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Abstract By employing Mindlin’s Form II gradient elasticity theory (strain gradient elasticity theory), we
investigate the SH surface wave propagating in a strain-gradient layered half-space. The dispersion equation
of the SH surface wave is derived analytically. For the general case where both the surface layer and the
half-space are strain-gradient elastic materials, the dispersion equation involves 10 material constants. The
dispersion equation of the general case can degenerate to that of several special cases by dropping some
material parameters. The existence regions of the dispersion curves are discussed in detail. The effects of
strain-gradient elastic constants on the dispersion curves are examined. It is seen that the features of SH
surface waves in strain-gradient elastic materials are much richer than those in classical elastic materials.

1 Introduction

Layer substrate structures are widely used in many engineering fields, such as aerospace engineering,
automobile manufacturing, microelectromechanical systems (MEMS), acoustic and optical components, to
name a few. In these applications, the materials of the surface layer and the substrate may have micropat-
terns/microstructures and thus may exhibit size effects when external loads are applied. Due to their inherent
size independence, classical elasticity theories cannot describe the size effects of materials with microstructures
when the characteristic length of the material’s microstructure is comparable with that of the external load. In
contrast, gradient elasticity theories, which incorporate characteristic lengths of material’s microstructures in
their formulations, can be employed to describe the size effects of materials with microstructures [1]. Gradient
elasticity theories include the couple stress theory originally proposed by Cosserat and Cosserat [2] and later
developed by Mindlin and Tiersten [3], the general higher-order gradient elasticity theory proposed by Mindlin
[4], the micropolar elasticity theory generalized by Eringen [5] from the couple stress theory, and the nonlocal
theory of elasticity proposed also by Eringen [6], etc. A comprehensive review on these theories can be found
in Maugin [7].

When the characteristic length of the external load is much larger than that of the material’s microstructure,
the influence of the microstructure can be neglected; we can use classical elasticity theories to describe the
mechanical behavior of the material. On the contrary, if the characteristic length of the external load is of
the same order of magnitude as that of the material’s microstructure, the specific geometric features of the
microstructure need to be considered; at this time, we need to use the method of molecular dynamic simulation.
Here we choose surface waves as the object of our study. The reason is that the characteristic length of surface
waves, i.e., the wave length, can be conveniently controlled to be larger (but not too much larger) than the
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characteristic length of the material’s microstructure. In this case, generalized continuum theories, for instance,
gradient elasticity theories, prevail.

As early as in the 1960s, Graff and Pao [8] and Parfitt and Eringen [9] investigated the reflection of plane
elastic waves in a couple-stress elastic half-space and a micropolar elastic half-space, respectively. Their results
show that an incident wave gives rise to three reflected waves, instead of the usual two waves predicted by
the classical elasticity theory. Later, Gourgiotis et al. [10] showed that, for a dipolar elastic half-space (the
half-space is governed by a simplified version of Mindlin’s general gradient elasticity theory), an incident wave
can give rise to four reflected waves. Georgiadis and Velgaki [11], Chirita and Ghiba [12], and Georgiadis et al.
[13] predicted dispersive Rayleigh waves in a couple-stress elastic half-space, a micropolar elastic half-space,
and a dipolar elastic half-space, respectively. While in the classical elastic half-space, the Rayleigh wave is
nondispersive. It is well known that the SH and torsional surface waves do not exist in a classical elastic
half-space [14], but this is not the case when the half-space is governed by a simplified version of gradient
elasticity theory with surface energy [15, 16]. The existence of torsional and SH surface waves in a half-space
is also predicted by Gourgiotis and Georgiadis [17] in the context of the complete Mindlin’s theory of gradient
elasticity. In addition, Vavva et al. [18] and Sidhardh and Ray [19] studied the propagation of elastic waves
in gradient elastic plates, and showed that gradient elasticity significantly changes the dispersion behavior
predicted by the classical Lamb wave theory.

For the layer substrate structure, Love [20] predicted the existence of an SH surface wave in a classical
elastic layered half-space mathematically (named as Love wave). Fan and Xu [21] and Fan and Long [22]
investigated, respectively, the propagation of SH and in-plane surface waves in a classical linear elastic half-
space covered by a couple-stress surface layer. Midya [23] studied the propagation of an SH surface wave in
a micropolar elastic layered half-space and obtained the dispersion equation when either the surface layer or
the half-space or both are micropolar elastic. In the case of isotropic and linear elasticity, the most versatile
gradient elasticity theory is Mindlin’s Form II gradient elasticity theory (strain gradient elasticity theory) [4].
In the present paper, we investigate the propagation of an SH surface wave in a layered half-space governed
by the strain gradient elasticity theory. As in Midya [23], we consider various situations, i.e., either the surface
layer or half-space or both or none of them is gradient elastic. Besides, we also consider the cases that either
the surface layer or the half-space is absent, that is, we consider the cases of gradient elastic half-space and
gradient elastic waveguide. We would like to perform a complete and systematic study on all the combinations
of the material configurations, which will contribute to the research of wave propagation in gradient elastic
materials from the theoretical aspect.

The rest of this paper is organized as follows. In Sect. 2, an SH surface wave propagating in a strain-
gradient layered half-space is investigated, and the dispersion equation is derived analytically. In Sect. 3, the
dispersion equations of several special cases are obtained. In Sect. 4, the existence regions of the dispersion
curves are discussed, and the influence of strain-gradient elastic constants on the dispersion curves is examined.

2 SH surface wave propagating in a strain-gradient layered half-space

We consider an SH surface wave propagating in an elastic half-space B covered by a surface layer A with the
thickness &, as shown in Fig. 1a. Both the surface layer and the half-space are described by the strain gradient
elasticity theory. The surface wave propagates in the x;-direction, and its amplitude decays exponentially in
the x,-direction.

2.1 SH wave in the surface layer and the half-space

The governing equation of an anti-plane wave in gradient elastic material is given by Mindlin’s Form II gradient
elasticity theory (strain gradient elasticity theory):

d2
F(1 = BVH)VAV xu = <1 —?v2>Vxﬁ, M

where c7= (u/p)"2 is the shear wave velocity of the material. For the readers’ convenient reference, we list
some basic equations of Mindlin’s Form II gradient elasticity theory in the “Appendix.”

Based on Eq. (1), the SH wave in the surface layer (— & < x2 <0) is given by

ug" = (A1 cos pxy + Ap sin pxy + Az coshgxy + A4 sinh gxy) cos(kx) — wt), 2)
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Fig. 1 Schematic diagram of different cases: a SH surface wave propagating in a strain-gradient elastic half-space covered by a
strain-gradient elastic surface layer (the general case); b surface layer is strain-gradient elastic, while the half-space is classical
elastic; ¢ surface layer is classical elastic while the half-space is strain-gradient elastic; d both the surface layer and the half-
space are classical elastic (Love wave); e strain-gradient elastic half-space; f strain-gradient elastic wave guide. Shaded materials
are strain-gradient elastic, while non-shaded materials are classical elastic. The arrows indicate the degeneration processes by
dropping some material parameters

where k is the wave number, w is the circular frequency, A;—A4 are four constants to be determined,

2

1 | d% &? d? ? w?
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ca= (ua/ ,oA)“ 2 is the shear wave velocity of the surface layer, ;g and py4 are, respectively, the shear modulus

and density of the surface layer, and / and 4 and d4 are the characteristic lengths of the surface layer related
to the strain energy and kinetic energy, respectively.

It is noted that the requirement of p> >0 in Eq. (3) posts a constraint on the phase velocity ¢, that is,

1+12k2

—A 5
1+d5k2/3 ®
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The SH wave in the half-space (x2 >0) can be written as

uf = (Ble_“x2 + Bze_bxz) cos(kx) — wt), (6)
where B and B; are two constants to be determined,
[ 2
1 d2 2 d2 2 2
= |1-BY (-Bw—2—1 432 |+ 12, 7
205 3 ¢y 3 ¢y ch
1 | d% w? d? ? ? w?
=—l1-2=+ |[Z5 1] +45— | +&%, (8)
205 3 ¢y 3 ¢y cy

cg= (up/pp)"? is the shear wave velocity of the half-space, up and pp are, respectively, the shear modulus
and density of the half-space, and /p and dp are the characteristic lengths of the half-space associated with the
strain energy and kinetic energy, respectively.

Similarly, the requirement of > >0 in Eq. (7) imposes a restriction on the phase velocity c, i.e.,

w 1+1%k2 ©)
c=—<cp|—5—.
k- 1+ adkess
Combing Egs. (5) and (9), we have

1 +12k2 1 +12k2

———<c<cp, )| ———. (10)
1+d2k2/3 V123
2.2 Boundary conditions and continuity conditions
For the considered anti-plane problem, the displacement components can be written in general forms as
up =0, uy =0, uz = uz(xy, x2,1). (11)

By substituting Eq. (11) into Egs. (39)—-(42), (45) and (46), we can obtain the components of auxiliary
force traction and auxiliary double force traction as follows:

P =0, Py=0, Py = pusp — (203 — as)us 112 — plius 200 + liiz 2, (12)
Ry =0, Ry =0, Ry = pasus 11 + pulju3 2, (13)

where a3 = a3/2u, and the comma in the subscript denotes the derivative with respect to the coordinate
variables. The material constant @3 has the unit of m? and can take positive or negative values. To ensure the
positive definiteness of the strain energy density, the inequality |a3|< l% needs to be satisfied [17].

From Egs. (12) and (13), and by the surface integral in Eq. (44), we can find that, for the anti-plane problem,
there are only two energy conjugate pairs appearing on the surface, namely, (P3, #3) and (R3, Du3). Therefore,
for the present problem, we have the following boundary conditions and continuity conditions:
at the free surface (xo = —h):

P{(xy, —h, 1) =0, (14)
R{(x1, —h,1) =0, (15)
along the interface (x; = 0):
P{(x1,0,1) = PE(x1,0,1), (16)
uf(x1,0,1) = ub(x1,0,1), (17)
R (x1,0,1) = R¥(x1,0, 1), (18)
Du#(x1,0,1) = Du®(x1,0,1), (19)

where P3A and R? are the components of auxiliary force traction and auxiliary double force traction of the
surface layer, and P3B and R3B are the corresponding traction components of the half-space.
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2.3 Dispersion equation

Substituting the displacement components of the surface layer and the half-space (Eqgs. (2) and (6)) into the
non-vanishing components of the auxiliary force traction and the auxiliary double force traction (Eqs. (12)
and (13)), and then according to the boundary conditions and continuity conditions (Egs. (14)—(19)), we can
derive six linear algebraic equations for the undetermined constants A1—A4, B and B; as follows:

pna(Aqsin ph + As cos ph) — gés(Aszsinhgh — Agcoshgh) =0, (20)
EA(A1cos ph — Ay sin ph) + ng(Azcoshgh — Agsinhgh) = 0, (21)
na(pnaAz+qéaAs) = —pup(angB1 + bép Br), (22)

A1+ A3 = B1 + By, (23)

maEaAr+naA3) = upépBi +npBa), (24)

pAy+qAy = —aB1 — bBs, (25)

where p, ¢q, a, and b are defined in Egs. (3), (4), (7), and (8), respectively,
£4 = az3ak® + 15 p%, na = azak® — 134, (26)
&p = aspk® — [pa®, np = azpk® — I3b°, (27)

az4 and aszp are the designations of the material constants a3 in the surface layer and half-space, respectively.

Constants A1—A4, B1, and B; can be determined by solving the algebraic equations (20)—(25). For a non-
trivial solution of A1—A4, B and B, the determinant of the coefficients must vanish, which yields the following
dispersion equation of the SH surface wave:

2
2pg€ana [&m(a —b) — EE (& +na)anp — bkg) + 2B (an — bsé)}
HA M

2
- P [%ﬁni(a —b)~ 2Z—jsAnA<sA +na)(anp — bép) + Z—f(si +n3) (ang — bsé)}
A

1B
X cos phcoshgh + [(ngj — p*n)a—b) — 2;(61252 — p*n})(ans — bép)

2

M . . 1B

+ M_f(qzéi — p*n3) (ang — béé):| sin ph sinh gh + M—A(?EA —na)ég —nB)
A

X [ (pzni + ab&i) sin ph coshgh + p(qzéfi - abn%) cos ph sinh qh] =0. (28)

3 Special cases

In Sect. 2, we investigated the general case where both the surface layer and the half-space are strain-gradient
elastic materials. Now we study some special cases.

If the surface layer is strain-gradient elastic while the half-space is classical elastic (Fig. 1b), that is, the
material constants of the half-space associated with strain-gradient elasticity all equal to zero, i.e., [p= dp=
aszg = 0, then we have a= (k? — a)z/c%g)l/2 =a, b= o0, Igb=1 from Egs. (7) and (8), and further deduce
Ep=10,np= — 1, bEp= 0 from Eq. (27). In this situation, the dispersion equation of the general case (Eq. (28))
degenerates to

2pg&3n5 (1 — cos phcosh gh) + (q*€4 — p*n’) sin phsinhgh
- M—B&(SA — nA)(q?;‘f‘ sin ph coshgh — pni cos ph sinh qh): 0. (29)
HA
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Conversely, if the surface layer is classical elastic while the half-space is strain-gradient elastic (see Fig. 1c¢),
the material constants of the surface layer related to strain-gradient elasticity all equal to zero, i.e., [4= da=

azg = 0, then from Egs. (3) and (4) we have p= (w?/ ci — KHl2 = P, g= 00, lag= 1, and further from
Eq. (26) derive £4=0, nsg= — 1, g§ 4= 0. The dispersion equation of the general case in this situation reduces
to

~ .o~ “B 2 2 ~

p(Ep — np) sin ph — M—A(anB — bkj) cos ph = 0. (30)

If both the surface layer and the half-space are classical elastic, the case of Love wave [14] is recovered, as
illustrated in Fig. 1d. In this case, by dropping the material parameters associated with strain-gradient elasticity,
we can derive the dispersion equation from either Eq. (29) or (30) as

5 sin ph — 28 cos ph = 0. 31)
M A

If the surface layer is absent, that is, #= 0, the SH surface wave propagates in a strain-gradient elastic
half-space (Fig. 1e). In this situation, the dispersion equation of the general case degenerates to

any — bEi=0, (32)

which is exactly the solution of Gourgiotis and Georgiadis [17].
At last, if the half-space disappears, i.e., up= 0, an SH surface wave propagates in a strain-gradient elastic
wave guide (Fig. 1f). The dispersion equation of the general case in this situation degenerates to

2pqEin3 (1 — cos phcoshqh) + (q*€4 — p*n’) sin ph sinh gh= 0. (33)

The dispersion equations (32) and (33) also can be deduced from Egs. (30) and (29) by setting 2= 0 and
up= 0, respectively, as indicated by the dark cyan arrows in Fig. 1.

4 Results and analysis

For the general case where both the surface layer and the half-space are strain-gradient elastic materials, we
have two sets of material constants. Each set consists of 5 material parameters, as shown as follows:

KA, pPa, la, da, aza,
we, P, lp, dp, asp.

The parametric study becomes very difficult, if it is not impossible. Our objective in this Section is to gain
an overall picture of the dispersion curves. Our study in the following is made in two steps. First, we discuss the
existence regions of the dispersion curves. Next, we examine the influence of strain-gradient elastic constants
on the dispersion curves.

4.1 Existence regions of the dispersion curves

For the case that both the surface layer and the half-space are classical elastic materials (Love wave), it is well
known that the dispersion curves fall in the region of c4<c<cp. The introduction of the material characteristic
lengths in strain gradient elasticity theory enriches the existence regions of the dispersion curves. Let us refer
to Eq. (10), which defines the lower and upper bounds of the dispersion curves, for an easy explanation. It
should be pointed out that there are six material parameters involved in the governing equations and the bounds
of the dispersion curves, namely,

ca, la, da,
cg, lp, dp,

and the other four material parameters are associated with the boundary and continuity conditions
(Egs. (14)—(19)).
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Fig. 2 Possible shapes of the bounds of the dispersion curves. The upper bound is denoted by short dash line, while the lower
bounds are denoted by dash lines. Here we only show the possible 5 variations of the lower bound of the dispersion curves for
different ratios of «/glA/dA under the condition of cs<cp. The upper bound also can have 5 variations for different ratios of

\/3lpldg. Thus there are 25 combinations when the upper and lower bounds are considered together. If we swap the condition
into c4>cp, we have another 25 combinations of the upper and lower bounds

It can be found from Eq. (10) that the upper and lower bounds of the dispersion curves are no longer two
straight lines as in the classical case of Love wave. The possible shapes of the bounds are schematically shown
in Fig. 2, where the short dash line represents the upper bound, and the dash lines denote the lower bounds.
Figure 2 only shows the possible five variations of the lower bound of the dispersion curves for different ratios
of v/314/d 4 under the condition of cy<cp. The upper bound also can have 5 variations for different ratios of
V/3lpldg. Thus there are 25 combinations when the upper and lower bounds are considered together. If we
swap the condition into c4>cp, we have another 25 combinations of the upper and lower bounds. Of course,
there is quite a number of the combinations of the bounds which lead to no solution of the dispersion curve.
For different combinations of material constants, the existence regions of the dispersion curves are defined by
the corresponding upper and lower bounds, as illustrated in Figs. 3 and 4.

In Fig. 3, we show the existence regions of the dispersion curves (denoted by the shaded areas) for different
combinations of material constants under the condition that the material constants related to the strain energy
equal zero (I4= [p= 0). It can be seen from Fig. 3 that the features of the possible solution of the SH surface
wave in strain-gradient elastic materials are much richer than that of the classical Love wave. The SH surface
wave can exist in the whole range of the wave number (for c4<cp, d4>dp, Fig. 3a, b), or can only exist in
the large wave numbers (for c4>cp, d4>dp, Fig. 3c), or can only exist in the small wave numbers (for c4<cp,
da<dp, Fig. 3d), or does not exist for any wave number (for c4> cp, ds<dp, Fig. 3e, f). Under the condition
that the material constants related to the kinetic energy equal zero (d4= dp= 0), the existence regions of the
dispersion curves for different combinations of material constants are depicted in Fig. 4 (denoted by the shaded
areas), and similar conclusions can be drawn as those of Fig. 3.

4.2 Influence of strain-gradient elastic constants on the dispersion curves

Now we examine the influence of the material constants introduced by the strain gradient elasticity theory on
the dispersion curves of an SH surface wave. First we examine the effects of strain-gradient elastic constants
related to the kinetic energy on the dispersion curves of the general case (both the surface layer and the
half-space are strain-gradient elastic materials).

we assume that the strain-gradient elastic constants involved in the strain energy and boundary/continuity
conditions vanish, that is, [4= Ip= 0, az4 = azp = 0. Then, Eq. (28) reduces to

tan(hk\/l ( 2/cA _]> :M_B\/l—(d§k2/3)c2/c§\/1—(1+d§kz/3)cz/c§ an

d3k2/3)c?/c} pa\ 11— (d3k2/3)c2 /A (1+d3k2/3)c2 /et — 1
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Fig. 3 Existence regions of the dispersion curves (denoted by the shaded areas) for different combinations of material constants
under the condition of /4= /p= 0. The SH surface wave: a, b can exist in the whole range of the wave number, ¢ can only exist
in the large wave numbers, d can only exist in the small wave numbers, e, f does not exist for any wave number. k., is the critical
wave number

Figure 5 demonstrates the dimensionless dispersion curves of this situation, where the short dash lines
represent the upper bounds, while the dash lines denote the lower bounds. Figure 5a—d makes correspondence
with Fig. 3a—d, respectively. It can be seen from Fig. 5 that, for all the four cases, the dispersion curves of
Eq. (34) lie between the upper and lower bounds (in the existence regions of the dispersion curves), and
decrease gradually from the upper bounds to the lower bounds with the increase of the wave number.

Second, we examine the effects of strain-gradient elastic constants involved in the strain energy and
boundary/continuity conditions on the dispersion curves of the case that the surface layer is classical elastic,
while the half-space is strain-gradient elastic.

Let the strain-gradient elastic constant related to the kinetic energy equal zero, i.e., dp= 0, then Eq. (30)
can be written as

2
tan(hk,/cZ/cA - 1)
s Igk/1+12k2 — c2/c (1 +215k* — 2azgk* +1pk,/1 +3k2 — c2/c§) —a3pkt

_ KB . (39

1/2
2\
lpk\/c?/c} — 1(1 +205k% + 21k /1 + 13k% — c2/c§)
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Fig. 4 Existence regions of the dispersion curves (denoted by the shaded areas) for different combinations of material constants
under the condition of dy= dp= 0. The SH surface wave: a, b can exist in the whole range of the wave numbers, ¢ can only exist
in the large wave numbers, d can only exist in the small wave numbers, e, f does not exist for any wave number. k., is the critical
wave number

If we only examine the influence of /p, that is, let azp= 0, Eq. (35) then further reduces to

a s J1+15k2 — c2/c§(1 +205k% + gk, /1 + 15k2 — cz/c%>
tan| hky/c?/c —1) =— )
( ! Ha 5,2 222 a2\

Je2/eh — 1 1+ 203k2 + 21 gk /1 +13k% — 2/}

Figure 6 shows the dimensionless dispersion curves for three cases (ca/cg= 0.5, 1, and 2) under the
condition of dp= 0, azp= 0. For each case, the dispersion curves of Eq. (36) for [p/h=6,4,2, and 1, as well as
the corresponding upper (short dash lines) and lower (dash lines) bounds, are depicted. It can be found that, for
all the three cases (Fig. 6a—c), both the dispersion curves and the upper bounds decrease as /p/h is decreasing;
the dispersion curves lie between the upper and lower bounds, and vary gradually from the upper bounds to the
lower bounds with the increase of the wave number. For the case cs<cp (Fig. 6a), as the decrease of /g/h, the
dispersion curves show three variations as the wave number is increasing: first increase then decrease (Ip/h=
6), first decrease then increase then decrease (Ip/h= 4), decrease in the whole range of the wave number
(Ip/h =2 and 1); and with the decrease of /p/h, the dispersion curves approach that of a Love wave (/p/h= 0).
For the cases c4> cp (Fig. 6b, c), the dispersion curves show only one variation, that is, the dispersion curves

(36)
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Fig. 5 Dispersion curves of the general case where both the surface layer and the half-space are strain-gradient elastic materials.
Under the conditions of [4= Ip= 0, aza= asp= 0, dispersion curves are depicted for four cases: a ca<cp, da>dp, b ca= cp,
da>dp, ¢ ca>cp,ds>dp, and d ca<cp, da<dp. The short dash lines represent the upper bounds, while the dash lines denote the
lower bounds

first increase then decrease with the increase of the wave number. In addition, for the cases c4 <cp (Fig. 6a,
b), the dispersion curves exist in the whole range of the wave number; while for the case c4>cp (Fig. 6¢) the
dispersion curves only exist for the large wave numbers.

Now we examine the influence of azp. Under the condition of dg= 0, Ip/h= 2, Fig. 7 demonstrates the
dimensionless dispersion curves for three cases: c4/cg= 0.5, 1 and 2. For each case, the dispersion curves of
Eq. (35) for 6_133/1% =—-20.9,—-0.5,0,0.5, and 0.9, as well as their upper (short dash lines) and lower (dash
lines) bounds, are depicted. It can be seen from Fig. 7a—c that, for all the three cases, the dispersion curves
decrease with the increase of azp/ llzg and almost coincide when a3p/ 1123 < — 0.5. The dispersion curves are
located between the upper and lower bounds and gradually vary from the upper bounds to the lower bounds as
the wave number is increasing. For the case cy<cp (Fig. 7a), as the increase of a3p/ l%, the dispersion curves
show two variations as the wave number is increasing: first decrease then increase then decrease (azp/ l% =

— 0.9 and — 0.5), decrease in the whole range of the wave number (a3p/ 1123 =0, 0.5 and 0.9). For the cases
ca> cp (Fig. 7b, c), the dispersion curves show only one variation: first increase then decrease with the increase
of the wave number. Besides, the dispersion curves exist in the whole range of the wave number for the cases
ca<cp (Fig. 7a, b), while only exist in the large wave numbers for the case c4>cp (Fig. 7¢).

5 Conclusions

In the present paper, we systematically studied the SH surface wave propagating in the strain-gradient elastic
materials. Technically, we studied all the material combinations between the surface layer and the half-space.
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Fig. 6 Dispersion curves of the case that the surface layer is classical elastic while the half-space is strain-gradient elastic. Under
the conditions of dg= 0, azp= 0, dispersion curves of [p/h= 6, 4, 2, and 1 are depicted for three cases: a ca<cp, b ca= cp, and
¢ ca>cp. The short dash lines represent the upper bounds, while the dash lines denote the lower bounds

The procedure is straightforward, yet tedious. By introducing strain-gradient material constants, we observed
rich dispersion phenomena in comparing with the traditional Love wave. The most attractive phenomenon
in the outcome of this paper is that the upper and lower bounds of the SH surface waves are no longer two
straight lines. This leads to the fact that SH surface waves no longer exist in all the wave numbers. Instead, SH
surface waves exist for certain ranges of the wave number, see Fig. 3c, d, as well as Fig. 4c, d. This new finding
hints that a “filter” can be proposed for letting surface waves with big or small wave number pass through and
block the rest of the surface waves. Surface layers with microstructures/micropatterns are used more and more
widely, and modeling them as gradient elastic materials is increasingly accepted by people. The present study
may shed some light on possible engineering applications in this area.
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Appendix: Mindlin’s Form II gradient elasticity theory

We introduce some basic equations of Mindlin’s Form II gradient elasticity theory (strain gradient elasticity
theory). For the details of this theory, readers can refer to the original paper of Mindlin [4].
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b ca= cp, and ¢ c4>cp. The short dash lines represent the upper bounds, while the dash lines denote the lower bounds

For a material composed wholly of unit cells (cubes), the kinetic energy density can be obtained with
respect to a Cartesian coordinate system Ox1x2x3 as

1 1
T = 5 pitji + gpdz(aiu,)(aiu,), 37)

where p is the density of the material, 2d is the length of edges of a cube, u; are the components of displacement,
d;()=09()/dx;, and the overhead dot denotes the derivative with respect to time 7. The Latin indices span the
range (1, 2, 3), and Einstein’s summation convention is applied for repeated indices.

If the material is isotropic, the strain energy density can be written as

1
W = SA&iiejj + 1U€ijEij + Q1KiikKkjj + A2KijjKikk + A3KiikI jjk + AaKijkKijk + ASKijkKkji (38)
where A and u are the classical Lamé constants, ay, ..., as are five additional material constants,
1
Eij :E(aiuj+aju,'):8j,’, 39
is the strain tensor, and
Kijk = 0i&jk = Kikj (40)

is the strain gradient tensor.
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From Eq. (38), the constitutive equations can be derived as

aw
Tij = o—— = Aijerk + 2ueij = Tji, @D
de;ij
aw 1
Hijk = 5 — = zal(&-ﬂcku + 28 jkkuti + Sikic jur) + 2a28 jikinl
ijk
+ a3 (8ijkiuk + Sinscuj) + 2aakijn +as(iuij + Kjki) = Hikj» “

where 7;; is the Cauchy stress tensor, w;j is the double stress tensor, and §;; is the Kronecker delta. The total
stress is defined as

Ojk = Tjk — diMhijk (43)
which is symmetric since both the Cauchy stress tensor 7 and the relative stress tensor 9% are symmetric
according to Eqgs. (41) and (42).

We assume that the material occupies a region V bounded by a smooth surface S. In the case of no body
forces, the variational form of Hamilton’s principle can be written as

1 141
/ (/ swdv —/ 8TdV)dt :/ (/ Pk8ude+/ RkDSMde>dt, (44)
to |4 |4 to S S

where § denotes the weak variation and acts on the ensuing physical quantities, to and ¢ are two arbitrary
instants of time at which the variations §uy are zero at all points of the material,

1 ..
Pe = nj(tjk — dipiji) — Dj(nipiji) + (Dinpnin jpiji + gPdZDuk, (45)
and
Ri = ninjuij, (46)

are, respectively, the auxiliary force traction and auxiliary double force traction on the surface, n; are the com-
ponents of the outward unit vector normal to the surface, D() =n;0;() and D;() = 0;() — n;D() are, respectively,
the normal gradient operator and surface gradient operator, and the overhead two dots denotes the second
derivative with respect to time.

From the variational equation of motion (Eq. 44), the stress equations of motion can be derived as

1
3j(fjk — 8,'/L,'jk) = piiy — §pd23j(8jiik). “n

Substituting Egs. (39) and (40) into Egs. (41) and (42) and the latter into Eq. (47), the displacement equation
of motion can be obtained as

O+2) (1 = FVH)VV -u— pu(1 = 3V?)V x V x u = pii — I V7, (48)

where u is the displacement vector,

— [2aitapraztasras) g [az+2astas
ll - A2 ’ 12 - 21 ’ (49)

are two characteristic lengths related to the strain energy, /= pd?/3 is the micro-inertia coefficient, the symbols
“V” and “V?2” are, respectively, the gradient operator and Laplacian operator, and - and “x” denote the dot
product and cross product, respectively.
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