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Abstract We investigate antiplane Stoneleywaves, localized at the discontinuity surface between twoperfectly
bonded half-spaces. Both half-spaces are elastic linear isotropic and possess a microstructure that is described
within the theory of couple stress materials with micro-inertia. We show that the microstructure deeply affects
wave propagation, which is permitted under broad conditions. This outcome stands in marked contrast to
classical elasticity, where antiplane Stoneley waves are not supported and in-plane Stoneley waves exist only
under very severe conditions on the material properties of the bonded half-spaces. Besides, Stoneley waves
may propagate only beyond a threshold frequency (cuton), for which an explicit expression is provided. For
a given frequency above cuton, this expression lends the admissible range of material parameters that allows
propagation (passband). In particular, significant contrast between the adjoiningmaterials is possible, provided
that Stoneley waves propagate at high enough frequency. Therefore, micro-inertia plays an important role in
determining the features of propagation. Considerations concerning existence and uniqueness of antiplane
Stoneley waves are given: it is found that evanescent and decaying/exploding modes are also admitted. Results
may be especially useful when accounting for the microstructure in non-destructive testing (NDT) and seismic
propagation.

1 Introduction

The quest for proving the existence of new types of localized waves, similar in nature to Rayleigh waves
occurring at a free surface, begun shortly after the discovery of these by Lord Rayleigh [32]. Love [18, p.165]
investigated the possibility of waves propagating at the free surface of a layer perfectly bonded to a half-space,
in an attempt to explain the problematic (from the theoretical standpoint) appearance of shear horizontal
Rayleigh waves in seismograms [22]. Later, Stoneley [30, 31] investigated the existence of waves localized
at the surface of a discontinuity between two materials. As he points out “Whereas, however, Prof. Love’s
problem is concerned with a disturbance confined chiefly to the free surface, the present paper deals with a
wave motion that is greatest at the surface of separation of the two media” [31]. Indeed, these waves go under
the name of generalized Rayleigh waves or, quite fittingly, Stoneley waves. Stoneley concludes that “we can
definitely assert that when the wave-velocities are not too widely different for the two media, a wave of the
Rayleigh type can exist at the interface”. This finding is somewhat surprising, in that it allows localized waves
to exist only at “weak” boundaries, whereas the exact opposite could be expected. At the time of Stoneley,
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the main motivation behind the investigation was geophysics: namely to determine whether seismic energy
could escape at the Gutenberg–Wiechert boundary between the Earth’s mantle and the core. Indeed, existence
conditions were supposed (by Love and Stoneley) to correspond to Wiechert conditions, expressing equality
of the shear wave speed across the surface of discontinuity. Precise quantification of the range of existence
of Stoneley waves came much later, by Scholte [28]. Scholte conditions are very severe, so much that “the
existence of such modes is the exception rather than the rule” [2]. Indeed, as pointed out in Owen [25] and
Hsieh et al. [13], they are satisfied by merely 31 combinations among 900 isotropic materials.

Existence and uniqueness of Stoneley waves have been investigated in the monograph by Cagniard [4,
Chap.4] and by Chadwick and Borejko [5]. (Notably, Chadwick has been Robert Stoneley’s research student.)
Extension to anisotropic materials, which admit generalized Stoneley waves, was given by Lim and Musgrave
[17] and by Barnett et al. [2].

Recently, the role of material microstructure has attracted considerable attention in connection with wave
propagation and related phenomena [9–11, 21, 22, 24, 29]. One way of encompassing material microstructure
into the models is by means of polar theories, among which couple stress (CS) theory is perhaps the simplest
[19, 26]. Couple stress theory builds on top of classical elasticity (CE) by adding an extra kinematical field,
named the micro-rotation. However, in contrast to micro-polar theory, micro-rotation is taken to be entrained
by the displacement field [15]. As a result, a length scale is introduced in the system, and the theory is no longer
self-similar. Consequently, some unphysical results appearing in CE are repaired, such as the non-dispersive
nature of bulk and Rayleigh waves and the lack of support for antiplane (or shear horizontally polarized)
Rayleigh and interfacial (Stoneley) waves. It is precisely this last matter that is addressed in this paper.

In recent times, a number of contributions have appeared in the literature concerning the propagation of
Stoneley waves, mostly within CE. The speed of Stoneley waves guided by a perfect interface between two
elastic half-spaces is determined analytically byVinh et al. [34], for the case of equal bulkmoduli. Consideration
of Stoneley waves propagating at a loose interface between two elastic half-spaces is given by Vinh and Giang
[33]. Similarly, guided propagation occurring between two half-spaces in elastically constrained contact is
considered by Anh et al. [1]. Since CE does not support antiplane Stoneley waves, every listed contribution
deals with waves polarized in the sagittal plane, to which the term Stoneley waves is traditionally attached. As
notable exceptions, Eremeyev et al. [7] show that antiplane Stoneley waves occur at the interface between two
half-spaces in the presence of surface elasticity, while propagation of in-plane Stoneley waves is considered
by Kumar et al. [16] within the context of the modified couple stress theory.

To the best of our knowledge, no contribution appears in the literature investigating antiplane Stoneley
waves within the couple stress theory. We show that incorporation of microstructural details into the model
dramatically alters the propagation features. Indeed, as illustrated in Nobili et al. [22], microstructure provides
new pathways for energy transport, which take the form of novel wave propagation patterns being supported.
In this paper, we show that, in marked contrast to CE, antiplane Stoneley waves are supported in CS materials
under very general conditions concerning the elastic contrast between the media in contact. Furthermore,
propagation is only permitted beyond a threshold frequency, named cuton frequency, that is an increasing
function of this contrast. Consequently, the role of rotational inertia is especially important for determining the
range of admissible parameters for propagation to occur. In this context, a proof of existence and uniqueness
of antiplane Stoneley waves is also given.

Traditionally, Stoneley waves have been exploited in borehole seismics to determine the shear-wave veloc-
ities at different depths. Also, thin-film applications are possible, as it is demonstrated by Rokhlin et al. [27].
A pioneering application to non-destructive testing (NDT) is experimentally investigated in Hsieh et al. [13].
The recent monograph by Dal Moro [6] collects 14 real-life case study applications of surface and near-surface
waves, ranging fromgeophysics to civil engineering, fromgeotechnics tomoonquakes. Today, the investigation
of Stoneley waves is sustained by modern promising developments in the field of acoustic NDT, as recently
suggested by Ilyashenko [14]. This paper aims to add a further tool to the investigator, in the form of antiplane
interfacial waves reflecting the microstructure underneath the continuous media.

2 Two couple stress elastic perfectly bonded half-spaces

We consider two half-spaces, named A and B, perfectly bonded along a plane surface. We introduce a right-
handed Cartesian coordinate system (O, x1, x2, x3), whose axes are directed along the relevant unit vectors
(e1, e2, e3). The coordinate system is located in such a way that the plane x2 � 0 corresponds to the contact
surface between A and B; see Fig. 1.
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Fig. 1 Schematics of the two half-spaces, named A and B, perfectly bonded along the surface x2 � 0

Both half-spaces possess a microstructure, which is described within the theory of linear couple stress (CS)
elasticity. Their relevant properties are henceforth denoted by the superscript k ∈ {A, B}.

The stress state in each half-space depends not only on the classical Cauchy force stress tensor sk, but
also on the couple stress tensor μk. The latter characterizes the polar behaviour of the material such that, for
any directed surface of unit normal nk, it determines the internal reduced couple vector qk, acting across that
surface,

qk � (μk)Tnk, (1)

where the superscript T denotes the transposed tensor. sk is conveniently decomposed into its symmetric and
skew-symmetric part,

sk � σ k + τ k, σ k � Sym sk, τ k � Skw sk, (2)

whereas μk is decomposed into deviatoric and spherical parts,

μk � μk
D + μk

S, μk
S � 1

3

(
μk · 1)1, (3)

wherein a dot denotes the scalar product, and 1 is the rank-2 identity tensor.
In each half-space, occupying the volume Bk, the internal virtual power may be expressed as follows (see,

e.g. Koiter [15] and Ottosen [24]):
∫

Bk

(
σ k · grad u̇k + μk · grad Tϕ̇k

)
dV, (4)

where grad denotes the gradient operator and a superposed dot denotes time differentiation. Here, uk and ϕk

are the displacement and the micro-rotation vector fields, which are related as follows:

ϕk � 1

2
curl uk, ⇔ ϕk

i � 1

2
Ei j pu

k
p, j , (5)

where it is understood that a subscript comma denotes partial differentiation, i.e. ui, j � (grad u)i j � ∂ui/∂x j ,
and E is the rank-3 Levi-Civita permutation tensor. Summation over twice repeated subscripts is assumed
throughout.

We introduce the classical linear strain tensor

εk � Symgrad uk, (6)
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alongside the torsion–flexure (or wryness) tensor

χ k � gradϕk. (7)

By combining Eqs. (4), (5) and (7), we infer that the torsion–flexure tensor is purely deviatoric, and the couple
stress tensor, to all intents and purposes, may be replaced by the sole deviatoric part μD. To light notation,
hereinafter we write μk with the understanding that μk

D is meant.

2.1 Constitutive equations

We assume hyperelastic isotropic material behaviour for both the half-spaces A and B. Accordingly, in each
of these we define a free-energy density U k(εk, χ k), such that the following constitutive relations hold:

σ k � ∂U k

∂εk
� 2Gkεk + Λk(tr εk)1, (8.1)

μk � ∂U k

∂χ k
� 2Gk(lk)2

[
(χ k)T + ηkχ k

]
, (8.2)

where four material parameters are introduced for each space, namely the classical Lamé moduli, Λk and
Gk > 0, alongside lk > 0 and −1 < ηk < 1, characterizing the microstructure. Positive definiteness of the
free energy demands

3Λk + 2Gk > 0,

as illustrated by Gourgiotis and Bigoni [12], where necessary conditions for wave propagation are given, with
emphasis on antiplane deformations.

2.2 Equations of motion

In each half-space, the equations of motion, in the absence of body forces, read

div sk � ρk ük, (9.1)

2axial τ k + divμk � J kϕ̈k, (9.2)

where (div sk)i � skpi,p. Here, ρ
k and J k ≥ 0 are the mass density and the rotational inertia per unit volume,

respectively. Besides, (axial τ k)i � 1
2Ei j pτ

k
j p denotes the axial vector attached to the skew-symmetric tensor

τ k, such that τ k
i j � Ei j p(axial τ k)p.

2.3 Antiplane shear deformations

We assume antiplane shear deformations, such that, in each half-space, the displacement field uk reduces to
the out-of-plane component only

uk
3(x1, x2, t),

and there is no dependence on the x3 coordinate.Within this framework and for homogeneousmedia, following
Nobili et al. [22], we get the governing equation in terms of displacement,

Gk
(
1
2 (l

k)2�̂�̂uk
3 − �̂uk

3

)
− J k

4
�̂ük

3 + ρkük
3 � 0, (10)

in which the symbol �̂ indicates the two-dimensional Laplace operator in x1 and x2. Equation (10) correctly
reduces to the corresponding expressions developed in Fan and Xu [8], Zhang et al. [35], and Zisis [36] in the
context of statics and in the absence of rotational inertia. Precisely in this form, Eq. (10) was first given by
Clebsch to describe the motion of a plate, including prestress and rotational inertia effects; see Gourgiotis and
Bigoni [12] and references therein.
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2.3.1 Reduced force traction vector and tangential part of couple stress traction

With Koiter [15], we introduce the reduced force traction vector pk acting across a surface with unit normal n,

pk � (sk)Tnk + 1
2gradμk

nn × nk, (11)

where μk
nn � nk · μknk � qk · nk and × denotes the cross-product between vectors. Similarly, for the couple

stress traction vector q̄k, only the tangential part can be really imposed on a boundary,

q̄k � (μk)Tnk − μk
nnn

k. (12)

Considering now the boundary surface x2 � 0 separating the two half-spaces, we have

nA � e2 � −nB,

so that the out-of-plane component of the reduced force traction and the in-plane components of the couple
stress traction read, respectively,

pA
3 � sA23 +

1
2μ

A
22,1, q̄A

1 ≡ μA
21, with q̄A

2 ≡ 0, (13.1)

for medium A, and

pB
3 � −(

sB23 +
1
2μ

B
22,1

)
, q̄B

1 ≡ −μB
21, with q̄B

2 ≡ 0, (13.2)

for medium B.

3 Nondimensional equations and time-harmonic solution

3.1 Nondimensional form of governing equations

We are now in a position to bring in the nondimensional form the governing equations of Sect.2, introducing
suitable normalizing quantities. Since the problem is symmetric under A ↔ B inversion, we can normalize
against either. For the sake of definiteness, we choose A. Thus,

ξ � x
ΘlA

is the new dimensionless set of coordinates. Similarly, we introduce the reference time T A � lA/cAs and let the
dimensionless time

τ � t

T A
.

Here, cAs � √
GA/ρA is the shear wave speed of CE for material A. In a similar fashion, T B � lB/cBs is the

reference time and cBs � √
GB/ρB the shear wave speed of CE for material B. It proves convenient to introduce

the ratios

β � lB

lA
, υ � T A

T B
, (14)

whereupon υβ � csB/csA. We observe that the limiting case in which the half-space B is constituted by a
classical elastic isotropic material, i.e. in the absence of a microstructure for B, can still be retrieved by taking

υ → +∞, β → 0, s.t. βυ < ∞. (15)

Substituting the thus introduced nondimensional variables in Eq. (10) lends the nondimensional governing
equations

��uA
3 − 2Θ2�uA

3 − 2Θ4

[
(�A

0 )
2

Θ2 �uA
3,ττ − uA

3,ττ

]

� 0, (16.1)
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��uB
3 − 2

Θ2

β2 �uB
3 − 2Θ4

[
(�B

0)
2

Θ2υ2β2�uB
3,ττ − 1

υ2β4 u
B
3,ττ

]

� 0, (16.2)

holding in A and B, respectively. Here, the symbol � indicates the two-dimensional Laplace operator with
respect to ξ1 and ξ2, whereas the dimensionless parameters �k

0 are defined as (see alsoMishuris et al. [20] Nobili
et al. [21]):

�k
0 � lkd

lk
with lkd � 1

2

√
J k

ρk
.

3.2 Time-harmonic solution

We consider time-harmonic and straight-crested antiplane waves moving in the sagittal plane (ξ1, ξ2):

uk
3(ξ1, ξ2, τ ) � W k(ξ1, ξ2) exp(−ıΩτ ), (17)

where ı is the imaginary unit andΩ � ωT A > 0 indicates the nondimensional time frequency. Substituting the
solution form (17) into Eqs. (16), we obtain the pair of meta-biharmonic partial differential equations (PDEs):

[�� − 2
(
1 − (�A

0 )
2Ω2)Θ2� − 2Ω2Θ4]WA � 0, (18.1)

[

�� − 2

(

1 − (�B
0)

2

υ2 Ω2

)
Θ2

β2 � − 2Ω2 Θ4

υ2β4

]

W B � 0. (18.2)

Equation (18.1) may be factored out as in Nobili et al. [21]
(� + δ2

)
(� − 1)WA � 0, (19)

provided that we make the proper choice for Θ , namely

Θ2 �
√(

1 − (�A
0 )

2Ω2
)2 + 2Ω2 − 1 + (�A

0 )
2Ω2

2Ω2 . (20)

It is easily seen that Θ is a bounded function of Ω , while δ is the wave number of shear horizontal (SH)
travelling bulk waves. The latter may be rewritten as

δ � 2δcrΘ
2, (21)

with

�A
0cr � 1√

2
, and δcr � �A

0crΩ � Ω√
2
.

Combining Eqs. (20) and (21), we obtain the connection

δ(Ω, �A
0 ) � 1

2δcr

[√(
1 − (�A

0 )
2Ω2

)2 + 2Ω2 − 1 + (�A
0 )

2Ω2
]
. (22)

This connection becomes simply �A
0 � �0

A
cr in the special case δ � δcr.

With such definitions, Eq. (18.2) may be factored as
(� + δ21

)(� − δ22
)
W B � 0, (23)

where we have let the dimensionless wave numbers for bulk travelling and bulk evanescent waves in medium
B

δ21 � δψ

β2υ2 , δ22 � δ

β2ψ
.
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In particular, ψ may be interpreted as a generalization to material B of the parameter δ,

ψ � υ δ

(
Ω

υ
, �B

0

)
� υ2

2δcr

⎡

⎣

√(
1 − (�0B)2

Ω2

υ2

)2

+ 2
Ω2

υ2 − 1 + (�0
B)2

Ω2

υ2

⎤

⎦. (24)

Indeed, in the special case of a single homogeneous full-space, that is for β � υ � 1, we have ψ � δ. The
following asymptotics hold:

ψ → √
2Ω(�0

B)2 + O(υ2), as υ → 0,

ψ → δcr + O(υ−2), as υ → +∞.

We introduce the shorthands

(κ1, κ2) � βυ(δ1, δ2),

whereby we obtain the bulk travelling and bulk evanescent (dimensional) wavespeeds for material B,

cBSH � ΩΘ

κ1
cBs , cBiSH � ΩΘ

κ2
cBs . (25)

The corresponding wave numbers δ1,2 may be used in (25) instead of κ1,2 when expressing the corresponding
bulk wavespeeds in terms of cAs .

In the absence of a microstructure for B, that is in the limit (15), we have κ1 → √
δδcr, κ2/υ → √

δ/δcr,
and we retrieve the classical bulk SH wavespeed

cBSH → ΩΘ√
δδcr

cBs � cBs .

For the boundary conditions, Eq. (13.1) takes on the form

pA
3 � − GA

2Θ3

[(
δ2 − 1

)
WA

,2 + (ηA + 2)WA
,112 +WA

,222

]
, (26.1)

q̄A
1 � GAlA

Θ2

(
WA

,22 − ηWA
,11

)
, (26.2)

while Eq. (13.2) becomes

pB
3 � − GB

2Θ3

{

β2[(ηB + 2
)
W B

,112 +W B
,222

]
+

κ2
2

υ2

(
ψ2

υ2 − 1

)
W B

,2

}

, (27.1)

q̄B
1 � GBlB

Θ2 β2(W B
,22 − ηBW B

,11

)
. (27.2)

In the absence of a microstructure for B, Eq. (27) reproduces the classical result

pB
3 � GB

Θ
W B

,2, and q̄B
1 � 0. (28)
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4 Antiplane Stoneley waves

For guided waves propagating along the interface ξ2 � 0, we take

W k(ξ1, ξ2) � lAwk(ξ2) exp(ıκξ1),

wherein we have introduced the shorthand κ � ΘK , with K � klA denoting the dimensionless (spatial) wave
number in the propagation direction ξ1. Moreover, we define the dimensional phase speed in the propagation
direction,

c � ω

k
� Ω

κ
ΘcAs . (29)

The general decaying solution of Eq. (19) is

wA(ξ2) � a1 exp(A1ξ2) + a2 exp(A2ξ2), (30)

and for Eq. (23)

wB(ξ2) � b1 exp(−B1ξ2) + b2 exp(−B2ξ2), (31)

where the coefficients a1,2 and b1,2 are four amplitudes to be determined. Here, we have let the decay indices

A1 �
√

κ2 − δ2, A2 �
√

κ2 + 1, (32)

for material A, and, similarly,

B1 �
√

κ2 − δ21, B2 �
√

κ2 + δ22, (33)

formaterial B. Here, the square root ismade definite by taking the branch that corresponds to the positive square
root of any positive real argument. (Equivalently, we may demand that A1,2 and B1,2 → √

p, as κ � p → +∞
real and positive.) Branch cuts for the square root are taken parallel to the imaginary axis in anti-symmetric
fashion; see the discussion in Noble [23, §1.1]. It is emphasized that this is not the choice for the cuts taken
in Cagniard [4], where a finite cut is considered instead. However, according to this choice, we get an odd
real-valued function along the real axis, and this jeopardizes decay. At any rate, Rayleigh and Stoneley waves
need to be slower than the slowest bulk mode.

Clearly, ı A1,2 and ı B1,2 are the (dimensionless) wave numbers in the thickness direction ξ2, in the relevant
material. Consideration of the dimensional wave numbers squared,

− A2
1

(lA)2Θ2 � −k2 +
δ2

(lA)2Θ2 � −k2 +
1

(lA)2

(√
1 + 2(lA)2ω2(cAs )−2 − 1

)
,

− A2
2

(lA)2Θ2 � −k2 − 1

(lA)2Θ2 � −k2 − 1

(lA)2

(√
1 + 2(lA)2ω2(cAs )−2 + 1

)
,

matches favourably with the corresponding results given by Fan and Xu [8]. As discussed in Nobili et al. [22],
for κ > δ, the solution (30) corresponds to a localized travelling wave moving slower than the corresponding
bulk wave in material A. Similarly, for κ > δ1, the solution (31) corresponds to a localized travelling wave
moving slower than the corresponding bulk wave in material B.
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4.1 Rayleigh function

We define the general form of the Rayleigh function

R0(κ, λ1, λ2, η) � (ηκ2 − λ1λ2)
2 − λ1λ2(λ1 + λ2)

2, (34)

that is valid for either half-space, provided that we substitute λ1,2 with the relevant decay index along ξ2.
For instance, for the half-space A, we have λ1,2 � A1,2, η � ηA, and we get RA

0 (κ) � R0(κ, A1, A2, η
A).

Multiplication by (A1 − A2) lends the Rayleigh function in the form already exposed in Nobili et al. [21, 22],

RA(κ) � (A1 − A2)R
A
0 (κ) � [

(1 + ηA)κ2 + 1
]2
A1 − [

(1 + ηA)κ2 − δ2
]2
A2. (35)

In similar fashion, for the half-space B, we have RB
0 (κ) � R0(κ, B1, B2, η

B), and multiplication by (B1 − B2)
gives

RB(κ) � [
(ηB + 1)κ2 + δ22

]2
B1 − [

(ηB + 1)κ2 − δ21
]2
B2, (36)

which is a generalization of Eq. (35), wherein the role of the material parameters is not concealed behind the
scaling.

We now prove the existence of at least a real zero for the Rayleigh function. On the real axis,

R0(δ, λ1, λ2, η) � η2δ4 ≥ 0, (37)

for the travelling bulk wave number κ � δ, while we have the asymptotics

R0(κ, λ1, λ2, η) � −(3 + 2η − η2)κ4 + O(κ2), for κ → +∞, (38)

whereupon the Rayleigh function eventually becomes real negative. We conclude, by continuity, that at least a
real root is admitted. This already proves the existence of antiplane Rayleigh waves. In fact, we can prove, by
the argument principle, that three pairs of central-symmetric roots are present: one real pair corresponding to
Rayleigh waves, one purely imaginary pair, corresponding to Rayleigh-like waves, and a third pair of complex
conjugated roots, as discussed in Nobili et al. [22]. This proof is given in “Appendix A”.

5 Frequency equation for antiplane Stoneley waves

For perfect adhesion between the half-spaces at the joining surface ξ2 � 0, we enforce the boundary conditions

wA(0) � wB(0), (39.1)

dwA

dξ2
(0) � dwB

dξ2
(0), (39.2)

q̄A
1 (0) � q̄B

1 (0), (39.3)

pA
3 (0) � pB

3(0). (39.4)

Plugging the solutions (30), (31) into the boundary conditions (39) lends a homogeneous system of linear
algebraic equations in the unknown amplitudes a1,2, b1,2. This system admits non-trivial solutions inasmuch
as the following secular (or frequency) equation is satisfied:

Δ(κ) � 0, (40)

in which Δ is the determinant of the linear system. Introducing the ratio Γ � GB/GA, the determinant in Eq.
(40) may be written as

Δ(κ) � Γβ2(A1 − A2)(B1 − B2)D0(κ), (41)

with

D0(κ) � 1

Γβ2 R
A
0 (κ) − 2D1(κ) + Γβ2RB

0 (κ), (42)
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where RA
0 (κ) and RB

0 (κ) are the Rayleigh functions for the relevant half-space and D1(κ) is the coupling term.
For the latter, we have

D1(κ) � (
ηAκ2 − A1A2

)(
ηBκ2 − B1B2

)

+ 1
2 (A1A2 + B1B2)(A1 + A2)(B1 + B2). (43)

Here, dependence on Ω by δ, δ1, and δ2 is implicitly assumed. Equation (42) is the CS counterpart of the
Rayleigh function given by Cagniard [4, Eq. (4–26)], valid for isotropic CE media.

The Rayleigh function (42) exhibits symmetry with respect to A ↔ B inversion, recalling that we also
have Γ ↔ Γ −1 and β ↔ β−1. Moreover, when A � B, that is

(Γ, β, υ, ψ, ηk) � (1, 1, 1, δ, ηA � ηB),

we obtain

D0,A�B(κ) � −4A1A2(A1 + A2)
2,

whence propagation is possible only for A1,2 � 0, that amounts to finding bulk waves. Similarly, in the absence
of either half-space, that is for Γ � 0 or Γ → ∞, we find the Rayleigh function of the remaining half-space,
that is RA

0 (κ) or R
B
0 (κ), respectively.

6 Antiplane Stoneley waves

We now prove the condition for the existence of a real root for the Stoneley frequency function. We have the
asymptotics

D0(κ) � −
(
3 − ηB +

ηA + 1

β2Γ

)[
3 − ηA + β2Γ

(
ηB + 1

)]
κ4 + O(κ2),

as κ → ∞, (44)

whence, on the real axis, the frequency equation eventually becomes negative. For a given triple δ, δ1and δ2,
D0(κ) is monotonically decreasing, and the possibility of a real root for the frequency equation hinges on the
fact that

D0(δM ) ≥ 0, δM � max(δ, δ1). (45)

Condition (45) is necessary for the existence of travelling antiplane Stoneley waves. Equality provides a cuton
frequency Ωcuton beyond which propagation is possible. In “Appendix B”, this simple analysis is put into the
wider perspective of determining existence and uniqueness of antiplane Stoneley waves. From it, we see that
the following scenarios are possible:

– forΩ < Ωcuton, condition (45) is not satisfied: the number of roots is 4, two complex-conjugated, located in
the second/fourth quadrant, and two opposite purely imaginary. As discussed in Nobili et al. [22], complex
roots represent waves decaying/exploding in every direction and have little significance in unboundedmedia.
Conversely, purely imaginary roots represent Stoneley-like waves travelling in the interior of the medium
and decaying/exploding along the interface. Such roots are important in semi-infinite situations.

– For Ω > Ωcuton, condition (45) is satisfied: the number of roots is 6, and, alongside the previous four zeros,
a pair of real opposite roots, corresponding to travelling Stoneley waves, appears.

Figure 2 shows that the cuton frequency is a monotonically increasing function of Γ exhibiting a vertical
asymptote. Consequently, a critical value Γc exists for the ratio Γ , beyond which propagation is blocked.
Indeed, for large values of Γ , the root landscape, as it appears from the argument principle, becomes more
involved, and, for instance, real (and purely imaginary) roots are eventually lost. A full analysis of all possible
scenarios rests outside the scope of this paper. We merely observe that, for a given Ω , the condition (45)
demands positivity of a quadratic function of Γ , generally concave upwards, which intersects the Γ -axis to the
right of the origin, in the light of (37), at ΓΩ < Γc; see Fig. 3. As a consequence, a real interval of admissible
shear modulus ratios is highlighted, 0 < Γ < ΓΩ , which accommodates propagation at and beyond the
specified frequency Ω . Figure 3 supports the observation that this admissible interval increases with Ω up to
the asymptotic value Γc. In fact, for large Ω , the quadratic positive real root stabilizes very close to Γc.
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Fig. 2 Cuton frequency as a function of the ratio Γ between the shear moduli of media A and B (solid, black) and vertical
asymptote (dashed, red) (color figure online)

Fig. 3 The root ΓΩ defines the admissible range Γ < ΓΩ for the propagation of antiplane Stoneley waves to occur at a given
frequency: Ω � 1 (solid, black) and Ω � 100 (dashed, red). We have taken the parameter set: �B

0 � 0.5, β � υ � 1.1, ηA � 0.8,
ηB � 0.5 and �A

0 � 0.5 (color figure online)

Adifferent situation developswhen rotational inertia inmediumA is smaller than inmediumB, for example,
in our parameter set, we consider �A

0 � 0.3. Then, δ1 growswithΩ faster than δ and eventually overtakes it. This
behaviour reflects itself in that the cuton function exhibits a horizontal asymptote at Ωcuton,asym ≈ 3.20663,
corresponding to this overtaking; see Fig. 4. Upon reaching Ωcuton,asym from below, the quadratic function of
Γ eventually reverses convexity and moves above the Γ -axis: thus, propagation is admitted for any Γ , as in
Fig. 5a. BeyondΩcuton,asym , the assumption δ > δ1 is violated: a new admissibility interval may be determined
considering the roots Γ1Ω and Γ2Ω of D0(δ1). However, given that convexity has reversed, propagation now
occurs outside the interval [Γ1Ω, Γ2Ω ]. We thus see, in contrast to CE, that propagation of antiplane Stoneley
waves is largely possible, even when the material properties are significantly different.

Finally, we observe that the case ηA � 0 is special, for then intersection with the ordinate axis occurs at
the origin, that is a double root for Γ , i.e. ΓΩ � 0. However, we have already proved that, in this situation,
Stoneley waves collapse into bulk waves.

7 Dispersion curves

Travelling wave solutions are possible inasmuch as a set of real solution pairs (κS, ΩS) may be found for
the frequency Eq. (41). This is possible in the open interval κ > δM , whence we retrieved the well-known
fact, already pointed out by Cagniard [4], that Stoneley waves are slower than the slowest bulk wave. In our
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Fig. 4 Cuton frequency as a function of the shear modulus ratio Γ for small values of rotational inertia (�A
0 � 0.3). We see

that cuton, as a function of Γ , possesses a horizontal asymptote and a second branch appears (red, dashed) which is obtained
considering κ � δ1 > δ in condition (45) (color figure online)

(a) (b)

Fig. 5 When rotational inertia of medium A, �A
0 � 0.3, is less than the rotational inertia of medium B, �B

0 � 0.5 , we find that
Stoneley waves propagate (a) within the finite admissible range (0, ΓΩ ] for Γ at Ω � 1 (solid, black); this interval grows and
eventually becomes unbounded upon reaching the asymptotic frequency Ω � 3.21 (dashed, red). Beyond this frequency (b), we
have δ1 > δ and admissibility demands D0(δ1) ≥ 0, which sets the unbounded admissibility interval (0, Γ1Ω ]∪ [Γ2Ω, ∞) (color
figure online)

example, δ > δ1, whence, in the light of (25), δ1 is the wave number of the fastest bulk wave while, in its
neighbourhood, sits the fastest Rayleigh wave κ1R . Also, we can show that Stoneley waves are faster than the
slowest Rayleigh wave, whose wave number is κR � δ. Indeed, looking at (42), we see that, for κ � κR , the
first term drops out (by definition of κR) and only negative terms remain, in the light of the Rayleigh function
RB(κ) being monotonically decreasing (and zero at κ1R � δ1). A solution κS for (42), thought of as a function
of Γ , is possible only inasmuch as RA(κS) > 0, and this occurs only for κS < κR . We thus prove the result
already observed in Hsieh et al. [13] and in Lim and Musgrave [17]. Indeed, following the latter, “for all
geometries examined [in the context of anisotropic CE], the interface wave velocity is found to lie between
the higher free surface (generalized Rayleigh) wave velocity and the slowest bulk wave velocity”.

In the following, for the sake of definiteness, when plotting dispersion curves we assume the parameters
Γ � 0.1, υ � β � 1.1, �A

0 ≤ �B
0 � 0.5, and ηB � 0.5, whereby bulk (and Rayleigh) waves are faster in B, i.e.

δ1 < δ. Figure 6, presents dispersion curves for Stoneley waves expressing the wavespeed cS as a multiple of
the shear bulk wave speed of CE, cAs , as in Eq. (29).

Similarly to what occurs for Rayleigh waves [21, 22], Stoneley waves are initially dispersive, yet they
soon develop a horizontal asymptote that is located above (below) the shear wave speed of CE, according to
�A
0 ≷ �A

0cr. Therefore, the dispersive nature of the wave is restricted to small wave numbers. However, in the
absence of rotational inertia in the half-space A (recall Γ is small), that is for �A

0 � 0 (see Fig. 6a)), the curve



Antiplane Stoneley waves 1219

(a) (b)

(c) (d)

Fig. 6 Dispersion curves for Stoneley waves where the phase speed cS is expressed as a multiple of cAs , that is the SH bulk wave
speed of classical elasticity for medium A (Γ � 0.1, υ � β � 1.1, �B

0 � 0.5, and ηB � 0.5)

is monotonically increasing and dispersion is always warranted. As already discussed, bulk non-dispersive
waves, moving with the constant speed cAs , are found for either ηA � 0 or �A

0 � �A
0cr.

So far, the behaviour of Stoneley waves is very similar to that of Rayleigh waves (see Nobili et al. [21, §5]),
of which they are perturbations through Γ . However, in contrast to Rayleigh waves, a cuton frequency is met
below which propagation is prevented. Therefore, Stoneley waves present a zero-frequency block-band, and
their propagation follows an optical branch. Figure 7 illustrates the role of Γ and ηA in determining the cuton
frequency. Also, propagation is possible below a critical value ΓΩ (case δ > δ1) and outside the finite interval
Γ1Ω < Γ < Γ2Ω (case δ1 > δ), as discussed in §6. Particularly, in significant contrast to CE, Stoneley wave
propagation occurs in CS elasticity under pretty general conditions, well beyond Wiechert’s conditions, and
they appear to be the rule rather than the exception.

Still, similarly to Rayleigh waves, Stoneley waves are perturbations of the travelling bulk modes. Indeed,
following Nobili et al. [22], a convenient approach to the determination of Stoneley wave numbers is obtained
expanding Eq. (40) around δ (or δ1, depending which is the largest) setting

κs � δ(1 + ε2S), εS � 1.

Solutions of the resulting linear equation in εS ,

d2 + a1εS � 0, (46)

are plotted in Fig. 8 against the numerically evaluated frequency spectra. It is seen that approximated and “exact"
spectra perfectly overlap in the whole range considered. The coefficients d2 and a1 are given in “Appendix C”.

8 Conclusions

Propagation of antiplane Stoneleywaves is investigatedwithin the context of couple stress theory, also account-
ing for rotational inertia. This investigation, which, to the best of our knowledge, has no counterpart in the
available literature, attempts to discuss the role of material microstructure in developing new pathways for
energy transport at the interface between two media in contact. Indeed, it is shown that antiplane Stoneley
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Fig. 7 Dispersion curves for antiplane Stoneley waves at Γ � 0.1 (solid), Γ � 0.01 (dots), and Γ � 0.001 (dashed)

Fig. 8 Linear approximation (46) (dashed, red) superposed onto the numerically evaluated frequency spectrum (solid, black) for
�A
0 � 0.3 and �A

0 � 0.5. Curves perfectly overlap in the considered domain (color figure online)

waves are supported under very general conditions, and this outcome stands in remarkable contrast with the
findings of classical elasticity, wherein antiplane Stoneley waves are not supported altogether and in-plane
Stoneley waves are possible only under severe conditions on the ratio between the material constants of the
media in contact. As an important special case of these, Wiechert’s conditions demand that material pairs have
the same shear wave speed.

The question of existence and uniqueness of such waves is also addressed by the argument principle.
It is found that, besides travelling waves, evanescent and decaying/exploding modes are also admitted, in a
complex wave pattern. Interestingly, propagation is possible only beyond a threshold frequency, for which an
explicit expression is given. In general, this threshold frequency is an increasing function of the elastic contrast
between the media in contact. Thus, it appears that lack of propagation for dissimilar materials, typical of
classical elasticity, is relaxed into high-frequency propagation by the presence of the microstructure. As a
result, rotational inertia plays an important role as it affects the admissibility range for propagation.

We show that Stoneley waves, just like Rayleigh waves, are perturbations of the relevant bulk modes.
Thus, antiplane Stoneley waves are perturbations of SH bulk waves. Consequently, an approximated linear
(in the wave number) expression for locating Stoneley roots is given, which proves extremely accurate, when
compared to the numerical solution, in a wide frequency range. The possibility that antiplane Stoneley waves
may propagate under very broad conditions possesses great importance in seismology and in non-destructive
testing of materials. Indeed, it provides a simple tool for probing the microstructural properties of the materials
in contact.
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Appendix

Appendix A: Proof for the number of roots of the Rayleigh function

We determine the number of zeros of (34) in the cut complex plane by the argument principle; see Beardon [3].
To fix ideas, we give the proof for RA(κ), but the argument easily extends to RB(κ). We construct the mapping
of the simple curve γ by the Rayleigh function, RA(γ ), and count its index (or winding number). Looking at
Fig. 9, we see that γ consists of the circle γR of arbitrarily large radius R, together with the loops γ±δ around
the centrally symmetric pair of cuts [±δ,±δ ∓ ı∞) and the loops γ±ı around [±ı,±ı∞). By the asymptotics
(38), we infer that, when moving along γR , the image point makes four complete turns around the origin. We
now turn to the loops around the cuts, and, in the light of the central symmetry property, only loops sitting in
either half-plane are considered, and the resulting winding number is then doubled. On the loop γ−ı , we have
A1 and A2 purely imaginary, whence Eq. (34) remains in the same form but now in terms of real numbers. In
the limit as this loop shrinks down to the cut, γ−ı is mapped onto an open curve approaching the real line from
above, i.e. from positive imaginary numbers. Conversely, the loop γδ is mapped onto an S-shaped open curve

Fig. 9 Simple curve γ (green, solid) whose mapping by the Rayleigh function RA(γ ) is used to determine the number of Rayleigh
roots. Branch cuts (red, dashed) and branch points are chosen to warrant depthwise decay of the solution (30) (color figure online)
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Fig. 10 Simple curve γ (green, solid) whose mapping by the Stoneley frequency equation D0(γ ) is used to determine existence
and uniqueness of antiplane Stoneley roots. Here, to fix ideas, we have assumed δ1 < δ and δ2 < 1 (color figure online)

as in Fig. 11, which intersects the real axis three times, named d1 < d2 < d3. In particular, d1 < 0 is located
to the left of the origin, while d2 � RA(δ) � δ4η2 ≥ 0 is always to the right. Together, D(γ−ı ) ∪ D(γ−ıδ)
form a non-simple curve winding once around the origin, that is closed when including the points at infinity.
We conclude that six order 1 roots are expected.

Roots should be sought among the zeros of the bi-quartic polynomial

η4κ8 + 2(1 + η)κ6 +
(
δ22 − δ21

)
(2η + 1)κ4 − (

2ηδ22δ
2
1 + δ41 + δ42

)
κ2 + δ21δ

2
2

(
δ22 − δ21

) � 0.

Basically, this is a singularly perturbed polynomial equation inasmuch as η is assumed to be small. In this
context, we observe that for the case η � 0, corresponding to the strain gradient theory, Rayleigh waves
collapse into bulk waves as Eq. (34) reduces to

λ1λ2
(
λ22 − λ21

)
,

whose real roots correspond to bulk waves λ1,2 � 0. In fact, Rayleigh roots are generally perturbations around
either bulk wave speed; see Nobili et al. [22]. It is observed that in Nobili et al. [22] a different choice is made
for the cuts, according to which the complex-conjugated pair of zeros may fall outside the Riemann sheet. In
fact, with our choice for the cuts, existence of all roots is always warranted.

Appendix B: Proof for the number of roots of the Stoneley frequency function

To this aim, we enlarge our viewpoint and think of D0 as a function of the complex variable s. Then, D0(s)
appears centrally symmetric, i.e. D0(s) � D0(−s). We determine the number of zeros of D0(s) in the cut
complex plane by the argument principle. Accordingly, we determine the index (winding number) of the curve
D0(γ ), where γ � γR ∪ γ±δ ∪ γ±δ1 ∪ γ±ı is the simple curve shown in Fig. 10. Here, to fix ideas, we assume
δ1 < δ and δ2 < 1.

When Γ is small enough, the following analysis resembles that given for the Rayleigh function. By the
asymptotics (44), as the point κ moves on the curve γR , its mapping D0(κ) makes four complete turns about
the origin, whence the index is 4.

As in Fig. 11, γδ is mapped into an open loop having three intersections with the real axis, d1 < 0, d2 and
d3 > 0, with d2 � D0(δ). The explicit expression for d2 is given in the Appendix. In contrast, d1 and d3 may
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(a) (b)

Fig. 11 Image by D0(s) of the loop γδ for Ω < Ωcuton (left, index − 1
2 ) and Ω > Ωcuton (right, index 1

2 ). The dashed line is the
common asymptote for the curve at infinity

Fig. 12 Image by D0(s) of the loop γ−ı (index 1
2 )

be found numerically imposing the condition I[D0(δ ∓ ε − ı y)] � 0, respectively, with ε → 0+ and y > 0.
When Γ is small enough, this loop looks just like the S-shaped curves encountered in the Rayleigh case, but,
unlike there, its intersection d2 with the real axis is not necessarily positive. Indeed, this loop has index − 1

2
inasmuch as d2 < 0, that occurs for small values of Ω . In this situation, D0(s) possesses two pairs of roots:
a complex-conjugated pair and a purely imaginary pair. Upon increasing Ω , the cuton frequency Ωcuton is
reached such that d2 � 0 and the real root κS is located precisely at the bulk wave number δ. In consideration
of the fact that δ is a monotonically increasing function of Ω and so is D0(Ω), for Ω > Ωcuton we have that
D0(γδ) winds around the origin as in Fig. 11b. Thus, we find three pairs of roots: a complex-conjugated pair,
a purely imaginary pair, and a real pair.

Similarly, γδ1 is mapped onto a loop closed at infinity which never encircles the origin and contributes
nothing to the index. Finally, the loop γ−ı is mapped onto the real axis from above (i.e. from the side of positive
imaginary part) moving from left to right; see Fig. 12. This curve brings an index 1

2 regardless of Ω .

Appendix C: Linear approximation to the cuton frequency

The analytic expressions of the coefficients in the linear approximation (46) are

d2 � β2Γ

[(√(
δ2 − δ21

)(
δ2 + δ22

) − δ2ηB

)2
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−
√(

δ2 − δ21

)(
δ2 + δ22

)
(√

δ2 − δ21 +
√

δ2 + δ22

)2
]

+
δ4(ηA)2

β2Γ
− 2δ4ηAηB + 2

√(
δ2 − δ21

)(
δ2 + δ22

)
δ2ηA

−
√(

δ2 + 1
)(

δ2 − δ21

)(
δ2 + δ22

)
(√

δ2 − δ21 +
√

δ2 + δ22

)
,

and

a1 �
√
2δ

β2Γ

{

δ2
[
−2β2Γ

(√
δ2 − δ21 +

√
δ2 + δ22 − ηB

√
δ2 + 1

)
−

√
δ2 + 1(2ηA + 1)

]

− β2Γ
[√

δ2 − δ21δ
2
2 +

√
δ2 − δ21 − δ21

√
δ2 + δ22

+
√

δ2 + δ22 + 2
√(

δ2 + 1
)(

δ2 − δ21

)(
δ2 + δ22

)] −
√

δ2 + 1

}

.

Naturally, in the special case Γ → 0, we retrieve the result already obtained for Rayleigh waves in Nobili
et al. [22].
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