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Abstract This work presents the dynamic response of piezoelectric and flexoelectric Euler–Bernoulli beams
subjected to mechanical loads bymeans of Green’s functions. Exact solutions in closed form for the electrome-
chanical coupling behaviors are derived. The present solutions will reduce to those of classical piezoelectric
beam models by neglecting the flexoelectric effect. Numerical results for a BaTiO3 cantilever show that the
tip deflection of the beam will be separated when the beam thickness reduces to one micrometer; therefore,
pure mechanical experiments can be used to determine the flexoelectric effect by a bending test under different
electrical boundary conditions. In addition, the dynamic output voltage under open-circuit condition and the
dynamic output charge under short-circuit condition are dominated by the flexoelectric effect. The dynamic
output voltage and charge become negligible when the beam thickness reduces to one micrometer. By reduc-
ing the length–thickness ratio or introducing the effective piezoelectric coefficient, the electric response can
be more easily detected at microscale. These results demonstrate that the flexoelectric effect can be strong
enough to dominate the electromechanical coupling behavior, coordinating with the ‘ever green’ trend to
miniaturization, and the flexoelectric effect can be applicable for energy harvesters, sensing, and others.

1 Introduction

The rapid development of microelectromechanical systems (MEMS) and nanoelectromechanical systems
(NEMS) in the past decades has been fueled by the fast growth of the nanotechnology. Piezoelectric elements
such as beams, plates and shells have been widely utilized as the building blocks in the MEMS and NEMS
as sensors, actuators, and others [1]. Flexoelectric elements are the other promising building blocks in the
next-generation MEMS and NEMS devices [2–5], besides of the state-of-the-art piezoelectric devices. Unlike
piezoelectricity, flexoelectricity is a universal electromechanical coupling which exists in all dielectrics due to
the local inversion symmetry breaking by the strain gradient. Unexpectedly, the flexoelectric coefficients for
certain perovskite ferroelectrics such as lead magnesium niobate (PMN) [6], barium strontium titanate (BST)
[7], lead zirconate titanate (PZT) [8], and barium titanate (BT) [9] are three to five orders magnitude larger than
those of the theoretical predictions [10,11] and first-principle calculations [12,13]. These experiment results
triggered the investigation of flexoelectricity in the fundamental mechanical elements.

From the continuum mechanics point of view, the strain gradient elasticity is considered as a higher-order
gradient theory. The study of higher-order strain gradient elasticity and couple stress theory can be traced back
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to the work of Mindlin [14], Mindlin and Eshel [15], and Toupin [16]. Later, the study of higher-order gradient
and generalized continua mechanics goes back to the nonlocal elastic theory by Eringen [17,18]. The theory of
flexoelectricity for elastic dielectrics can be considered as a higher-order electromechanical coupling theory.
The origin of the elastic dielectrics with flexoelectricity might be found in the earlier work of Mindlin [19],
in which the polarization gradient has been involved in the framework of the continuum elastic dielectrics.
Sharma and co-workers [20], and Cross and co-workers proposed a modified phenomenological model for
the flexoelectric effects in solid dielectrics. Sharma and co-workers [21–24] have extended Mindlin’s work
by including the strain gradient terms. In Cross’s work, the flexoelectric effects have been investigated from
the viewpoint of equilibrium thermodynamics. The physical fundamental of the flexoelectricity for elastic
dielectrics can be found in Shen and Hu [25–27], in which the electrostatic force, surface piezoelectric and
flexoelectric effect were all take into consideration in the continuum theoretical frameworks.

Based on the above-mentioned continuum theoretical frameworks, Jiang and co-workers [28–30] inves-
tigated the static bending and vibration of piezoelectric nanobeams with flexoelectricity. Liang et al [31–33]
studied the static bending, buckling, and vibration behaviors of piezoelectric nanostructures with consider-
ation of the surface and flexoelectric effect. The electromechanical response of piezoelectric nanostructures
and flexoelectric nanostructures can be also found in various previous works [34–36]. Further, flexoelectric-
ity has been verified to play an important role in the magnetoelectric behaviors of a multiferroic composite,
which provides a novel notion for designing multiferroic devices [37,38]. The forced vibration of piezoelectric
and flexoelectric beams due to steady loads is a very important issue in engineering applications. However,
exact solutions for the forced vibration of piezoelectric and flexoelectric Euler–Bernoulli beams (EBs) are still
limited As pointed out by the previous investigation, the static measurement offers only a rough estimation
of the flexoelectric effect, and it is generally inaccurate in comparison to dynamic measurements [39]. The
forced vibration of Euler–Bernoulli beams (EBs) and Timoshenko beams (TBs) has been rigorously studied by
means of the Green’s functions [40,41]. In the light of the dynamic experimental measurement of the flexoelec-
tric coefficient for perovskite ceramics and polymer materials [42–45], it is essential to present the dynamic
response of piezoelectric and flexoelectric beams. To the author’s knowledge, mechanical structural design and
functionally graded composite can greatly enhance the electromechanical behaviors of dielectrics, leading to a
higher performance and a wider range of application in energy conversion devices [46–49]. Here we propose
a novel way based on the size-dependent electromechanical couplings to fabricate BT-based materials with
ultrahigh piezoelectric coefficient, which can be a guideline for designing new flexoelectric devices.

2 Piezoelectric and flexoelectric Euler–Bernoulli beams

In order to simplify the discussion, the higher-order gradients terms (fifth and sixth strain gradient terms) are
neglected. The electric enthalpy in considering both the piezoelectric and flexoelectric effects can be written
as [50,51]

H = −1

2
akl Ek El + 1

2
ci jklεi jεkl − ei jkεi j Ek − μi jkl Ekεi j,l (1)

where ai j and ci jkl are the second-rank dielectric constant and elastic stiffness constant, respectively. In
addition, ei jk is the third-rank piezoelectric constant, while μi jkl is the fourth-rank flexoelectric constant.

The displacement components for EBs can be written as

u(x, y, z, t) = −z
∂w0

∂x
, v(x, y, z, t) = 0, w(x, y, z, t) = w0(x, t) (2)

where w0(x, t) is the deflection of the neutral plane.
The elastic strains can be then derived from Eq. (2) from the displacement–strain relation as

εxx = ∂u

∂x
= −z

∂2w0

∂x2
. (3)

The only nontrivial gradients of strain are

ηxxx = ∂εxx

∂x
= −z

∂3w0

∂x3
, ηzxx = ∂εxx

∂z
= −∂2w0

∂x2
. (4)
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For a flexoelectric beam with electrodes on its top and bottom surfaces, the electric field is assumed in the
thickness direction, as pointed out in our previous works [32]. The electric potential is assumed in the form as
ϕ = ϕ(z, t); therefore, the electric field can be written as Ez(z, t) = −∂ϕ/∂z.

From Eq. (1), the constitutive equation for the piezoelectric EBs with flexoelectric effect can be written as

σxx = c11εxx − e31Ez, τzxx = −μ31Ez . (5)

And the electric displacement and higher-order electric displacement are

Dz = a33Ez + e31εxx + μ31ηzxx . (6)

In case of open-circuit condition, the electric displacement on the surface is zero, Dz |a = 0. And consider-
ing the Gauss’s Law of the electric displacement, ∂Dz/∂z = 0, one gets that the electric displacement should
be equal to zero. Thus, from Eq. (6) one gets

Ez = − e31
a33

εxx − μ31

a33
ηzxx . (7)

Then, substituting Eq. (7) into Eq. (5) yields

σxx =
(
c11 + e231

a33

)
εxx + e31μ31

a33
ηzxx ,

τzxx = e31μ31

a33
εxx + μ2

31

a33
ηxxz .

(8)

The equilibrium equations and boundary conditions of the beam can then be derived from Hamilton’s
principle [52],

δ

∫ t2

t1
Ldt +

∫ t2

t1
δWdt = 0, (9)

where L is the Lagrange density defined by

L =
∫
V

(
1

2
ρu̇i u̇i − H .

)
dV (10)

As pointed out by Tiersten [52], the Lagrange density in Eq. (10) is the kinetic energy minus the electric
enthalpy as in piezoelectric media, rather than the kinetic energy minus the internal energy as in pure elasticity.

The work done by the external force p(x, t) can be expressed as

W =
∫ L

0
P(x, t)w0(x, t)dx . (11)

Substituting Eqs. (2), (8), and (11) into Eq. (9) gives

δ

∫ t2

t1
Ldt +

∫ t2

t1
δWdt

=
∫ t2

t1
dt

∫
V

(ρẇ0δẇ0 − σxxδεxx − τzxxδηzxx )dV +
∫ t2

t1
dt

∫ L

0
p(x, t)δw0(x, t)dx

=
∫ t2

t1

[
(M + P)δ

(
∂w0

∂x

)]∣∣∣∣
L

0
dt −

∫ t2

t1

[(
∂(M + P)

∂x

)
δw0

]∣∣∣∣
L

0
dt

+
∫ t2

t1
dt

∫ L

0

[
∂2(M + P)

∂x2
− ρAẅ0 + p(x, t)

]
δw0dx

(12)

where M and P are the bending moment and higher-order bending moment on the cross section, respectively.
These internal generalized forces are defined by

M(x) = −
(
c11 + e231

a33

)
I
∂2w0

∂x2
, P = −μ2

31A

a33

∂2w0

∂x2
. (13)
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Due to the arbitrariness of δw0, the governing equations for the piezoelectric and flexoelectric EBs are

∂2M

∂x2
+ ∂2P

∂x2
− ρAẅ0 + p(x, t) = 0. (14)

And the corresponding boundary conditions for a cantilever beam are

w0(x = 0) = 0,
[

∂M
∂x + ∂P

∂x

]∣∣
x=L = 0,

∂w0
∂x

∣∣∣
x=0

= 0, (M + P)|x=L = 0.
(15)

By substituting Eq. (13) into Eq. (14), one gets the governing equations expressed by displacement w0 as

∂4w0

∂x4
+ ρA

(E I )eff
ẅ0 = 1

(E I )eff
p(x, t) (16)

where (E I )eff is the effective bending rigidity, defined by

(E I )eff =
(
c11 + e231

a33

)
I + μ2

31A

a33
, (17)

In the case of the short-circuit condition, the electric field Ez(x, t) is equal to zero. Hence, the higher-order
couple stresses vanish. Equation (5) reduces to σxx = c11εxx .

The explicit governing equations are then reduced to

c11 I
∂4w0

∂x4
+ ρAẅ0 = p(x, t). (18)

Under this condition, the governing equations reduce to the same form as the classical EBs without elec-
tromechanical coupling. However, the electric charge on the upper and lower surface can be detected tomeasure
the flexoelectric coefficient,

Dz = e31εxx + μ31ηxxz . (19)

When the electric charge on the surface is detected, then one has


Q = Qupper − Qlower

2
= μ31Ae

∂2w0

∂x2
(20)

where Qupper and Qlower have the samemagnitude but with opposite sign because of the pure bending state, and
Ae is the area of the electrode on the upper and lower surface. When the tip displacement of cantilever beams is
detected, the expression of the displacement can be expressed by the tip displacement so that the flexoelectric
coefficient can be determined by Eq. (20); the schematic graph for measuring the flexoelectric coefficient is
shown in Fig. 1a. It should be noticed that the detected electric charge is contributed to only the flexoelectric
effect. Figure 1b displays that the upper part of the beam is in opposite mechanical state with the lower part of
the beam; therefore, the electric charge induced by the piezoelectric effect has the same sign on both the upper
and lower surfaces. There is no current flow in the circuit under short- circuit condition. However, flexoelectric
effect-induced bound charge has opposite sign on the upper and lower electrodes; therefore, weak electric
current should be detected. Similarly, piezoelectricity doesn’t contribute to the electric potential, which will
be discussed in detail in the following Sections. The elimination of the piezoelectric effect in pure bending
leads to the measurement of the flexoelectric effect practically.
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Fig. 1 a Experiment arrangement for the measurement of flexoelectric coefficient; b illustration of the electric response under
short-circuit condition and open-circuit condition. The polarization direction is given by the arrows (red for piezoelectric effect,
yellow for flexoelectric effect)

3 Green’s function solutions for the forced vibration

In order to obtain the analytical solution for the forced vibration of piezoelectric and flexoelectric EBs, we use
the Green’s function. Considering the piezoelectric and flexoelectric EBs excited by a harmonic force, then,
the method of separation of variables and the synchronous motion hypothesis give

p(x, t) = P(x)eiωt ,

w0(x, t) = W (x)eiωt .
(21)

By substituting Eqs. (21) into the governing Eqs. (16), one gets the governing equations for the piezoelectric
and flexoelectric EBs with open-circuit condition as

W (4)(x) − a1W (x) = b1P(x) (22)

where a1 = ρAω2/(E I )eff , b1 = 1/(E I )eff .
If the flexoelectric effect is neglected, letting μ31 = 0, the governing equation (22) reduces to that of the

classical piezoelectric Euler–Bernoulli beam model with effective bending rigidity (E I )eff = c11 + e231/a33.
Note that the external force has an opposite direction in our model compared with that in Ref. [41]. We focus
on the electromechanical coupling behaviors so that we do not try to deal with the damping effect in our work.
And the definition of the effective bending rigidity for EB under various physical conditions can also be found
in our previous works [32,33,53,54].

To obtain the solution for the governing equation (22) with the superposition principle, we present the
transverse displacement W (x) as an integral equation of a Green’s function as

W (x) =
∫ L

0
P(x0)G(x, x0)dx (23)

where the Green’s function G(x, x0) means its response of a unit concentrated force acting at an arbitrary
position x0, and P(x0) is the amplitude of the external force.

First we consider an unit concentrated force applied at an arbitrary position x0, i.e., P(x) = δ(x − x0);
then, Eq. (23) can be expressed as W (x) = G(x, x0). And mathematically, G(x, x0) is the solution of the
following equation:

G(4) − a1G = b1δ(x − x0). (24)
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After using the Laplace transform method with respect to the variable x , the Green’s function can be
expressed as

Ĝ(s, x0) = R(s)

s4 − a1
. (25)

The characteristic equation of Eq. (24) has the form

s4 − a1 = 0. (26)

The roots of Eq. (26) are

s1 = a1/41 , s2 = −a1/41 , s3 = ia1/41 , s4 = −ia1/41 . (27)

This gives the solution in the form of

Ĝ(s, x0) = R(s)

(s − s1)(s − s2)(s − s3)(s − s4)
. (28)

The inverse transform of Ĝ(s, x0) gives

G(x, x0) = H(x − x0)�1(x − x0) + �2(x)G(0)

+ �3(x)G
(1)(0) + �4(x)G

(2)(0) + �5(x)G
(3)(0)

(29)

where �i (i = 1, 2, ..., 5) are defined by

�1(x − x0) =
4∑

i=1

b1Ai (x − x0), �2 =
4∑

i=1

Ai (x)(s
3
i + a1si ),

�3 =
4∑

i=1

Ai (x)(s
2
i + a1), �4 =

4∑
i=1

Ai (x)si , �5 =
4∑

i=1

Ai (x).

(30)

Where Ai (i = 1, 2, ..., 4) are functions given by

A1(x) = es1x

(s1 − s2)(s1 − s3)(s1 − s4)
, A2(x) = es2x

(s1 − s2)(s3 − s2)(s4 − s2)
,

A2(x) = es3x

(s3 − s1)(s3 − s2)(s3 − s4)
, A4(x) = es4x

(s4 − s1)(s4 − s2)(s4 − s3)
.

(31)

4 Determination of the constants by boundary conditions

Various derivatives of G(x, x0) can be derived from Eq. (29) as

G(1)(x, x0) = �
(1)
1 (x − x0) + �

(1)
2 (x)G(0)

+ �
(1)
3 (x)G(1)(0) + �

(1)
4 (x)G(2)(0) + �

(1)
5 (x)G(3)(0), (32)

G(2)(x, x0) = �
(2)
1 (x − x0) + �

(2)
2 (x)G(0)

+ �
(2)
3 (x)G(1)(0) + �

(2)
4 (x)G(2)(0) + �

(2)
5 (x)G(3)(0), (33)

G(3)(x, x0) = �
(3)
1 (x − x0) + �

(3)
2 (x)G(0)

+ �
(3)
3 (x)G(1)(0) + �

(3)
4 (x)G(2)(0) + �

(3)
5 (x)G(3)(0). (34)
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Table 1 Boundary conditions of the piezoelectric and flexoelectric cantilever beam

Boundary conditions Clamped Free

Cantilever beam G(0) = 0 G(2)(L) = 0
G(1)(0) = 0 G(3)(L) = 0

Equations (29), (32-34) establish the relations between the quantities at arbitrary cross section x . Particu-
larly, at the boundary x = L , one gets

⎡
⎢⎢⎣

�2(L) �3(L) �4(L) �5(L)

�
(1)
2 (L) �

(1)
3 (L) �

(1)
4 (L) �

(1)
5 (L)

�
(2)
2 (L) �

(2)
3 (L) �

(2)
4 (L) �

(2)
5 (L)

�
(3)
2 (L) �

(3)
3 (L) �

(3)
4 (L) �

(3)
5 (L)

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
G(0)
G(1)(0)
G(2)(0)
G(3)(0)

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩
G(L , x0) − �1(L − x0)
G(1)(L , x0) − �

(1)
1 (L − x0)

G(2)(L , x0) − �
(2)
1 (L − x0)

G(3)(L , x0) − �
(3)
1 (L − x0)

⎫⎪⎪⎬
⎪⎪⎭ . (35)

By setting �1 = 0, one obtains the free vibration of the piezoelectric and flexoelectric Euler–Bernoulli
beam. The constants G(0), G(1)(0), G(2)(0), and G(3)(0) can be determined by the corresponding boundary
conditions. For a cantilever beam which is clamped at x = 0 and free at x = L , the corresponding boundary
conditions are given in Eqs. (15). The boundary conditions then can be rewritten by the Green’s function
G(x, x0) as shown in Table 1.

With the boundary conditions in Table 1 and relations in Eqs. (35), one can obtain⎡
⎣�

(2)
4 (L) �

(2)
5 (L)

�
(3)
4 (L) �

(3)
5 (L)

⎤
⎦{

G(2)(0)
G(3)(0)

}
=

{
−�

(2)
1 (L − x0)

−�
(3)
1 (L − x0)

}
. (36)

Thus, Green’s function for the cantilever EB is determined as

G(x, x0) = H(x − x0)�1(x − x0) + �4(x)G
(2)(0) + �5(x)G

(3)(0). (37)

Then, the explicit expression of the transverse displacement excited by a unit harmonic force can be written
as

w(x, t) =
[
H(x − x0)�1(x − x0) + �4(x)G

(2)(0) + �5(x)G
(3)(0)

]
sinωt (38)

where ω = 2π f is the circular frequency of the external excited force.
After obtaining the dynamic mechanical response of EB, we can gain the output charge under short-circuit

condition and output voltage under open circuit. Under open-circuit condition, the total electric displacement
on the top and bottom surface is zero. Thus,∫

Se
(a33E3 + e31ε11 + μ31∂3ε11)dS = 0. (39)

With the help of the Green’s function G(x, x0), the average electric field can be written as

Ē3(x, t) = 1

a33Se

∫
Se

[
e31zG

(2)(x, x0) + μ31G
(2)(x, x0)

]
dS. (40)

The dynamic output of the electric potential can be written as

ϕ(t) = −
∫ h

2

− h
2

Ezdz sinωt = − μ31

a33Se/Bh

∫ L

0
G(2)(x, x0)dx sinωt. (41)

It should be noticed that the electric potential induced by piezoelectricity is zero because of the symmetry
through thickness. Thus, only flexoelectricity contributes to the dynamic output of the electric potential, as
shown in Fig. 1b.
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Fig. 2 Dynamic deflection of the beam versus time at x = L , a H = 1mm; b H = 1µm

Under short circuit, the electric field along the thickness is zero; thus, the electric displacement can be
written as

D3 = (e31ε11 + μ31∂3ε11) sinωt. (42)

Then, the output charge along the thickness of the beam can be written as

Q(t) = 1

h

∫
V
D3dV = −μ31B

∫ L

0
G(2)(x, x0)dx sinωt. (43)

5 Numerical results and discussion

Considering a unit force loaded at the free end of the cantilever beam, the external force can be expressed as
p(x, t) = δ(x − L)eiωt . The width–thickness ratio is taken b = 2h. We introduce the following dimensionless
quantities:

ξ = x

L
, β = h

L
, g(ξ) = G(x, L)

wmax
. (44)

Material properties in the numerical calculations are chosen as c11 = 108 GPa, a33 = 1.12 × 10−8 F/m,
e31 = −4.4C/m2, μ31 = 10µC/m [9], and ρ = 5780 kg/m3.

The static solution for the deflection of the beam is

w(x) = F(x − 3L)x2

6(E I )eff
. (45)

To maintain the elastic deformation, we chooseF = Ebh4

80L3 .
In this Section, we consider the forced vibration of the Euler–Bernoulli piezoelectric and flexoelectric

beam driven by a unit force loaded at the free end of the cantilever beam; therefore, the deflection of the beam
can be expressed by the Green’s function G(x, L).

When considering β = 20, f = 1Hz, the dynamic deflection of the beam versus time at the position
x = L is illustrated in Fig. 2. ‘E’, ‘P’, ‘F’, and ‘P+F’ in Fig. 2 represents elastic beam, piezoelectric beam,
flexoelectric beam, and piezoelectric and flexoelectric beam, respectively. In Fig. 2a, the applied force is about
0.3 N, and the thickness of the beam is one millimeter. It is obvious that the dynamic deflection of the elastic
beam, piezoelectric beam, flexoelectric beam, and piezoelectric and flexoelectric beam almost equal each other.
This implies that the effect of piezoelectricity, flexoelectricity or both does not affect the dynamic deflection
significantly at themacroscopic level. However, the dynamic deflection of the elastic beam, piezoelectric beam,
flexoelectric beam, and piezoelectric and flexoelectric beam is separated when the thickness of the cantilever
beam reduces to ten micrometer, as shown in Fig. 2b. The applied force is about 0.3 µN to maintain the beam
in elastic deformation. Therefore, the elastic strain is almost in the same level in Fig. 2a, b. The elastic strain
gradient is, however, inversely proportional to the beam thickness. The elastic strain gradient in Fig. 2b is
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Fig. 3 Dynamic output voltage versus time a H = 1mm∼10µm; b different length–thickness ratios when H = 1mm

much larger than that in Fig. 2a. The dynamic deflection of the elastic beam is equal to that of the piezoelectric
beam in Fig. 2b, while the dynamic deflection of the flexoelectric beam is smaller than that of the elastic
and piezoelectric beam. Moreover, the dynamic deflection of the flexoelectric beam is equal to that of the
piezoelectric and flexoelectric beam. Therefore, Fig. 2b reveals that the difference in the dynamic deflection
could be ascribed to the effect of flexoelectricity. The results in Fig. 2 imply that the effect of flexoelectricity
becomes significant when the beam thickness reduces to microscale. For short-circuit condition, however, the
effects of piezoelectricity and flexoelectricity do not affect the dynamic deflection because the elastic modulus
remains constant. As a result, one may determine the flexoelectric coefficient for beams by a pure elastic
technique at the microscale, such as testing the bending rigidity of the beam or determining the dynamic
deflection of the flexoelectric beam under open-circuit condition.

The dynamic output voltage versus time of the Euler–Bernoulli beam is illustrated in Fig. 3. Obviously,
elastic and piezoelectric Euler–Bernoulli beam will not cause any output voltage, owing to the tensile state of
the upper part in the beam while the compressive state is in the lower part of the beam, as displayed in Fig. 1b.
The flexoelectric Euler–Bernoulli beam, however, will cause output voltage due to the flexoelectric effect.

We find that the peak voltage for a flexoelectric Euler–Bernoulli beam is 0.164 V, and this value remains
almost constant when the beam thickness reduces to fifty micrometers. This can be explained via the static
solution of the output voltage, which can be expressed as

ϕ = 3μ31

40a33β2 . (46)

The dynamic output voltage for a flexoelectric Euler–Bernoulli beamwill be increasingly remarkable when
the length–thickness ratio β decreases (Fig. 3b). The results above throw light on enhancing the dynamic output
voltage by changing the size of the beam, besides increasing the intrinsic flexoelectric coefficient.

Moreover, these results lead us to rethink some of the existing works [55–57]. In these works, BaTiO3
nanowires or nanowire arrays were used to harvester energy from the environmental vibration. The flexible
nanogenerator based on single BaTiO3 nanowire can generate an output voltage of up to 0.21 V and has been
found in the previous works [57]. Our results imply that the flexoelectric effect might play an important role
in the dynamic output voltage of the nanogenerators.

Figure 4a illustrates the dynamic output charge versus time under short-circuit condition. As stated above,
the electric charge induced by piezoelectricity has the same sign on both surfaces, and only flexoelectricity
contributes to the current flow. However, the peak output charge rapidly decreases to 0.075 pC when the beam
thickness reduces to one micrometer, which is hard to measure practically. This phenomenon can also be
directly explained by the static solution of the output charge,

Q = 3μ31bh

40L
= 3μ31h

20β
. (47)

The results above give us a new understanding of measuring the flexoelectric coefficients, that is, to get
detectable electric charge output, the beam size should be avoided to made too small. Moreover, we introduce
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Fig. 4 a Dynamic output charge versus time with H = 1mm, β = 20; b piezoelectric coefficient d33 of doped BT [58] and
effective piezoelectric coefficient d33 of an Euler–Bernoulli flexoelectric beam

the effective piezoelectric coefficient, which can be expressed as

deff33 = 6μ31β
2

Eh
. (48)

We can see that the coefficient is inversely proportional to the beam thickness; hence, it can be signifi-
cantly enhanced when the beam thickness decreases to microscale, as illustrated in Fig. 4b. The toxicity and
environmental impacts of lead have shifted the attention from the most widely used lead zirconate titanate
piezoceramics to alkaline bismuth titanate-based piezoelectric ceramics. Chemical modification or microstruc-
turally engineeringBT-basedmaterials have been fabricated and selected to substitute for lead zirconate titanate
piezoceramics. As compared in Fig. 4b, the effective piezoelectric coefficient d33 (222 pC/N) is comparable
with the piezoelectric- doped BT (largest value, 454 pC/N) when the beam thickness is at one millimeter;
however, the effective piezoelectric coefficient d33 (2222 pC/N) will be much stronger than that of the piezo-
electric doped BT ceramics. Furthermore, the effective piezoelectric coefficient d33 is size dependent of the
beam thickness; this gives a novel way to design piezoelectric materials by flexoelectricity.

6 Conclusions

This work presents the forced vibration of a piezoelectric and flexoelectric Euler–Bernoulli beam by the
Green’s function solution. The exact solutions for the harmonically excited beams are derived for cantilevers
with different beam thicknesses. The tip deflection, dynamic output voltage, and dynamic output charge were
selected to demonstrate the effect of the flexoelectric effect. Numerical results for BaTiO3 cantilevers showed
that the tip deflection would be smaller than that predicted by the classical piezoelectric beam theory. The
dynamic output voltage and charge are negligible when the beam thickness reduces to microscale; however,
several methods are proposed here to effectively enhance the electric response, such as changing the length–
thickness ratio or introduce the effective piezoelectric coefficients. Our results imply that pure mechanical
experiments can be used to determine the flexoelectric effect with different electrical boundary conditions.
Moreover, our results showed that mechanical structural design can be another novel way to fabricate BT-based
piezoelectric materials with ultrahigh piezoelectric coefficient.
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