe
σ ′
i j , (23)

and the elastic strain rate is

ε̇ei j � 1

2μ
σ̇ ′
i j +

σ̇kk

9K
δi j (24)

where σ̇ ′
i j is the deviatoric stress rate, K the bulk modulus, and δi j the Kronecker delta. Hence, with ε̇kk � σ̇kk

3K ,
the deviatoric strain rate is

ε̇′
i j � ε̇i j − 1

3
ε̇kkδi j � 1

2μ
σ̇ ′
i j +

3ε̇ p

2σe
σ ′
i j , (25)

Substituting Eq. (22) into Eq. (25), the deviatoric strain rate is related to the effective strain gradient by

ε̇′
i j � 1

2μ
σ̇ ′
i j +

3ε̇

2σe

(
σe

σY
√

f 2(ε p) + lηp

)m

σ ′
i j (26)

which is commonly written as

σ̇i j � K ε̇kkδi j + 2μ

[
ε̇′
i j − 3ε̇

2σe

(
σe

σY
√

f 2(ε p) + lηp

)m

σ ′
i j

]
. (27)

Equation (27) suggested by Huang et al. is the constitutive relation with the consideration of the plastic
strain gradient by introducing a material intrinsic length. With this length-dimension parameter, the differ-
ence between size-scales of the material can be hence depicted. When l → 0 or correspondingly the length
scale of deformation is much larger than the material intrinsic length, the CMSG theory degenerates into the
conventional theory.
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