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Abstract We consider the interaction of a screw dislocation with a semi-infinite crack partially penetrating
a parabolic elastic inhomogeneity embedded in an infinite elastic matrix subjected to anti-plane mechanical
loading. Analytical solutions are derived in the case when the screw dislocation is located either in the matrix
or inside the parabolic inhomogeneity. In addition, the local mode III stress intensity factor at the crack tip
and the image force acting on the screw dislocation are obtained and illustrated accordingly. Moreover, we
establish a dislocation emission criterion from the crack.

1 Introduction

The shielding of cracks owing to the presence of nearby dislocations has been discussed by many investigators
(see, for example, [1–10]). The dislocation–crack interaction problem becomes considerably challengingwhen
the tip of the crack is lodged inside an elastic inhomogeneity. In this case, the dislocation interacts not only
with the crack, but also with the elastic inhomogeneity.

In this paper, we investigate the interaction between a screw dislocation and a semi-infinite crack partially
penetrating a parabolic elastic inhomogeneity under far-field anti-plane mechanical loading. The crack passes
through the vertex of the parabolic interface and has its tip located at the focus of the parabolic interface.
Under this assumption, analytical solutions are derived for two specific cases: (i) when the screw dislocation
is located in the matrix; (ii) when the screw dislocation is located inside the parabolic elastic inhomogeneity.
In addition, the local mode III stress intensity factor at the crack tip and the image force acting on the screw
dislocation are obtained. The shielding effect of the screw dislocation on the local mode III stress intensity
factor is illustrated for typical locations of the screw dislocation. The condition for dislocation emission from
the crack is established.

2 General solution

As shown in Fig. 1, we consider a semi-infinite crack with its cleavage plane on the negative x1-axis partially
penetrating a parabolic elastic inhomogeneity. Let S1, S2, and S3 denote, respectively, the upper half matrix,

X. Wang(B) · P. Yang
School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai
200237, China
E-mail: xuwang@ecust.edu.cn

P. Schiavone (B)
Department of Mechanical Engineering, University of Alberta, 10-203 Donadeo Innovation Centre for Engineering, Edmonton,
Alberta, Canada
E-mail: p.schiavone@ualberta.ca

http://orcid.org/0000-0003-4741-0165
http://crossmark.crossref.org/dialog/?doi=10.1007/s00707-020-02855-9&domain=pdf


440 X. Wang et al.

Fig. 1 A screw dislocation interacting with a semi-infinite crack partially penetrating a parabolic elastic inhomogeneity

the inhomogeneity, and the lower half matrix, all of which are perfectly bonded through the parabolic interface
L described by

L : x1 = −H + x22
4H

, H > 0. (1)

The crack passes through the vertex of the parabolic interface at z = −H , and the crack tip is located at the
focus of the parabola L . In addition, a screw dislocation with Burgers vector b is applied at z = z0 = r exp(iθ)
with r and θ being the polar coordinates of z0 either in the upper half matrix S1 or in the inhomogeneity S2.
Throughout the paper, the subscripts 1, 2, and 3 are used to identify the respective quantities in S1, S2, and S3.

For the anti-plane shear deformations of an isotropic elastic material, the two anti-plane shear stress
components σ31 and σ32, the out-of-plane displacement u3, and the single stress function φ can be expressed
in terms of a single analytic function f (z) of the complex variable z = x1 + ix2 as [11]

σ32 + iσ31 = μ f ′(z), φ + iμu3 = μ f (z), (2)

where μ is the shear modulus. In addition, the two anti-plane stress components can be expressed in terms of
the single stress function by [11]

σ32 = φ,1, σ31 = −φ,2. (3)

We introduce the following conformal mapping function:

z = ω(ξ) = ξ2, ξ = ω−1(z) = √
z,Re {ξ} ≥ 0. (4)

As shown in Fig. 2, using the mapping function in Eq. (4), the z-plane containing the semi-infinite crack
is mapped onto the right half-plane: Re {ξ} ≥ 0; the upper half matrix S1 is mapped onto the upper and right
quarter-plane S′

1 : {h ≤ Im {ξ} < +∞,Re {ξ} ≥ 0}with h = √
H ; the parabolic inhomogeneity S2 is mapped

onto the middle semi-infinite strip S′
2 : {−h ≤ Im {ξ} ≤ h,Re {ξ} ≥ 0}; the lower half matrix S3 is mapped

onto the lower and right quarter-plane S′
3 : {−∞ < Im {ξ} ≤ −h,Re {ξ} ≥ 0}; the crack surfaces are mapped

onto the vertical straight line: {Re {ξ} = 0, −∞ < Im {ξ} < +∞}; the location of the screw dislocation at
z = z0 is mapped onto the point ξ = ξ0 with ξ0 = √

z0.
By imposing the continuity conditions of traction and displacement across the perfect parabolic interface

L , all three analytic functions fi (ξ) = fi (ω(ξ)), i = 1, 2, 3 can be expressed in terms of a single analytic
function g(ξ) as follows:

f3(ξ) = g(ξ),
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Fig. 2 The image ξ -plane

f2(ξ) = � + 1

2
g(ξ) + � − 1

2
ḡ(ξ + 2ih),

f1(ξ) = (� + 1)2

4�
g(ξ) − (� − 1)2

4�
g(ξ − 4ih)

+�2 − 1

4�
ḡ(ξ + 2ih) − �2 − 1

4�
ḡ(ξ − 2ih), (5)

where
� = μ1

μ2
. (6)

It remains to determine the specific expression for g(ξ). Once g(ξ) is known, the three analytic functions
f1(ξ), f2(ξ), and f3(ξ) can be conveniently determined using Eq. (5).

3 Screw dislocation in S1

When the screw dislocation is located in the upper half matrix S1, the analytic function g(ξ) is given by

g(ξ) =
√

2

π

KIII
μ1

ξ + 2b�

π(� + 1)2

+∞∑
n=0

M2n ln(ξ − ξ0 − 4nhi) − 2b�

π(� + 1)2

+∞∑
n=0

M2n ln(ξ + ξ̄0 − 4nhi), (7)

where KIII is the mode III intensity factor characterizing the far-field loading, and

M = � − 1

� + 1
, |M| < 1. (8)

Substitution of Eq. (7) into Eq. (5) yields the following explicit expressions for f1(ξ), f2(ξ), and f3(ξ):

f3(ξ) =
√

2

π

KIII
μ1

ξ + 2b�

π(� + 1)2

+∞∑
n=0

M2n ln(ξ − ξ0 − 4nhi)

− 2b�

π(� + 1)2

+∞∑
n=0

M2n ln(ξ + ξ̄0 − 4nhi), (9.1)
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f2(ξ) =
√

2

π

KIII
μ2

ξ + b�

π(� + 1)

+∞∑
n=0

M2n ln(ξ − ξ0 − 4nhi)

− b�

π(� + 1)

+∞∑
n=0

M2n ln(ξ + ξ̄0 − 4nhi)

+ b�

π(� + 1)

+∞∑
n=0

M2n+1 ln[ξ − ξ̄0 + 2(2n + 1)hi]

− b�

π(� + 1)

+∞∑
n=0

M2n+1 ln[ξ + ξ0 + 2(2n + 1)hi],

(9.2)

f1(ξ) =
√

2

π

KIII
μ1

ξ

+ b

2π
ln(ξ − ξ0) − b

2π
ln(ξ + ξ̄0)

+ b

2π

+∞∑
n=0

M2n+1 ln[ξ − ξ̄0 + 2(2n + 1)hi] − b

2π

+∞∑
n=0

M2n+1 ln[ξ + ξ0 + 2(2n + 1)hi]

− b

2π

+∞∑
n=0

M2n+1 ln[ξ − ξ̄0 + 2(2n − 1)hi] + b

2π

+∞∑
n=0

M2n+1 ln[ξ + ξ0 + 2(2n − 1)hi]. (9.3)

The local mode III stress intensity factor, denoted here by kIII, can be derived from f2(ξ) in Eq. (9.2) as
follows:

kIII = KIII −
√

2

π

bμ1

� + 1

√
r cos

θ

2

+∞∑
n=0

Mn

r + 4n
√
Hr sin θ

2 + 4n2H
. (10)

Using f1(ξ) in Eq. (9.3) and the Peach–Koehler formula [12], the image force acting on the screw dislocation
is then

F1 − iF2 = KIIIb√
2πξ0

− μ1b2

8πξ20
− μ1b2

4πξ0

(
1

ξ0 + ξ̄0
+ M

ξ0 − ξ̄0 − 2hi
− M

2ξ0 − 2hi

)

+μ1b2(1 − M2)(ξ0 + ξ̄0)

8πξ0

+∞∑
n=0

M2n+1

[ξ0 + (2n + 1)hi]
[
ξ0 − ξ̄0 + 2(2n + 1)hi

] , (11)

where F1 and F2 are, respectively, the force components along the x1 and x2 directions. It can be easily verified
that when M = 0, Eqs. (10) and (11) simply reduce to the classical solution by Majumdar and Burns [1].

4 Screw dislocation in S2

When the screw dislocation is located within the parabolic inhomogeneity S2, the analytic function g(ξ) is
given by

g(ξ) =
√

2

π

KIII
μ1

ξ + b

π(� + 1)

+∞∑
n=0

M2n ln(ξ − ξ0 − 4nhi)

+ b

π(� + 1)

+∞∑
n=0

M2n+1 ln[ξ − ξ̄0 − 2(2n + 1)hi]

− b

π(� + 1)

+∞∑
n=0

M2n ln(ξ + ξ̄0 − 4nhi) − b

π(� + 1)

+∞∑
n=0

M2n+1 ln[ξ + ξ0 − 2(2n + 1)hi]. (12)
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Substitution of Eq. (12) into Eq. (5) yields the following explicit expressions for f1(ξ), f2(ξ), and f3(ξ):

f3(ξ) =
√

2

π

KIII
μ1

ξ + b

π(� + 1)

+∞∑
n=0

M2n ln(ξ − ξ0 − 4nhi)

+ b

π(� + 1)

+∞∑
n=0

M2n+1 ln[ξ − ξ̄0 − 2(2n + 1)hi]

− b

π(� + 1)

+∞∑
n=0

M2n ln(ξ + ξ̄0 − 4nhi) − b

π(� + 1)

+∞∑
n=0

M2n+1 ln[ξ + ξ0 − 2(2n + 1)hi], (13.1)

f2(ξ) =
√

2

π

KIII
μ2

ξ + b

2π

+∞∑
n=0

M2n ln(ξ − ξ0 − 4nhi) + b

2π

+∞∑
n=0

M2n+1 ln[ξ − ξ̄0 − 2(2n + 1)hi]

− b

2π

+∞∑
n=0

M2n ln(ξ + ξ̄0 − 4nhi) − b

2π

+∞∑
n=0

M2n+1 ln[ξ + ξ0 − 2(2n + 1)hi]

+ b

2π

+∞∑
n=0

M2n+1 ln[ξ − ξ̄0 + 2(2n + 1)hi] + b

2π

+∞∑
n=0

M2n+2 ln[ξ − ξ0 + 4(n + 1)hi]

− b

2π

+∞∑
n=0

M2n+1 ln(ξ + ξ0 + 2(2n + 1)hi) − b

2π

+∞∑
n=0

M2n+2 ln[ξ + ξ̄0 + 4(n + 1)hi], (13.2)

f1(ξ) =
√

2

π

KIII
μ1

ξ + b(� + 1)

4π�
ln(ξ − ξ0) − b(� + 1)

4π�
ln(ξ + ξ̄0)

+b(� − 1)

4π�

+∞∑
n=0

M2n ln[ξ − ξ̄0 + 2(2n + 1)hi] + b(� − 1)

4π�

+∞∑
n=0

M2n+1 ln[ξ − ξ0 + 4ih(n + 1)]

−b(� − 1)

4π�

+∞∑
n=0

M2n ln[ξ + ξ0 + 2(2n + 1)hi] − b(� − 1)

4π�

+∞∑
n=0

M2n+1 ln[ξ + ξ̄0 + 4ih(n + 1)]

−b(� − 1)

4π�

+∞∑
n=1

M2n ln[ξ − ξ̄0 + 2(2n − 1)hi] − b(� − 1)

4π�

+∞∑
n=0

M2n+1 ln(ξ − ξ0 + 4nhi)

+b(� − 1)

4π�

+∞∑
n=1

M2n ln[ξ + ξ0 + 2(2n − 1)hi] + b(� − 1)

4π�

+∞∑
n=0

M2n+1 ln(ξ + ξ̄0 + 4nhi). (13.3)

The local mode III stress intensity factor can be derived from f2(ξ) in Eq. (13.2) as follows:

kIII = KIII − μ2b√
2π

√
r cos

θ

2

(+∞∑
n=0

Mn

r + 4n
√
Hr sin θ

2 + 4n2H
+

+∞∑
n=1

Mn

r − 4n
√
Hr sin θ

2 + 4n2H

)
, (14)

Using f2(ξ) in Eq. (13.2) and the Peach–Koehler formula, the image force acting on the screw dislocation is
given by

F1 − iF2 = KIIIb√
2πξ0

− μ2b2

8πξ20
− μ2b2

4πξ0(ξ0 + ξ̄0)
− μ2b2(ξ0 + ξ̄0)

2πξ0

+∞∑
n=1

M2n

(ξ0 + ξ̄0)2 + 16n2h2

+μ2b2(ξ0 − ξ̄0)

2πξ0

+∞∑
n=0

M2n+1

(ξ0 − ξ̄0)2 + 4(2n + 1)2h2
− μ2b2

4π

+∞∑
n=0

M2n+1

ξ20 + (2n + 1)2h2
. (15)

It is again not difficult to verify that when M = 0, Eqs. (14) and (15) simply reduce to the classical solution
by Majumdar and Burns [1].
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5 Discussion

In this section, several typical cases will be discussed in detail to demonstrate the analytical solutions obtained
in the previous two sections and to establish a dislocation emission criterion from the crack.

5.1 The screw dislocation is absent

In the absence of the screw dislocation with b = 0, it is seen from Eqs. (9.1–3) and (13.1–3) that

f1(z) = f3(z) =
√

2

π

KIII
μ1

√
z, z ∈ S1 ∪ S3;

f2(z) =
√

2

π

KIII
μ2

√
z, z ∈ S2, (16)

which indicates that the stress field in the two-phase composite: σ32 + iσ31 = KIII/
√
2π z, z ∈ S1 ∪ S2 ∪ S3

is identical to that near the tip of a mode III crack. In this case, kIII ≡ KIII, which is in sharp contrast to the
analogous result for a semi-infinite crack partially penetrating a circular elastic inhomogeneity [13].

5.2 A screw dislocation far from the crack tip

When the screw dislocation is located far from the crack tip (i.e., r → ∞), both Eqs. (10) and (14) reveal that

kIII ∼= KIII − μ1b√
2πr

cos
θ

2
, r → ∞, (17)

and Eq. (11) for a screw dislocation in the upper half matrix becomes

F1 − iF2 ∼= KIIIb√
2πξ0

− μ1b2

8πξ20
− μ1b2

4πξ0(ξ0 + ξ̄0)
, r → ∞, (18)

and Eq. (15) for a screw dislocation inside the parabolic inhomogeneity becomes

F1 − iF2 ∼= KIIIb√
2πr

− b2(μ1 + μ2)

8πr
, r → ∞ and θ → 0. (19)

Equations (17) and (18) are the corresponding equations for a screw dislocation near a semi-infinite crack in
a homogeneously elastic plane with shear modulus μ1 [1]. The result in Eqs. (17) and (18) implies that when
the screw dislocation in the matrix is located far from the crack tip, the interaction problem can be treated
equivalently to the case when the z-plane is elastically homogeneous with shear modulus μ1.

5.3 A screw dislocation on the parabola L

When the screw dislocation is located on the parabola L , the following relationship is established:
√
r sin θ

2 =√
H . In this case, it follows from either Eq. (10) or Eq. (14) that

kIII = KIII − μ1bY (r)√
2πr

cos
θ

2
, (20)

where the function Y (r) is defined as

Y (r) = r(1 − M)

+∞∑
n=0

Mn

r + 4Hn(n + 1)
> 0, r ≥ H, (21)

which is illustrated in Fig. 3 for different values of M . It is seen from Fig. 3 that: 0 < Y (r) < 1 when M > 0;
Y (r) ≡ 1 when M = 0; Y (r) > 1 when M < 0. The shielding effect of the screw dislocation on the local
mode III stress intensity factor can be clearly observed from Fig. 3.
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Fig. 3 Variation of the function Y (r) defined by Eq. (21) for different values of M

Fig. 4 Variation of the function Q(r) defined by Eq. (23) for different values of M

5.4 A screw dislocation on the positive x1-axis inside the parabolic inhomogeneity

When the screw dislocation lies on the positive x1-axis inside the parabolic inhomogeneity, Eq. (14) becomes

kIII = KIII − μ1bQ(r)√
2πr

, (22)

where the function Q(r) is defined as

Q(r) = 1 − M

1 + M

(
2r

+∞∑
n=0

Mn

r + 4n2H
− 1

)
> 0, r ≥ 0, (23)

which is illustrated in Fig. 4 for different values of M . It is seen from Fig. 4 that the behavior of the function
Q(r) is quite similar to that of Y (r) shown in Fig. 3. The shielding effect of the screw dislocation on the local
mode III stress intensity factor is again clearly observed this time from Fig. 4.
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Fig. 5 Variation of λc defined by Eq. (26) as a function of M for different values of H̃

In addition, when the screw dislocation lies on the positive x1-axis inside the parabolic inhomogeneity, Eq.
(15) becomes

F1 = KIIIb√
2πr

− μ2b2

4π

+∞∑
n=0

Mn

r + n2H
, F2 = 0. (24)

Thus, according to Rice and Thomson [14], the dislocation emission criterion from the crack can be established
as follows:

KIII > Kc = μ2b

2
√
2πrc

+∞∑
n=0

Mn

n2 H̃ + 1
, (25)

where H̃ = H/rc in which rc denotes the core radius of the screw dislocation and Kc is the critical stress
intensity factor for dislocation emission. Illustrated in Fig. 5 is the normalized critical stress intensity factor
defined by

λc = 2
√
2πrc

μ2b
Kc, (26)

as a function of the parameter M for different values of H̃ . It is seen from Fig. 5 that: (i) 0 < λc < 1 when
the inhomogeneity is harder than the matrix with M < 0, λc > 1 when the inhomogeneity is softer than the
matrix with M > 0; (ii) λc is an increasing function of M , an increasing function of H̃ for M < 0, and a
decreasing function of H̃ for M > 0.

6 Conclusions

We have analytically solved the anti-plane problem associated with a screw dislocation near a semi-infinite
crack partially penetrating a parabolic elastic inhomogeneity. The general solution in terms of the single
analytic function g(ξ) is derived in Eq. (5). When the screw dislocation is located in the upper half matrix,
the three analytic functions are given explicitly by Eqs. (9.1–3), and the local mode III stress intensity factor
and the image force are, respectively, presented in Eqs. (10) and (11). When the screw dislocation lies inside
the parabolic inhomogeneity, the three analytic functions are given explicitly by Eqs. (13.1–3), and the local
mode III stress intensity factor and the image force are presented in Eqs. (14) and (15), respectively.
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