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Abstract A finite-element model is presented based on the four-variable shear deformation refined theory
for active vibration control of a functionally graded carbon nanotube-reinforced composite spherical panel
with integrated piezoelectric layers, acting as an actuator and a sensor. The linear distribution of the electric
potential across the thickness of the piezoelectric layer and different distribution types of carbon nanotubes
through the thickness of the layers are considered. The weak form of the governing equation is derived using
Hamilton’s principle, and a four-node nonconforming rectangular element with eight mechanical and two
electrical degrees of freedom per node is introduced for discretising the domain. A constant velocity feedback
approach is utilised for the active control of the panel by closed-loop control with a piezoelectric sensor and
actuator. The convergence and accuracy of the model are validated by comparing numerical results with data
available in literature. Some new parametric studies are also discussed in detail.

1 Introduction

Since they were invented by Iijima in 1991, carbon nanotubes (CNTs) have become a potential nanostructured
material owing to their distinct mechanical and thermal properties and good electrical conductivity. Stud-
ies of their mechanical response have attracted the attention of many scientists [1–4]. Functionally graded
carbon-nanotube-reinforced (CNTR) composite (FG-CNTRC) materials provide new advantages for compos-
ite materials. In FG-CNTRC, CNTs are designed to grade with specific rules along with desired directions
within an isotropic matrix to enhance the mechanical properties of the structures. The addition of CNTs
improves the mechanical, electrical, and thermal properties of the structures. In addition, the integration of
laminated composites with piezoelectric materials provides structures with superior mechanical properties of
composite materials and the capability to sense and adapt their static and dynamic responses. It can control
the shape, size, vibration, and stability of these structures because of their direct and converse piezoelectric
effects.

In the past few years, many analytical and numerical methods have been proposed for analysing the
mechanical behaviours of FG-CNTRC structures. Using the element-free improved moving least-squares
(IMLS)-Ritzmethod, Zhang et al. investigated the nonlinear bending response [5–8], vibration response [9–13],
and dynamic response [14, 15] of FG-CNTRC plates and shells. Using the first-order shear deformation theory
(FSDT) and kp-Ritzmethod, Lei et al. presented static, large deflection, and free vibration analysis of laminated
FG-CNT plates [16, 17]. Based on a refined simplified two-variable n-th-higher-order plate theory, Bouazza
and Zenkour [18] presented an exact closed-form formulation for free vibration analysis of composite plates
reinforced with single-walled CNTs. Themechanical analysis of bulk CNTR nanocomposites and FG-CNTRC
structures can be found in a review by Liew et al. [19].
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FG-CNTRC materials are often combined with smart materials, such as magnetostrictive materials, piezo-
electric materials, electrostrictive materials, and shape memory alloys, to make intelligent structures.

The mechanical response of smart structures embedded with magnetostrictive layers has been discussed
frequently [20–24]. Embedded piezoelectric actuators or sensors can be used to monitor the health of the
structure and the structural integrity to adjust the shapes and focal points of space antennas and the contours
of aircraft and spacecraft. In addition, the mechanical behaviours of FG-CNTRC structures integrated with
piezoelectric patches or layers (PFG-CNTRC) have also been studied by several researchers. Using the three-
dimensional theory of elasticity, Alibeigloo investigated the static vibration responses of PFG-CNTRC plates
and cylindrical panels under mechanical uniform pressure, thermal load, and applied voltage field [25–29].
Rafiee et al. [30] analysed the nonlinear dynamic stability of PFG-CNTRC plates with initial geometric imper-
fections subjected to thermal and electrical loadings. Rafiee et al. [31] also investigated the large-amplitude
free vibration of immovable simply supported PFG-CNTRC plates based on FSDT and von Kármán geomet-
rical nonlinearity. Wu and Chang [32] investigated the 3D buckling problem of FG-CNTRC plates integrated
with piezoelectric sensors and actuators. Mohsen Nasihatgozar et al. [33] investigated the effects of the vol-
ume fraction of CNTs, geometrical characteristics, and two axial and biaxial loading types on the buckling
load of piezoelectric FG-CNTRC cylindrical panels based on the Donnell theory. Applying the Ritz energy
approach, Ansari et al. [34] presented an analytical solution procedure for the nonlinear postbuckling analysis
of PFG-CNTRC cylindrical shells subjected to combine electrothermal loading, axial compression, and lateral
loads. Using Chebyshev polynomials in the Ritz method, Kiani [35] investigated the free vibration behaviour
of FG-CNTRC plates with various mechanical and electrical boundary conditions. It was found that the natural
frequency of a plate with a closed circuit is always lower than that of a plate with open-circuit boundary condi-
tions. Kolahchi et al. [36] used the refined piezoelasticity zigzag theory and Hamilton’s principle to discretise
the governing equations for wave propagation in PFG-CNTRC plates. They found that the wave propagation
of the system can be controlled effectively by the voltage applied to the actuator and the magnetic field exerted
on the core. Setoodeh et al. [37] developed a model based on higher-order shear deformation theory and the
differential quadrature method for the free vibration analysis of a PFG-CNTRC quadrilateral spherical panel.
Using the formulation based on nonuniform rational B-spline basis functions, Nguyen-Quang et al. [38] pro-
posed an extension of the isogeometric approach for the dynamic response of laminated PFG-CNTRC plates.
Selim et al. [39] performed an impact analysis of PFG-CNTRC plates using the element-free IMLS-Ritz model
with Reddy’s higher-order shear deformation theory. By optimising the voltage distribution for the open-loop
control and the displacement feedback control gain for the closed-loop control, Zhang et al. [40] presented an
optimal shape control of FG-CNTRC plates with piezoelectric patches bonded at the top and bottom surfaces
acting as actuators and sensors. Tran et al. [41, 42] developed a new four-variable shear deformation refined
plate theory for the static and free vibration analysis of PFG-CNTRC plates.

There have been a limited number of studies regarding the active vibration control of FG-CNTRC structures
with integrated piezoelectric actuators and sensors. Based on Reddy’s higher-order shear deformation theory,
Song et al. [43] presented the active vibration control of FG-CNTRC plates with surface-bonded piezoelectric
actuators and sensors. Song et al. [44] also studied the active vibration control of an FG-CNTRC cylindrical
shell with outer and inner surfaces with bonded piezoelectric patches acting as the actuator and sensor. Sharma
et al. [45] implemented a finite-element model with a nonlinear fuzzy logic controller to perform active
vibration control of FG-CNTRC plates. Zhang et al. [46] presented a solution based on Reddy’s third-order
shear deformation theory for active flutter control of CNTRC cylindrical panels in supersonic airflow. Selim
et al. [47] presented a novel element-free IMLS-Ritz model based on Reddy’s higher-order shear deformation
theory for the active vibration control of FG-CNTRC plates with two positions of piezoelectric sensor and
actuator layers.

Reviewing the literature reveals that various computational methods have been used to investigate the
dynamic characteristics of FG-CNTRC structures integrated with a piezoelectric layer; however, there is no
work available on the free vibration behaviour and active vibration control of PFG-CNTRC spherical shell
panels. Therefore, in this study, a finite-element model based on the four-variable shear deformation refined
theory for active vibration control of an FG-CNTRC spherical panel with an integrated actuator and sensor was
developed. The extended rule of the mixture was used to estimate the material properties of the CNT-reinforced
composite panel, and the electric potential was assumed to be a linear function through the thickness of each
piezoelectric layer. The domain was discretised by a four-node nonconforming rectangular element with eight
mechanical and two electrical degrees of freedom per node. A feedback control algorithm was used to achieve
the mechanism of active control of the panel, and the Newmark method was employed to calculate the dynamic
response of the hybrid spherical shell panels. The influence of material and geometry parameters, type of load,
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and feedback control gains on the dynamic response of the hybrid spherical panel were also investigated and
are discussed in detail.

2 Formulations

Figure 1 shows a smart piezoelectric spherical panel of a rectangular planform with constant principal radii of
curvature R. The panel has three parts: the substrate, the piezoelectric layer at the top acting as an actuator, and
the piezoelectric layer at the bottom acting as a sensor. The thickness of the substrate is h, and the thickness
of each piezoelectric layer is h p. The panel is discretised into a mesh of an m ×n four-node flat shell element

(rectangular elements) using the surface equation of the spherical panel z � 1
2R

[(
x − a

2

)2 + (y − a
2

)2].

2.1 Effective material properties of FG-CNTRC layer

In this research, the laminated substrate of the panel was made of perfectly bonded FG-CNT layers.
As shown inFig. 2, five types of distribution ofCNTs—UD,FG-O,FG-A,FG-V, andFG-X—are considered

using the rule of mixture [48, 49]. Thus, the effective material properties of CNTRC can be written as [50]

E11(z) � η1VCNT(z)E
CNT
11 + Vm(z)E

m, (1)

η2

E22(z)
� VCNT(z)

ECNT
22

+
Vm(z)

Em
, (2)

η3

G12(z)
� VCNT(z)

GCNT
12

+
Vm(z)

Gm
, (3)

ρ(z) � VCNT(z)ρ
CNT + Vm(z)ρ

m, (4)

ν12 � V ∗
CNTνCNT12 + Vm(z)ν

m . (5)

where ECNT
11 and ECNT

22 are Young’s moduli of the SWCNTs; GCNT
12 is the shear modulus of the same; Em

and Gm represent the corresponding properties of the isotropic matrix; η1, η2, and η3 are the CNT/matrix

Fig. 1 Schematic of the smart piezoelectric FG-CNTRC spherical shell panel
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(a): UD (b): FG-A (c): FG-V

(d): FG-X (e): FG-O

Fig. 2 Types of CNT distribution

efficiency parameters; νCNT12 and νm are the Poisson’s ratios of CNT and matrix, respectively; Vm(z) is the
volume fraction of the matrix; and VCNT(z) is the volume fraction of the CNT, which is assumed to be as
follows [37]:

UD: VCNT(z) � V ∗
CNT, (6)

FG-X: VCNT(z) � 2V ∗
CNT

( |2z − zk − zk+1|
zk+1 − zk

)
, (7)

FG-V: VCNT(z) � 2V ∗
CNT

z − zk
zk+1 − zk

, (8)

FG-A: VCNT(z) � 2V ∗
CNT

zk+1 − z

zk+1 − zk
, (9)

FG-O: VCNT(z) � 2V ∗
CNT

(
1 − |2z − zk − zk+1|

zk+1 − zk

)
. (10)

Here, zk and zk+1 are the coordinates of the k-th layer from the reference plane (z � 0), and V ∗
CNT is the given

volume fraction of the CNT,

V ∗
CNT � wCNT

wCNT +
(
ρCNT/ρm

) − (
ρCNT/ρm

)
wCNT

, (11)

where wCNT is the mass fraction of the CNT, and ρCNT and ρm are the densities of the CNT and the matrix,
respectively.

2.2 Approximation of the mechanical displacement

According to the four-variable shear deformation refined plate theory [42, 51], the displacement components
u, v, and w of the flat shell element in the x-, y-, and z-directions of the local coordinate are expressed as

u(x, y, z, t) � u0(x, y, t) − z
∂wb(x, y, t)

∂x
− f (z)

∂ws(x, y, t)

∂x
;

v(x, y, z, t) � v0(x, y, t) − z
∂wb(x, y, t)

∂y
− f (z)

∂ws(x, y, t)

∂y
;

w(x, y, z, t) � wb(x, y, t) + ws(x, y, t) (12)

where u0 and v0 are the in-plane displacements in the x- and y-directions, respectively, wb and ws are the

bending and shear components of the transverse displacement, respectively, and f (z) � z
[
− 1

8 +
3
2

( z
h

)2] [42]
is the shape function of the distribution of the transverse shear strain and stress along with the structural
thickness. Equation (12) can be written in matrix form as

{d} � [H ]
{
d
}

(13)
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where

{d} � {
u v w

}T
, (14)

[H ] �
⎡
⎣
1 0 0 −z 0 0 − f (z) 0
0 1 0 0 −z 0 0 − f (z)
0 0 1 0 0 1 0 0

⎤
⎦, (15)

{
d
} � {

u0 v0 wb wb,x wb,y ws ws,x ws,y
}T (16)

where
{
d
}
is the nodal degree of freedom. In this study, a rectangular nonconforming bending element was

used. The generalised displacements u0 and v0 are C0 interpolated over an element as

u0(x, y, t) �
4∑

i�1

uoi (t)ψi (ξ, η),

v0(x, y, t) �
4∑

i�1

voi (t)ψi (ξ, η) (17)

where ψi are linear interpolation functions:

ψi � 1

4
(1 + ξξi )(1 + ηηi ), (i � 1, 2, 3, 4). (18)

Two components of the transverse displacement, wb and ws , are C1 interpolated by the following expres-
sion:

wb(x, y, t) �
4∑

i�1

[
wbgi1(ξ, η) + wb,x gi2(ξ, η) + wb,ygi3(ξ, η)

]
,

ws(x, y, t) �
4∑

i�1

[
wsgi1(ξ, η) + ws,x gi2(ξ, η) + ws,ygi3(ξ, η)

]
(19)

where gi j ( j � 1, 2, 3) are nonconforming Hermite cubic interpolation functions:

gi1 � 1

8
(1 + ξiξ)(1 + ηiη)

(
2 + ξiξ + ηiη − ξ2 − η2

)
,

gi2 � 1

8
ξi (ξiξ − 1)(1 + ηiη)

(
1 + ξ2i ξ2

)
,

gi3 � 1

8
ηi (1 + ξiξ)(ηiη − 1)

(
1 + η2i η

2). (20)

By using Eqs. (17) and (19), Eq. (13) can be rewritten as

{d} � [H ][Nm]
{
de
}

(21)

where

[Nm] � [
[Nm1] [Nm2] [Nm3] [Nm4]

]
, (22)

[Nmi ] �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψi 0 0 0 0 0 0 0
0 ψi 0 0 0 0 0 0
0 0 gi1 gi2 gi3 0 0 0
0 0 gi1,x gi2,x gi3,x 0 0 0
0 0 gi1,y gi2,y gi3,y 0 0 0
0 0 0 0 0 gi1 gi2 gi3
0 0 0 0 0 gi1,x gi2,x gi3,x
0 0 0 0 0 gi1,y gi2,y gi3,y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)
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The strains associated with the displacements are⎧⎨
⎩

εx
εy
γxy

⎫⎬
⎭ �

⎧⎨
⎩

u0,x
v0,y

u0,y + v0,x

⎫⎬
⎭ − z

⎧⎨
⎩

wb,xx
wb,yy
wb,xy

⎫⎬
⎭ − f (z)

⎧⎨
⎩

ws,xx
ws,yy
ws,xy

⎫⎬
⎭,

{
γyz
γxz

}
� g(z)

{
ws,x
ws,y

}
(24)

or in vector form

{ε} � {
ε0
} − z

{
εb
}

− f (z)
{
εs
}
,

{γ } � g(z)
{
γ s}. (25)

Substituting Eq. (21) into Eq. (25) yields

{ε} �
[
Bb
m

]{
de
}
,

{γ } � [
Bs
m

]{
de
}

(26)

where
[
Bb
m

]
� [ [

Bb
m1

] [
Bb
m2

] [
Bb
m3

] [
Bb
m4

] ] �
[
Ab
m

]
− z

[
Cb
m

]
− f (z)

[
Db
m

]
, (27)

[
Bs
m

] � [ [
Bs
m1

] [
Bs
m2

] [
Bs
m3

] [
Bs
m4

] ] � g(z)
[
As
m

]
(28)

in which

[
Ab
mi

]
�
⎡
⎣

ψi,x 0 0 0 0 0 0 0
0 ψi,y 0 0 0 0 0 0
ψi,y ψi,x 0 0 0 0 0 0

⎤
⎦, (29)

[
Cb
mi

]
�
⎡
⎣
0 0 gi1,xx gi2,xx gi3,xx 0 0 0
0 0 gi1,yy gi2,yy gi3,yy 0 0 0
0 0 gi1,xy gi2,xy gi3,xy 0 0 0

⎤
⎦, (30)

[
Db
mi

]
�
⎡
⎣
0 0 0 0 0 gi1,xx gi2,xx gi3,xx
0 0 0 0 0 gi1,yy gi2,yy gi3,yy
0 0 0 0 0 gi1,xy gi3,xy gi3,xy

⎤
⎦, (31)

[
As
mi

] �
[
0 0 0 0 0 gi1,y gi2,y gi3,y
0 0 0 0 0 gi1,x gi2,x gi3,x

]
. (32)

2.3 Approximation of the electric potentials

In this study, the approximation of the electric potential field of each piezoelectric layer is considered as a
linear function through the thickness coordinate. Therefore, for the top and bottom surfaces of the panel, the
electric potential functions are [52–54]


t (x, y, z, t) � 2z − h

2h p
φt (x, y, t) � Zt

pφ
t (x, y, t)

h

2
≤ z ≤ h

2
+ h p, (33)


b(x, y, z, t) � −2z + h

2h p
φb(x, y, t) � Zb

pφ
b(x, y, t) − h

2
− h p ≤ z ≤ −h

2
. (34)

It can be written in matrix form as

{
} � [
Z p

]{φ} (35)

where

{
} � {

t 
b

}T
,

[
Z p

] �
[
Zt
p 0

0 Zb
p

]
, {φ} � {

φt φb
}T

. (36)
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The electric potential is also interpolated by C0 interpolation:

{
} � [
Z p

][
Nφ

]{
φe}. (37)

The electric field E is derived from the electric potential:

{Ei } � {

,i

}
(i � x, y, z). (38)

Using Eqs. (34), (35), and (37), Eq. (38) can be rewritten as

{E} � [
Bφ

]{
φe} (39)

where

{E} � {
Et
x Et

y Et
z Eb

x Eb
y Eb

z

}T
, (40)

[
Bφ

] � [
Bφ1 Bφ2 Bφ3 Bφ4

]
(41)

where

[
Bφi

] �
[
Zt
p,x Z t

p,y Z t
p,z 0 0 0

0 0 0 Zb
p,x Zb

p,y Zb
p,z

]T
. (42)

2.4 Constitutive equations

The linear constitutive relations for a single FG-CNTRC layer can be written as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ k
x

σ k
y

τ kxy
τ kyz
τ kxz

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

�

⎡
⎢⎢⎢⎢⎢⎢⎣

Q
k
11(z) Q

k
12(z) Q

k
16(z) 0 0

Q
k
12(z) Q

k
22(z) Q

k
26(z) 0 0

Q
k
16(z) Q

k
26(z) Q

k
66(z) 0 0

0 0 0 Q
k
44(z) Q

k
45(z)

0 0 0 Q
k
45(z) Q

k
55(z)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

εx
εy
γxy
γyz
γxz

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(43)

where Qij are the transformed material constants expressed in terms of material constants [55]:

Q
k
11(z) � QC

11(z) cos
4 θk + 2

[
QC

12(z) + 2QC
66(z)

]
sin2 θk cos2 θk + QC

22(z) sin
4 θk,

Q
k
12(z) �

[
QC

11(z) + QC
22(z) − 4QC

66(z)
]
sin2 θk cos2 θk + QC

12(z)
(
sin4 θk + cos4 θk

)
,

Q
k
22(z) � QC

11(z) sin
4 θk + 2

[
QC

12(z) + 2QC
66(z)

]
sin2 θk cos2 θk + QC

22(z) cos
4 θk,

Q
k
16(z) �

[
QC

11(z) − QC
12(z) − 2QC

66(z)
]
sin θk cos3 θk

+
[
QC

12(z) − QC
22(z) + 2QC

66(z)
]
sin3 θk cos θk,

Q
k
26(z) �

[
QC

11(z) − QC
12(z) − 2QC

66(z)
]
sin3 θk cos θk

+
[
QC

12(z) − QC
22(z) + 2QC

66(z)
]
sin θk cos3 θk,

Q
k
66(z) �

[
QC

11(z) + QC
22(z) − 2QC

12(z) − 2QC
66(z)

]
sin2 θk cos2 θk

+ QC
66(z)

(
sin4 θk + cos4 θk

)
,

Q
k
44(z) � QC

44(z) cos
2 θk + QC

55(z) sin
2 θk,

Q
k
45(z) �

[
QC

55(z) − QC
44(z)

]
cos θk sin θk,

Q
k
55(z) � QC

55(z) cos
2 θk + QC

44(z) sin
2 θk (44)
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where QC
i j (z) are the plane stress-reduced stiffness values, which are defined in terms of the engineering

constants in the layer material axes. For each CNT layer,

QC
11(z) � E11(z)

1 − ν12ν21
; QC

12(z) � ν12E22(z)

1 − ν12ν21
; QC

22(z) � E22(z)

1 − ν12ν21
;

QC
44(z) � GC

23(z); QC
55(z) � GC

13(z); QC
66(z) � GC

12(z). (45)

The linear constitutive relations for an individual piezoelectric material layer can be expressed as [56–58]
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ k
x

σ k
y

τ kxy
τ kyz
τ kxz

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

�

⎡
⎢⎢⎢⎢⎣

C11 C12 0 0 0
C12 C11 0 0 0
0 0 1

2

(
C11 − C12

)
0 0

0 0 0 C55 0
0 0 0 0 C55

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εx
εy
γxy
γyz
γxz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

−

⎡
⎢⎢⎢⎣

0 0 e31
0 0 e31
0 0 0
0 −e15 0
−e15 0 0

⎤
⎥⎥⎥⎦

⎧⎨
⎩

Ek
x

Ek
y

Ek
z

⎫⎬
⎭, (46)

⎧
⎨
⎩

Dk
x

Dk
y

Dk
z

⎫
⎬
⎭ �

⎡
⎣
0 0 0 0 −e15
0 0 0 −e15 0
e31 e31 0 0 0

⎤
⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εx
εy
γxy
γyz
γxz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+

⎡
⎣
p11 0 0
0 p11 0
0 0 p33

⎤
⎦
⎧
⎨
⎩

Ek
x

Ek
y

Ek
z

⎫
⎬
⎭. (47)

The elastic constants for the piezoelectric layer are

C11 � C11 − (C13)
2

C33
; C12 � C12 − (C13)

2

C33
; C55 � C55;

e31 � e31 − C13

C33
e33; p33 � p33 +

e233
C33

(48)

where [Cij] is the elastic constant matrix of the piezoelectric layers, [eij] is the electromechanical coupling
matrix, [pij] is the dielectric permittivity matrix, { E} is the electric field, and { D} is the electrical displace-
ment in the piezoelectric layer. The coupling between the elastic and electric fields can be rewritten in short
form as

{σ } � [Q]{ε} − [e]{E},
{D} � [e]T {ε} + [p]{E}. (49)

2.5 Governing equations of motion

The dynamic equations of the hybrid panel can be derived using Hamilton’s variational principle,

δ

∫ t2

t1
[T −U +W ]dt � 0, (50)

where T , U , and W are the kinetic energy, strain energy, and work done by the applied forces, respectively.
At the element level, the kinetic energy can be calculated as

T e � 1

2

∫

Ve
ρ
{
ḋ
}T {

ḋ
}
dVe. (51)

The strain energy can be written as

Ue � 1

2

∫

Ve

[
{ε}T {σ } + {γ }T {τ } − {E}T {D}

]
dVe, (52)

and the work done by the external forces is

We �
∫

Ve
{d}T { fb}dVe +

∫

Ae

{d}T { fs}dAe + {d}T { fc} (53)
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where Ve is the volume of the element, { fb} is the body force, Ae is the surface area of the element where the
surface force { fs} is specified, and { fc} is the concentrated load.

The elementary governing equation of motion can be derived by substituting Eqs. (21), (26), (39), and (49)
into Eqs. (51), (52), (53), and Eq. (50),

[
Mmm 0
0 0

]

e

{
d̈
φ̈

}

e
+

[
Kmm Kmφ

Kφm Kφφ

]

e

{
d
φ

}

e
�
{
Fm
Fφ

}

e
, (54)

where

[Mmm]e �
∫

Ae

[Nm]
T [m][Nm]d Ae,

[Kmm]e �
[
Kb
mm

]
e
+
[
Ks
mm

]
e �

∫

Ae

[
Bb
m

]T [
Db

][
Bb
m

]
d Ae +

∫

Ae

[
Bs
m

]T [
Ds

][
Bs
m

]
d Ae,

[
Kmφ

]
e � [

Kφm
]T
e �

∫

Ae

[Bm]
T [e][Bm]d Ae,

[
Kφφ

]
e;�

∫

Ae

[
Bφ

]T
[p]

[
Bφ

]
d Ae. (55)

Withdrawing φ from the second equation and then substituting it into the first equation in Eq. (54), one
obtains the final form of the governing equation in shortened form:

[Mmm]e
{
d̈
}
e +

(
[Kmm]e +

[
Kmφ

]
e

[
Kφφ

]−1
e

[
Kφm

]
e

)
{d}e � {Fm}e +

[
Kmφ

]
e

[
Kφφ

]−1
e

{
Fφ

}
e. (56)

The global equations of motion can be obtained by assembling the element equations and are given by

[Mmm]
{
d̈
}
+
(
[Kmm] +

[
Kmφ

][
Kφφ

]−1[
Kφm

]){d} � {Fm} + [Kmφ

][
Kφφ

]−1{
Fφ

}
(57)

where

[Mmm] �
m×n∑
i�1

[�]Ti [Mmm]ei [�]i , [Kmm] �
m×n∑
i�1

[�]Ti [Kmm]ei [�]i , [Fm] �
m×n∑
i�1

[�]Ti [Fm]ei ,

[
Kmφ

] �
m×n∑
i�1

[�]Ti
[
Kmφ

]
ei [�]i ,

[
Kφφ

] �
m×n∑
i�1

[�]Ti
[
Kφφ

]
ei [�]i ,

[
Fφ

] �
m×n∑
i�1

[�]Ti
[
Fφ

]
ei ,

[
Kφm

] �
m×n∑
i�1

[�]Ti
[
Kφm

]
ei [�]i .

Here, [�] is the global–local transformation matrix.

2.6 Active control analysis

In this study, the piezoelectric actuator and sensor were bonded at the top and bottom surfaces, respectively. The
actuator and sensor are denoted by subscripts a and s, respectively. Without an external charge, the generated
potential on the sensor can be obtained from Eq. (54):

φs �
[
K−1

φφ

]
s

[
Kφm

]
sds . (58)

By using closed-loop feedback control, the voltage on the actuator can be written as

φa � Gdφs + Gvφ̇s (59)

where Gd and Gv are the displacement and feedback control gains, respectively. This implies that, when the
panel is in the vibration state, electric charges are generated in the sensor layer and then amplified and converted
into the signal. The signal is then fed back into the distributed actuator, and an input voltage for the actuator
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is generated. Owing to the piezoelectric effect, stresses and strains are generated. Substituting Eqs. (58), (59)
into Eq. (54) gives

Fa � [
Kφm

]
ada − Gd

[
Kφφ

]
a

[
K−1

φφ

]
s

[
Kφm

]
sds − Gv

[
Kφφ

]
a

[
K−1

φφ

]
s

[
Kφm

]
s ḋs . (60)

Substituting Eq. (59) into Eq. (56), one writes

[Mmm]
{
d̈
}
+ [Ca]

{
ḋ
}
+
[
K ∗]{d} � {F} (61)

where

[
K ∗] � [Kmm] + Gd

[
Kmφ

]
s

[
K−1

φφ

]
s

[
Kφm

]
, (62)

[Ca] � Gv

[
Kmφ

]
s

[
K−1

φφ

]
s

[
Kφm

]
s . (63)

Considering the structure damping effect, Eq. (60) can be rewritten as

[Mmm]
{
d̈
}
+ ([Ca] + [CR])

{
ḋ
}
+
[
K ∗]{d} � {F} (64)

with

[CR] � αR[Mmm] + βR[Kmm] (65)

where αR and βR are Rayleigh damping coefficients that can be determined from experiments.

3 Numerical results

Comparison studies were performed to prove the convergence and accuracy of the finite-element model.
Furthermore, parametric studies were performed to study the effects of the CNT volume fraction, type of
CNT distribution, thickness of the piezoelectric layer, laminate configurations, and mechanical and electrical
boundary conditions on the natural frequencies of the panel. Finally, active vibration control results were
obtained to illustrate the effectiveness of the type of load and feedback control gains on the dynamic behaviour
of the PFG-CNTRC spherical shell panels. The following material properties are used in various examples.

• Material 1 (Al2O3) [59]:
E � 380 GPa, ν � 0.3, ρ � 3800 kg/m3.

• Material 2 (PZT-4) [59]:
C11 � 139 GPa, C12 � 77.8 GPa, C13 � 74.3 GPa, C33 � 115 GPa, C44 � C55 � 25.6 GPa, C66 � 30.6
GPa, ρ � 7500 kg/m3, e31 � − 5.2 C/m2, e33 � 15.1 C/m2, e15 � 12.7 C/m2, p11 � 6.75 nF/m, p33 � 5.9
nF/m.

• Material 3 (PZT-5A) [38]:
E � 63 GPa, G � 23.3 GPa, ν � 0.35, ρ � 7750 kg/m3, e31 � e32 � − 7.209 C/m2, e33 � 15.12 C/m2,
e15 � e24 � 12.322 C/m2, p11 � p22 � 1.53×10−8 F/m, p33 � 1.5×10−8 F/m.

• Material 4 [38]:
Material 4 in this study is FG-CNTRC with the properties of the matrix and reinforcement as follows:

Thematrix (PMMA):Em � (3.52−0.0034�T )GPa, νm �0.34, andρm �1150kg/m3.Here,�T � T−T0
is the temperature change, and T0 is the reference temperature, which is set to 300 K.

The reinforcement (armchair SWCNT): E11
CNT � 5.64 TPa, E22

CNT � 7.0800 TPa, G12
CNT � 1.9455

TPa, ν12CNT � 0.175, and ρCNT � 1400 kg/m3. For three different volume fractions of CNTs, the efficiency
parameters are η1 � 0.137 and η2 � 1.022 for V ∗

CNT � 0.12, η1 � 0.142 and η2 � 1.626 for V ∗
CNT � 0.17,

and η1 � 0.141 and η2 � 1.585 for V ∗
CNT � 0.28. For each case, the efficiency parameter η3 is 0.7η2.
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Table 1 Fundamental natural frequency of the doubly curved isotropic shell coupled with piezoelectric layers (a/b � 1, h/a �
0.1, and Ry/a � 5)

a/Rx hp/h fClc(Hz) fOpc(Hz)

Present Ref. [59] Diff. (%) Present Ref. [59] Diff. (%)

− 0.2 0.1 826.399 824.049 0.29 844.145 841.189 0.35
0.2 795.966 788.430 0.96 828.307 820.477 0.95

0 0.1 835.201 839.368 − 0.50 852.815 856.455 − 0.43
0.2 803.351 801.794 0.19 835.427 833.781 0.20

0.1 0.1 846.659 853.147 − 0.76 864.135 870.057 − 0.68
0.2 813.070 813.413 − 0.04 844.859 845.108 − 0.03

0.2 0.1 862.425 870.705 − 0.95 879.730 887.350 − 0.86
0.2 826.504 828.101 − 0.19 857.925 859.347 − 0.17

3.1 Convergence and comparison studies

The first example considered is the simply supported (SSSS) double-curved shell panel made of material 1
with integrated piezoelectric layers PZT4 at the top and bottom surfaces. Table 1 summarises a comparison of
the fundamental natural frequencies in open-circuit (Opc) and closed-circuit (Clc) electrical conditions of the
panel. It can be seen that, with a meshing of 20×20 elements, the results obtained by the present model are in
good agreement with those obtained by Sayyadi [59] based on higher-order deformation theory. The difference
between the present results and the results of Sayyadi [59] is less than 1% for various inlet parameters, such
as a/Rx ratio, hp/h ratio, and closed and open electrical boundary conditions.

The second example was considered for the PFG-CNTRC square plates. The results obtained were com-
pared with those given by Nguyen-Quang et al. [38] based on an isogeometric approach and higher-order
deformation theory. The dimensions of the plates were set to a � b � 0.4 m, h � a

/
20, and h p � h

/
10; the

substrate was made of material 4; and the piezoelectric layers were made of material 3. Table 2 lists the first
natural frequencies of the single-layer plates, while Table 3 lists those of the multilayer plates. A meshing of
20×20 elements was chosen to achieve extremely good agreement between the present results and the results
reported elsewhere [38] for various mechanical and electrical boundary conditions, various CNT volume frac-
tions, and different types of CNT distribution. Consequently, the meshing of 20×20 elements was used for
all further analyses in this work.

3.2 Free vibration analysis of PFG-CNTRC spherical shell panels

This example considers an FG-CNTRC spherical shell panel made of material 4. The panel has a square plane
projection with a � 0.4 m, thickness h � 0.02 m, and radius R � 2 m. Two piezoelectric layers of PZT-5A
with h p � 0.002 m are bonded on the top and bottom surfaces of the panel. Tables 4 and 5 list the first
natural frequencies of the PFG-CNTRC spherical shell panel for different parameters of material properties
and different mechanical and electrical boundary conditions. The results illustrate that, with the increase in
the CNT volume fraction, the frequency of the panel increases accordingly. The laminate configuration with
[− 45/45]as is more effective than any other configuration. Among the four types of CNT distributions, the
FG-X type has the highest frequency, whereas the FG-O type has the lowest frequency for the same other
input parameters. The results show that the natural frequencies of the hybrid panel in the case of CCCC are
higher than those of the other considered boundary conditions. It can also be seen that the natural frequencies
of the hybrid panel are higher in the open-circuit case than in the closed-circuit case because the open circuit
converts the electric potential to mechanical energy during vibration, while the closed circuit does not.

3.3 Dynamic vibration control of PFG-CNTRC spherical shell panels

A fully clamped (CCCC) PFG-CNTRC spherical panel, with lamination sequence [a/0/90/0/s], where a and s
represent the piezoelectric actuator and sensor layersmade of PZT-5A, bonded on the upper and lower surfaces,
respectively, is considered. The substrate is made of material 4. The side dimension is a � 0.4 m, the thickness
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Table 2 Fundamental natural frequency f (in Hz) of the single-layer PPG-CNTRC square plates (a � b, a/h � 20, [p/0/p], and
h p

/
h � 1

/
10)

V*
CNT Type Condition Boundary conditions

SSSS CFFF

Present Ref. [38] Diff. (%) Present Ref. [38] Diff. (%)

0.12 UD Clc 586.221 582.992 0.55 145.631 145.473 0.05
Opc 620.640 627.204 − 1.05 149.590 150.359 0.51

FG-X Clc 625.575 621.782 0.61 166.290 166.487 − 0.21
Opc 657.436 662.752 − 0.80 169.750 170.738 0.15

FG-V Clc 563.095 559.827 0.58 132.273 131.928 0.31
Opc 599.299 606.301 − 1.15 136.850 137.588 0.96

FG-O Clc 543.439 540.374 0.57 121.019 120.947 0.52
Opc 580.981 588.575 − 1.29 125.759 126.378 1.12

0.17 UD Clc 626.699 622.893 0.61 165.097 165.065 − 0.10
Opc 658.679 654.465 0.64 168.598 169.365 0.27

FG-X Clc 679.830 675.135 0.70 191.150 191.621 − 0.37
Opc 708.791 703.692 0.72 194.154 195.287 − 0.08

FG-V Clc 593.762 589.734 0.68 147.046 146.738 0.18
Opc 628.024 623.499 0.73 151.206 151.863 0.74

FG-O Clc 567.649 563.816 0.68 133.215 132.676 0.39
Opc 603.530 599.371 0.69 137.546 138.037 0.91

0.28 UD Clc 690.332 685.587 0.69 196.726 197.147 − 0.21
Opc 718.529 721.919 − 0.47 199.614 200.669 − 0.53

FG-X Clc 765.505 757.950 1.00 230.638 231.928 − 0.56
Opc 790.164 789.814 0.04 233.060 234.852 − 0.76

FG-V Clc 640.715 637.353 0.53 171.531 171.477 0.03
Opc 671.888 677.399 − 0.81 175.081 175.830 − 0.43

FG-O Clc 603.764 601.032 0.45 153.783 153.361 0.28
Opc 636.960 643.745 − 1.05 157.513 157.965 − 0.29

Table 3 Fundamental natural frequency f (in Hz) of the multilayer PFG-CNTRC square plates (a � b, a/h � 20, and h p
/
h �

1
/
10)

V*
CNT Type Condition Laminate configurations

[p/0/90/0/p] [p/− 45/45/− 45/45/p]

Present Ref. [38] Diff. (%) Present Ref. [38] Diff. (%)

0.12 UD Clc 587.129 583.510 0.62 653.778 650.401 0.52
Opc 621.628 627.716 − 0.97 684.420 689.664 − 0.76

FG-X Clc 593.339 588.372 0.84 660.824 655.204 0.86
Opc 627.438 632.184 − 0.75 691.089 694.142 − 0.44

FG-V Clc 585.376 581.714 0.63 651.538 648.169 0.52
Opc 620.096 626.205 − 0.98 682.397 687.708 − 0.77

FG-O Clc 581.003 578.737 0.39 646.759 645.708 0.16
Opc 615.910 623.343 − 1.19 677.790 685.299 − 1.10

0.17 UD Clc 627.696 624.543 0.50 714.696 712.200 0.35
Opc 659.749 665.615 − 0.88 742.383 747.626 − 0.70

FG-X Clc 636.287 631.317 0.79 724.125 718.700 0.75
Opc 667.860 671.913 − 0.60 751.393 753.763 − 0.31

FG-V Clc 625.134 621.914 0.52 711.629 709.145 0.35
Opc 657.473 663.359 − 0.89 739.570 744.893 − 0.71

FG-O Clc 619.417 618.126 0.21 705.529 706.112 − 0.08
Opc 651.961 659.687 − 1.17 733.654 741.912 − 1.11

0.28 UD Clc 691.467 686.852 0.67 808.612 808.572 0.00
Opc 719.724 723.150 − 0.47 832.038 838.388 − 0.76

FG-X Clc 704.344 697.260 1.02 822.251 818.211 0.49
Opc 732.039 732.991 − 0.13 845.236 847.654 − 0.29

FG-V Clc 687.605 682.974 0.68 804.663 804.564 0.01
Opc 716.255 719.788 − 0.49 828.399 834.775 − 0.76

FG-O Clc 679.772 677.986 0.26 796.483 800.689 − 0.53
Opc 708.637 714.904 − 0.88 820.405 830.949 − 1.27
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Table 4 Fundamental natural frequency f (in Hz) of the laminated PFG-CNTRC spherical shell panels (a/h � 20 and R/a � 5)

V*
CNT Type Electrical condition Laminate configurations

[p/0/90/0/p] [p/− 30/30/− 30/30/p] [p/− 45/45/− 45/45/p]

a/h � 20 a/h � 50 a/h � 20 a/h � 50 a/h � 20 a/h � 50

0.12 UD Clc 618.915 315.473 701.280 409.270 739.058 455.872
Opc 651.678 327.422 732.549 424.551 767.861 468.565

FG-X Clc 624.847 317.643 707.537 412.198 746.210 459.723
Opc 657.25 329.496 738.501 427.422 774.675 472.313

FG-V Clc 622.494 319.475 696.697 406.597 735.556 454.135
Opc 654.775 330.999 727.394 421.305 763.740 466.249

FG-O Clc 613.115 313.428 695.136 406.457 731.964 452.059
Opc 646.241 325.472 726.708 421.778 761.111 464.851

0.17 UD Clc 660.769 336.039 765.171 452.741 816.825 517.892
Opc 691.149 347.039 793.868 467.440 842.447 529.203

FG-X Clc 669.031 339.145 773.542 456.577 826.247 522.872
Opc 698.984 350.034 801.892 471.199 851.506 534.071

FG-V Clc 664.258 340.474 759.659 449.728 812.924 516.170
Opc 694.246 351.087 787.741 463.801 837.943 526.916

FG-O Clc 652.985 333.373 757.339 449.394 807.797 513.128
Opc 683.799 344.476 786.376 464.128 833.797 524.545

0.28 UD Clc 722.484 361.120 855.694 508.424 932.770 612.617
Opc 749.349 371.023 880.929 522.880 953.879 622.101

FG-X Clc 735.179 366.347 868.178 514.349 946.299 619.656
Opc 761.534 376.106 893.009 528.658 967.051 629.025

FG-V Clc 724.989 365.801 849.879 505.737 929.143 611.281
Opc 751.675 375.406 874.447 519.455 949.745 620.261

FG-O Clc 711.645 357.609 845.870 504.821 921.457 606.629
Opc 739.044 367.627 871.492 519.288 942.990 616.235

Table 5 Fundamental natural frequency f (in Hz) of the laminated PFG-CNTRC spherical shell panels (a � b, a/h � 20, and R/a
� 5)

V*
CNT Type Electrical condition Boundary conditions

[p/0/90/0/90/0/p]

CCCC CCCF CFCF CFFF SCSC SSSS

0.12 UD Clc 1134.877 869.749 827.754 139.848 868.470 619.027
Opc 1181.638 891.970 848.495 143.972 913.823 651.762

FG-X Clc 1142.206 876.706 834.562 141.174 873.379 622.246
Opc 1188.461 898.673 855.039 145.264 918.378 654.783

FG-V Clc 1133.261 868.020 826.282 139.551 868.439 621.744
Opc 1179.909 890.353 847.127 143.680 913.557 654.138

FG-O Clc 1127.806 862.872 821.020 138.518 863.794 615.980
Opc 1175.090 885.355 842.036 142.675 909.503 648.912

0.17 UD Clc 1230.811 961.829 916.561 157.103 929.051 660.862
Opc 1272.230 981.198 934.368 160.790 970.803 691.222

FG-X Clc 1240.736 970.869 925.337 158.823 935.953 665.421
Opc 1281.616 989.981 942.883 162.475 977.292 695.545

FG-V Clc 1229.097 959.925 914.970 156.710 928.959 663.843
Opc 1270.446 979.413 932.887 160.404 970.512 693.902

FG-O Clc 1221.924 953.359 908.370 155.401 922.953 656.853
Opc 1263.935 973.011 926.471 159.122 965.130 687.444

0.28 UD Clc 1362.621 1089.947 1036.569 184.709 1015.349 722.517
Opc 1395.756 1105.161 1050.165 187.816 1051.385 749.370

FG-X Clc 1377.865 1103.131 1049.359 187.099 1026.326 729.832
Opc 1410.524 1118.129 1062.744 190.174 1061.915 756.410

FG-V Clc 1362.458 1089.330 1036.418 184.219 1015.742 725.648
Opc 1395.675 1104.703 1050.169 187.338 1051.705 752.316

FG-O Clc 1352.515 1080.474 1027.689 182.477 1007.674 717.201
Opc 1386.352 1096.015 1041.618 185.621 1044.249 744.339
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Fig. 3 Types of load: step load, triangular load, and explosive load

of the substrate h � 0.04 m, the thickness of each piezoelectric layer h p � 0.004 m, and radius R � 2 m. The
panel is subjected to sinusoidally distributed transverse loads expressed as

q � q0 sin
(πx

a

)
sin

(πy

b

)
F(t) (66)

where F(t) is defined as

F(t) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

{
1 0 ≤ t ≤ t1 Step load
0 t > t1{
1 − t/t1 0 ≤ t ≤ t1 Triangular load
0 t > t1{
e−γ t e−γ t 0 ≤ t ≤ t1 Explosive blast load
0 t > t1

(67)

in which q0 � 104 N/m2, γ � 330 s−1, t1 � 0.002 s, and F(t) is plotted as shown in Fig. 3.
The transient response of the shell panel is solved by the Newmark-β direct integration method [60], and

the parameters αN and βN are taken to be 0.5 and 0.25, respectively. All the calculations for transient response
were performed using a time step of 0.0005 s, and the initial modal damping ratio was assumed to be 0.8% [38].
The effects of the velocity feedback gain, CNT volume fraction, and CNT distribution type on the transient
response of the centre point A (a/2, a/2) of the hybrid panel were investigated.

First, the active vibration control effect of the velocity feedback controller for the PFG-CNTRC spherical
panel was studied. The transient responses of the panel with and without the velocity feedback gain are
displayed in Figs. 4, 5 and 6. The Figures show that, in the case of a velocity feedback gain of zero, the
transient responses of the panel decrease with time because of structural damping. These Figures also indicate
that increasing the velocity feedback gain causes the active damping to become stronger, resulting in a smaller
amplitude of the centre point deflection and faster suspension vibration of the hybrid panel. Moreover, the
panel is in the free vibration state after the load is removed.

Next, the effects of the volume fraction of CNTs and the distribution type of CNTs on the transient response
of the PFG-CNTRC spherical panel were investigated. The effect of the CNT volume fraction is indicated
for the uniform distribution (UD) of CNTs with velocity feedback control gain Gv � 5e−5. The effect of the
CNT distribution type is indicated for the CNT volume fraction V ∗

CNT � 28% with velocity feedback control
gain Gv � 1.3e−5. Figures 7, 8, and 9 depict the transient responses of the panel associated with stepping
load, triangular load, and explosive blast load, respectively. These Figures illustrate that, in all the study cases,
the vibration is suppressed faster with an increase in the volume fraction of CNTs. This is compatible with
the previous conclusion that addition of CNTs leads to more stiffness of the panels and results in a smaller
deflection amplitude. In addition, among the five possible graded patterns of CNTs, FG-O has the largest
central deflection, while FG-X has the smallest one. Therefore, the above numerical results demonstrate that,
by the proper use of the velocity feedback gain, the vibration of the PFG-CNTRC spherical panels can be
controlled as expected.
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Fig. 4 Central deflection of the PFG-CNTRC spherical panel subjected to step load (UD, V ∗
CNT � 12%, CCCC)
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Fig. 5 Central deflection of the PFG-CNTRC spherical panel subjected to triangular load (UD, V ∗
CNT � 12%, CCCC)

4 Conclusions

In this study, an efficient finite-element model based on the four-variable shear deformation refined theory
was developed for the free vibration and active vibration control of a laminated functionally graded nanotube-
reinforced composite with an integrated piezoelectric actuator and sensor layers. The free vibration results
were in good agreement with those reported in the literature. Numerical results were provided to explore the
effects of the CNT volume fraction, type of CNT distribution, thickness of the piezoelectric layer, laminate
configurations, and mechanical and electrical boundary conditions on the natural frequencies of the hybrid
spherical panel. A closed-loop control algorithm based on the displacement and velocity feedback was used for
active vibration control of the piezoelectric FG-CNTRC spherical panel. As a result of the present formulation
and numerical results, some conclusions can be drawn. (i) The volume fraction of CNTs has strong effects on
the dynamic responses of the PFG-CNTRC panels. (ii) The natural frequencies of the PFG-CNTRC panel with
an open-circuit electrical boundary condition are always higher than those in the closed-circuit case for the
same other inlet parameters. (iii) Active vibration control is more effective for the panels with higher stiffness.
(iv) The vibration of the PFG-CNTRC spherical panels can be controlled as expected by the proper use of the
velocity feedback gain.



1020 T. H. Quoc et al.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
t (s)

-8

-6

-4

-2

0

2

4

6

w
 (m

)

10-8

Gv=0
Gv=0.5e-4
Gv=1.3e-4

Forced
vibration

Free vibration
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Fig. 7 Transient response of the PFG-CNTRC spherical panel subjected to step load
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Fig. 9 Transient response of the PFG-CNTRC spherical panel subjected to explosive blast load
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