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Abstract The objective of this contribution is the computation of the Airy stress function for functionally
graded beam-type structures subjected to transverse and shear loads. For simplification, thematerial parameters
are kept constant in the axial direction and vary only in the thickness direction. The proposed method can be
easily extended to material varying in the axial and thickness direction. In the first part an iterative procedure is
applied for the determination of the stress function by means of Boley’s method. This method was successfully
applied by Boley for two-dimensional (2D) isotropic plates under plane stress conditions in order to compute
the stress distribution and the displacement field. In the second part, a shear loaded cantilever made of isotropic,
functionally gradedmaterial is studied in order to verify our theorywith finite element results. It is assumed that
the Young’s modulus varies exponentially in the transverse direction and the Poisson ratio is constant. Stresses
and displacements are analytically determined by applying our derived theory. Results are compared to a 2D
finite element analysis performed with the commercial software ABAQUS. It is found that the analytical and
numerical results are in perfect agreement.

1 Introduction

Functionally graded materials (FGMs) are composite materials where the material properties vary throughout
the body. The simplest way of designing a graded material is by taking isotropic homogenous layers with
different material parameters, which are perfectly bonded together. This special case is a laminate, where the
material properties vary discontinuously. The first FGMs were compositions of metallic and ceramic materials
where the thermal expansion coefficients varied continuously. A prominent example of a previous FGM
application was the space shuttle where a material made of ceramic and metal provided thermal protection and
increased the load-carrying capability during re-entering the earth’s atmosphere. One of the most significant
aspects of designing FGMs is to close the gap in the properties of different materials continuously. For an
introduction the reader is referred to Mahamood [1] and Udupa [2] who give a compact overview of the topic.
A mechanical advantage of FGMs is the stress continuity (where the stress distribution is nonlinear in general)
and the lower stress gradient inside the material which reduce peak stresses, compared to rigidly bonded
plies. The literature on FGMs, where the focus is laid on the derivation of a mechanical model which is valid
for arbitrary material property variations, is limited. Here, beam types structures are investigated and a very
generalmodeling strategy is presented to find accurate beammodels for a large class of FGMs.Mian [3] focuses
on a three-dimensional solution with transversal-dependent elasticity parameters by solving two-dimensional
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equations for an equivalent homogeneous plate with averaged elastic parameters. The work of Sankar [4]
contains the study of a sinusoidally-loaded, simply supported beam with orthotropic material parameters
that vary exponentially. The Bernoulli–Euler theory solution is obtained by starting with the assumed axial
and transversal displacements. Strains and stresses are computed afterwards. The Airy stress function for an
anisotropic FGM beam subjected to normal and axial loads is computed by Ding [5] who assumes the stress
function as a sum of products of the independent variables. The suggested method of [5] is applied similarly
by Zong [6], Hu [7] and Yang [8]. A cantilever subjected to a linearly distributed normal force is analyzed
in [7], whereas in [8] the Airy stress function for a two-layer FGM cantilever with concentrated end loads
is computed. A number of various different loading and boundary value problems is solved in [5], and a
finite element analysis is performed to compare analytical and numerical results in [5] and [7]. Sakurai [9]
developed the Airy stress function for exponentially graded orthotropic beams by an infinite series of products
of independent variables. The stress distributions are presented for a simply supported beam subjected to a
sinusoidally distributed normal force and a cantilever under uniform pressure. A two-dimensional solution for
pure bending and tension is derived in an analogous way by [5–8] and by Chu [10] for transversal and axial
isotropic exponentially gradedmaterial. The elastic buckling and bending of a functionally graded, Timoshenko
theory-based porous beam, with transversal cosine-dependent material parameters is studied by Chen [11].
Hadji [12] analyzes the static bending and free vibrations of a shear-deformable FGM beam where the strains
are assumed to be exponentially distributed in the transverse direction and the material parameters are power-
law distributed. A similar analysis of a shear-deformable FGM beam is found in Guenfod [13]. In the work
of Xia [14] a comparison of an FGM Reddy–Bickford beam versus a homogenous Bernoulli–Euler beam is
presented: The investigation starts with strain assumptions where the transversal strain is disregarded, and as a
result, the solutions of determinate and indeterminate beams are shown. A higher-order shear-deformable finite
beam element for an FGM sandwich structure is derived by Li [15] where higher-order strain assumptions are
taken into account, but the transversal strain is neglected as in [14]. Our motivation in this contribution is to
provide an analytical method (under classical plane-stress assumption) to determine a beam model without
any a priori assumptions on the displacement or the stress field. This strategy dates back to works of von
Karman [16] and Sewald [17] who showed that the curvature of an isotropic beam does depend not only
on the bending moment, but also on its even-numbered spatial derivatives. In our contribution, we adopt an
iterative solution method for the bi-potential equation, which arises by evaluating the compatibility equations
when an isotropic, homogeneous material is considered, see Boley and Tolins [18]. The method of Boley and
Tolins [18] consists of a step-by-step procedure to compute the Airy stress function as the solution of the
bi-potential equation. The result of the first iteration step yields the classical Bernoulli–Euler (BE) solution,
whereas the higher-order iterations are correction terms which take into account the thickness-to-length ratio
and become more relevant for thicker beams. Furthermore, one can derive more accurate distributions for the
stress components, and cross-sectional warping effects are automatically accounted for. Boley’s method is
extended up to the fourth iteration by Irschik [19], who calculates the bending moment for different thickness-
to-length ratios to demonstrate the influence of different boundary conditions for a statically indeterminate
beam. In a further contribution, the thermoelastic effect is considered in Boley [20], see also the book on
thermal stresses by Boley and Weiner [21]. Krommer and Irschik [22] use this method to approximately solve
the charge equation of electrostatics for the electric potential if a certain displacement field is assumed. For
piezoelectric materials, Schoeftner and Benjeddou [23] give an iterative solution for the electric potential and
the Airy stress function in case of piezoelectricity. It is found that the compatibility and the charge equation,
which both depend on the stress and the electric potential, are coupled. For a simply supported piezoelectric
bimorph with sinusoidal mechanical and electrical actuation, the result is compared to (2D) analytical results.
Motivated by the latter contributions, the iterative method from Boley is extended to FGMs. Instead of the
bi-potential equation, we derive a fourth-order partial differential equation for the Airy stress function from
the compatibility equations. Hereby, no a priori assumptions are made, neither on the displacement field nor
on the stress field. The Airy stress function is computed iteratively, and the external loads are replaced by the
stress resultants such as normal force, shear force and bending moment. As previously mentioned the first
iteration solution is denoted as an elementary solution, and the higher-order solutions can be interpreted as
an extension of the Bernoulli–Euler result for a graded material. The results of the further iterations contain
the thickness-to-length ratio and further components of the compliance matrix as well. Numerical results are
given for an isotropic FGM cantilever with exponentially varying Young’s modulus subjected to a shear load.
The results are presented to demonstrate the influence of the graded material on stresses and deformations.
The beam model is verified by a two-dimensional (2D) finite element calculation performed with ABAQUS
where analytical and numerical results are in excellent agreement.
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2 Problem statement

The following presented solution, based on Boley’s method [18], allows the determination of the Airy stress
function of a functionally graded beam. The tractions acting on the upper and on the lower surface are
polynomials in x . The cross section of the beam is rectangular and constant along the beam length L , the
thickness is 2c, and the width is b is set to unit one. It is assumed that the thickness of the beam is sufficiently
larger than b, i.e., that the rectangular beam is narrow, such that the state of plane stress can be taken into
account. A global Cartesian (x ,y)-coordinate system is attached to themid-span axis, where the axial coordinate
is denoted by x , and the transverse coordinate by y (Fig. 1).

The traction vectors at the upper surface at y = c and at the lower one at y = −c read

tu =
{
nu(x)
qu(x)

}
/b, tl =

{
nl(x)
ql(x)

}
/b. (1)

In Eq. (1), the subscripts u and l denote the upper and lower surface. The material characteristics of the beam
are described by the compliance matrix S, where we restrict ourselves to transversal dependency only in this
contribution:

S =
⎡
⎣ 1 −ν 0

−ν 1 0
0 0 2(1 + ν)

⎤
⎦ 1

E(y)
(2)

with Poisson’s ratio ν and the y-dependent Young’s modulus E(y).

3 Method of solution

Under the prescribed constitutions, we have to find solutions of the plane linear theory of elasticity, which
satisfies exactly the equilibrium equations,

σx,x + τxy,y = 0, τxy,x + σy,y = 0, (3)

the strain–displacement relations,

u,x = εx , v,y = εy, u,y + v,x = γxy, (4)

the stress boundary conditions at the upper and lower surface of the beam at y = ±c and the stress–strain
relations, see Eq. (7). The normal stresses are σx and σy , τxy is the shear stress, εx and εy are normal strains,
γxy is the shear angle, u is the axial, and v is the transversal displacement, respectively. Note that we take
advantage of the following definitions for the partial derivatives with respect to x and y:

(),x = ∂()

∂x
, (),y = ∂()

∂y
. (5)

x

y

qu(x)

nu(x)

ql(x)

nl(x)

c

c

Fig. 1 Beam element with thickness 2c and width b subjected to normal and shear forces at the boundary surfaces at y = ±c
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If the stresses in Eq. (3) are expressed as derivatives of the introduced Airy stress function ψ(x, y), see
Timoshenko and Goodier [24],

σx = ψ,yy, σy = ψ,xx , τxy = −ψ,xy, (6)

the equilibrium equations in Eq. (3) are automatically satisfied. The stress–strain relation expressed in Voigt’s
notation reads {

εx εy γxy
}T = S

{
ψ,yy ψ,xx −ψ,xy

}T (7)

if Eq. (6) is substituted for the stresses. The so-called compatibility condition can be derived from Eq. (4)
which leads to

εx,yy + εy,xx − γxy,xy = 0. (8)

Inserting Eq. (7) into Eq. (8) leads to a fourth-order partial differential equation (PDE)

ψ,yyyy − 2E,y

E
ψ,yyy +

(
2E2

,y

E2 − E,yy

E

)
ψ,yy

= ν
2E2

,y − EE,yy

E2 ψ,xx + 2
E,y

E
ψ,xxy − 2ψ,xxyy − ψ,yyyy . (9)

In the case of a constant Young’s modulus with E,y = 0, Eq. (9) simplifies to the bi-harmonic equation

ψ,yyyy = −2ψ,xxyy − ψ,yyyy . (10)

In order to find a solution of Eq. (9) we take advantage of a method which was originally developed by Boley
[18] for isotropic beams. Boley’s methodology computes the Airy stress function in an iterative procedure,
where the solution ψ can be written as a sum of iteration solutions,

ψ =
n∑

i=1

ψi (11)

with ψi as the solution of the i th iteration. The total number of iterations is n. The solution of the first iteration
can be interpreted as the Bernoulli–Euler (BE) result, (i.e., see u1 and v1 in Eqs. (47) and (48)), whereas
the higher-order solutions ψ2, ψ3, . . . represent higher-order terms which include a thickness-to-length ratio
λ = 2c/L . We adapt here Boley’s method to an FGM configuration where the iteration rule reads

ψi,yyyy − 2E,y

E
ψi,yyy +

(
2E2

,y

E2 − E,yy

E

)
ψi,yy

= ν
2E2

,y − EE,yy

E2 ψi−1,xx + 2
E,y

E
ψi−1,xxy − 2ψi−1,xxyy − ψi−2,yyyy (12)

and the convention that

ψi = 0, for i < 1. (13)

holds. The stress boundary conditions at y = ±c are satisfied by means of the first term ψ1 only. Inserting Eq.
(6) into Eq. (1), the boundary conditions at the surfaces read

nu(x)/b = −ψ1,xy(x, c), nl(x)/b = −ψ1,xy(x,−c),

qu(x)/b = ψ1,xx (x, c), ql(x)/b = ψ1,xx (x,−c). (14)

For all further iterations, (i.e., ψi>1) the stress boundary conditions are trivial:

ψi,xx (x, c) = ψi,xx (x,−c) = ψi,xy(x, c) = ψi,xy(x,−c) = 0 (15)

for i ≥ 2.
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3.1 First iteration

For the computation of the first potential ψ1 we consider Eqs. (12) and (13), and we find for the first iteration

ψ1,yyyy − 2E,y

E
ψ1,yyy +

(
2E2

,y

E2 − E,yy

E

)
ψ1,yy = 0. (16)

Equation (16) is a fourth-order ordinary differential equation (ODE) with variable coefficients. A solution of
Eq. (16) is

ψ1 =
4∑
j=1

g j (y)k j , (17)

see Lang and Pucker [28], with four remaining constants k j and functions g j (y)which are results when solving
Eq. (16). To ensure the x, y dependency of ψ1 the constants k j are replaced by functions f j (x) which leads to

ψ1 =
4∑
j=1

g j (y) f j (x). (18)

Integration of the first row of Eq. (14) once, and the second of Eq. (14) twice with respect to x leads to the
following vector-matrix notation:

A f = q (19)

with

A = {
g(y=c) −g,y(y=c) g(y=−c) −g,y(y=−c)

}T
, (20)

g = {
g1(y) g2(y) g3(y) g4(y)

}
, (21)

f = {
f1(x) f2(x) f3(x) f4(x)

}T
, (22)

q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫∫
qu/b dx2 + C1x + C2∫

nu/b dx + C3∫∫
ql/b dx2 + K1x + K2∫

nl/b dx + K3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (23)

The vector q contains the integrated surface loads, A denotes a 4×4 coefficient matrix, f is the vector with the
unknowns f j (x), and g denotes the vector of fundamental solutions g j (y). Taking into account Eqs. (18)–(23)
the solution of ψi in Eq. (18) reads

ψ1 = gA−1q. (24)

3.1.1 Stress function in terms of stress resultants

The remaining constants C1, C2, C3 and K1, K2, K3 in Eq. (23) are computed by introducing the stress
resultants, such as bending moment M(x), shear force Q(x) and the normal force N (x),

M(x) = b
∫ c

−c
σx ydy, Q(x) = b

∫ c

−c
τxydy, N (x) = b

∫ c

−c
σxdy. (25)

Substituting Eqs. (6) and (24) into Eq. (25), it follows that

M(x) = −
∫∫

qudx
2 − C1x − C2︸ ︷︷ ︸
Mqu

+
∫∫

qldx
2 + K1x + K2︸ ︷︷ ︸
Mql
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N+dN
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Q

N

M nl

Fig. 2 Stress resultants of a differential beam element

−c

(∫
nudx + C3

)
− c

(∫
nldx + K3

)
, (26)

Q(x) = −
∫

qudx − C1 +
∫

qldx + K1, (27)

N (x) = −
(∫

nudx + C3

)
︸ ︷︷ ︸

Nnu

+
∫

nldx + K3︸ ︷︷ ︸
Nnl

, (28)

where Mqu (x), Mql (x), Nnu (x), Nnl (x) are the bending moments and the normal forces caused by the tractions
qu(x), ql(x), nu(x), nl(x), respectively, see Eq. (23). C1 and K1 are constant portions of the shear force Q(x),
C2 and K3 belong to the bending moment M(x), and C3 and K3 are constant portions of the normal force
N (x). Differentiation of Eqs. (26)–(28) gives the beam equilibrium equations:

M,x = Q − c(nl + nu), Q,x = ql − qu, N,x = nl − nu . (29)

The results in Eq. (29) correspond to the sign convention for a right-handed coordinate system xyz as that
shown in Fig. 2 for a differential beam element (i.e., at x + dx the positive normal force N (x) and the positive
shear force Q(x) are parallel to the x- and y-directions, respectively, but the positive bending moment M(x) is
in opposite direction to the positive z-direction). It is noted that if the positive directions of the coordinates do
not match with those in Fig. 2, one observes that the resulting equilibrium equations on beam level and those
in Eq. (29) will differ in signs.

3.2 Second iteration

To compute the second stress function ψ2, we set i = 2 in Eq. (12), and by considering Eq. (13) we find

ψ2,yyyy − 2E,y

E
ψ2,yyy +

(
2E2

,y

E2 − E,yy

E

)
ψ2,yy

= ν
2E2

,y − EE,yy

E2 ψ1,xx + 2
E,y

E
ψ1,xxy − 2ψ1,xxyy (30)

with the trivial boundary conditions from Eq. (15). The solution of ψ2 is a long expression in general, but can
be determined by symbolic computation software.
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3.3 Further iterations

We repeat the prescribed procedure and obtain for the third iteration step for i = 3 in Eq. (12)

ψ3,yyyy − 2E,y

E
ψ3,yyy +

(
2E2

,y

E2 − E,yy

E

)
ψ3,yy

= ν
2E2

,y − EE,yy

E2 ψ2,xx + 2
E,y

E
ψ2,xxy − 2ψ2,xxyy − ψ1,yyyy . (31)

The solution of ψ3 depends on the previous solutions ψ1, ψ2. As for the second iteration, trivial boundary
conditions are assumed, see Eq. (15).

4 Shear-loaded beam

The developed solution procedure is verified by the following example. An FGM beam is investigated which
is subjected to a shear force at the upper surface at y = c, see Fig. 3.

The boundary tractions are as follows:

tu =
{
nu(x)/b

0

}
, tl =

{
0
0

}
. (32)

We assume an isotropic graded material with an exponential variation of the Young’s modulus in transverse
direction where the compliance matrix of Eq. (2) becomes

S =
⎡
⎣ 1 −ν 0

−ν 1 0
0 0 2(1 + ν)

⎤
⎦ 1

E(y)
, E(y) = E0e

αy/c, (33)

with an introduced nondimensional gradient α and the Young’s modulus E0 at the midspan axis at y = 0. The
stress–strain relations become

εx = 1

E0eαy/c

(
σx − νσy

)
, εy = 1

E0eαy/c

(
σy − νσx

)
, γxy = 2(1 + ν)

E0eαy/c
τxy . (34)

Reinserting the relations of Eq. (34) into Eq. (8) leads to the iteration rule for computation of the stress function
ψ

ψi,yyyy − 2
α

c
ψi,yyy + α2

c2
ψi,yy = −2ψi−1,xxyy + ν

α2

c2
ψi−1,xx + 2

α

c
ψi−1,xxy − ψi−2,xxxx (35)

with the conventions of Eq. (13) to be considered. If we set α = 0, which corresponds to isotropic material,
we obtain the iteration rule as stated in the paper of Boley [18]:

ψi,yyyy = −2ψi−1,xxyy − ψi−2,xxxx . (36)

x

y

nu(x)

c

c

Fig. 3 FGM beam subjected to a shear force nu(x) on the upper boundary surface at y = c



768 J. Gahleitner, J. Schoeftner

4.1 First iteration

Setting i = 1 in Eq. (35) one finds for the computation of the first stress function

ψ1,yyyy − 2
α

c
ψ1,yyy + α2

c2
ψ1,yy = 0. (37)

The solution of Eq. (37) follows as

ψ1 = c2

α2 e
α y/c

[
f1(x) +

(
y − 2c

α

)
f2(x)

]
+ y f3(x) + f4(x). (38)

The unknown functions f j (x) can be determined from the tractions at y = ±c, see Eq. (32); with the coefficient
matrix A and the load vector q we can write:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c2
eα

α2 c3
eα(α − 2)

α3 1 c

−c
eα

α
−c2

eα(α − 1)

α2 0 −1

c2
e−α

α2 −c3
e−α(α + 2)

α3 1 −c

−c
e−α

α
c2

e−α(α + 1)

α2 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎧⎪⎨
⎪⎩

f1(x)
f2(x)
f3(x)
f4(x)

⎫⎪⎬
⎪⎭

︸ ︷︷ ︸
f

=
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C1x + C2∫
nu dx + C3

K1x + K2
K3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

︸ ︷︷ ︸
q

. (39)

The result ofψ1 is lengthy, and to simplify the expression,we introduce entities corresponding to the elementary
theory: the so-called effective axial rigidity [E A]eff, the flexural rigidity [E I ]eff and the location of the neutral
axis c0. For computing these elementary entities see e.g. Ziegler [26]:

[E A]eff = bc
e−α

(
e2α − 1

)
α

E0, [E I ]eff = bc3
e−α

(−2e2α
(
2α2 + 1

)+ e4α + 1
)

(
e2α − 1

)
α3

E0, (40)

ζ0 =
(
e2α(α − 1) + α + 1

)
(
e2α − 1

)
α

, c0 = ζ0c. (41)

The normal stress σ1x = ψ1,yy as a result of the first iteration in terms of the introduced entities of Eqs. (40)
and (41) reads

σ1x = c
η − ζ0

[E I ]eff M(x)E0e
αy/c +

[
c2ζ0

ζ0 − η

[E I ]eff + 1

[E A]eff
]
N (x)E0e

αy/c

(42)

and the shear stress τ1xy = −ψ1,xy

τ1xy = −2α2
[
(η − 1)eα(η+3) − (η + 1)eα(1+η)

]− 2e2α + e4α + 1

2
[
1 − 2e2α

(
2α2 + 1

)+ e4α
] M,x

bc

+2eα(3+η)[α(α − 1)(η − 1) − 1] + 2eα(1+η)[α(α + 1)(η + 1) + 1] − 4e2αα + e4α − 1

2[1 − e2α
(
4α2 − e2α + 2

)]
N,x

b

(43)

with η = y/c. The distribution of the normal stress depends on the variation of the Young’s modulus, where
for the case of E,y ≈ 0 the nonlinear distributions as well as the linear portion of the axial stress σ1xN are
negligible, see Eqs. (40)–(42). A special case is the isotropic homogeneous beam, i.e., α → 0. Applying
L’Hospital’s rule for Eqs. (40)–(42) one finds

[E A]eff = E02bc, [E I ]eff = E0
2bc3

3
, ζ0 = 0. (44)
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For the normal stress σ1x there remains a linear distribution due to the bending moment M(x) and a constant
part due to the normal force N (x):

σ1x,α=0 = c
M(x)

I
η + N (x)

A
. (45)

4.2 Second iteration

Inserting ψ1 into Eq. (35) leads to the computation rule for ψ2:

ψ2,yyyy − 2
α

c
ψ2,yyy + α2

c2
ψ2,yy = −2ψ1,xxyy + ν

α2

c2
ψ1,xx + 2

α

c
ψ1,xxy, (46)

following the boundary conditions (15). If a linear distribution of the shear force is assumed, the iteration
procedure ends at i = 2, which corresponds to the second-order polynomial of the load vector q, see Eq. (39).

4.3 Displacements

The displacements u(x, y) and v(x, y) are computed by integration of the normal strains εx and εy and then
adjusting the arbitrary functions F(x) and G(y) so that u,y +v,x −γxy = 0 is satisfied. During this procedure,
three constants preventing rigid body motion, u0, v0 and r0, remain, which have to be determined by setting up
a boundary value problem, see Sect. 5. For more details of this standardized procedure see, e.g., Timoshenko
and Goodier [24]. The expressions of the displacements are very lengthy, so we show the displacements of the
first iteration u1 and v1 only:

u(x, y) = y − c0
[E I ]eff

∫
Mdx +

[
1

[E A]eff + c0
c0 − y

[E I ]eff
] ∫

Ndx
︸ ︷︷ ︸

elementary solution for u1

+
n∑

i=2

ui (x, y)

︸ ︷︷ ︸
higher-order terms

+r0 y + u0, (47)

v(x, y) = 1

[E I ]eff
[
c0

∫∫
N dx2 −

∫∫
M dx2

]
︸ ︷︷ ︸

elementary solution for v1

+
n∑

i=2

vi (x, y)

︸ ︷︷ ︸
higher-order terms

−r0x + v0. (48)

It has to be noted that the coupling relations ofM(x) and N (x)due to u and v vanish if an isotropic homogeneous
material is assumed, i.e., u(x, y) depends on N (x) and v(x, y) depends on M(x) only because in this case
c0 = 0. For the case α �= 0 it follows that c0 �= 0; hence, M(x)−N (x) coupling occurs in both equations
for the elementary solutions u1 and v1. The midspan axis displacements U (x) = u(x, 0) and V (x) = v(x, 0)
corresponding to the example problem of Sect. 5 are presented in the Appendix, Table 2.

5 Numerical example

The previously determined results are applied to a cantilever beamwith length L , thickness 2c and a thickness-
to-length ratio λ = 2c/L = 1/10, see the scaled sketch in Fig. 4. The beam is loaded by a linearly distributed
shear force at the upper surface, and the stress distributions and the displacements are determined due to
variations of the Young’s modulus in the y-direction.

The graded material is assumed for a constant Poisson’s ratio ν and an exponentially distributed Young’s
modulus E(y) = E0eαy/c, see Eq. (33). The derived results are compared to a two-dimensional (2D) finite
element analysis (FEA) performed with the commercial software ABAQUS. The example beam (length L =
50mm and thickness 2c = 5 mm) is meshed with CPS8, an 8-node biquadratic plane stress quadrilateral
element. To model the FGM characteristics of the beam, the cross section is separated into 50 isotropic linear
elastic layers with constant Poisson’s ratio ν and constant Young’s modulus En . The layer-wise Young’s
modulus En is computed from

En = E0e
αβn (49)
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x

x

y

y

L

2c

u(0, c)

u(0,−c)

φ(x) =
u(x, c)− u(x,−c)

2c

u(0, 0) = 0
v(0, 0) = 0
φ(0) = 0

nu(x) = −n0

(
1 − x

L

)
(a)

(b)

Fig. 4 FGMcantilever subjected to a linear distributed shear force acting on the upper surface of the beam, a. Boundary conditions
at x = 0 and the definition of the cross-sectional rotation φ(x) are shown in b, for equivalent boundary conditions see Szabo [27]

Table 1 Parameters for the (2D) ABAQUS finite element model

Variable Unit Value Description

α (–) 0.5 Exponent for Young’s modulus
n0 (N/mm) 20 Shear force/length at x = 0
ν (–) 0.3 Poisson’s ratio
E0 (N/mm2) 7 × 104 Young’s modulus at y = 0
L (mm) 50
h (mm) 5
– (–) 100 Elements in x-direction
– (–) 50 Elements in y-direction
– (–) 50 Isotropic layer in y-direction

with βn = (2n − 51)/50, 1 ≤ n ≤ 50. For the FEA model, we only investigate the case α = 1/2 and one
finds the parameters for the FEA collected in Table 1.

The three kinematical constants u0, v0 and r0 (see Eqs. (47) and (48)) are computed by three kinematical
boundary conditions, in order to prevent two rigid body translations and one rigid body rotation. It holds that

u(0, 0) = 0, v(0, 0) = 0, (50)

and

φ(x) = u(x, c) − u(x,−c)

2c
−→ φ(0) = 0. (51)

The latter constraint for the cross-sectional rotation was suggested by Szabo [27] and applied in the work
of Gahleitner and Schoeftner [25] in order to get similar results as for a rigid clamped end with u(0, y) =
v(0, y) = 0.

In our simulation the FE model is subjected to the same tractions as the analytical model (see Fig. 3). The
upper surface traction tu at y = c contains the imposed shear load nu(x), while the lower layer traction tl at
y = −c vanishes. It is important to note that at the clamped end at x = 0 the traction components of t0 read
σx (0) = ψ1,yy(0, y) + ψ2,yy(0, y) and τxy(0) = −ψ1,xy(0, y), see Eqs. (42) and (43) for the first iterations
and the solution of (46) for the second iteration (lengthy expression). For the free end at x = L the x- and the
y-components of the traction tL read σx (L) = ψ2,yy(L , y) (see Eq. (46), and the bending moment vanishes,
consequently ψ1,yy(L , y) = 0 and −ψ1,xy(L , y) = 0) (Fig. 5).

The analytical results are presented for four different Young’s modulus distributions, see Eq. (33) with
α = {0, 1/10, 1/5, 1/2} and E0 and c = h/2 according to Table 1. Here the nondimensional transverse
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tu =
{

nu(x)/b
0

}

tL =
{

σx(L)
0

}

tl =
{
0
0

}

t0 =
{

σx(0)
τxy(0)

}

Fig. 5 Tractions at the boundary surfaces t0, tL, tu, tl for the FE model
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[EA]eff/EA

[EI]eff/EI

Fig. 6 Young’s modulus distribution of the example beamwith E = E0eαη and stiffness relations in accordance with the material
gradient α, for [E A]eff, [E I ]eff see Eq. (40) also

coordinate η = y/c is introduced. If α � 1 holds, the Young modulus is almost linearly distributed, i.e.,
E(y) = E0(1 + αy/c) for α � 1 or E(η) = E0(1 + αη).

In Fig. 6b the dependency of the stiffness entities is plotted for a gradient range of 0 ≤ α ≤ 1/2 where
E A, E I denote the homogenous stiffness entities for α = 0.

5.1 Stress field

The stress resultants can be determined by integrating the beam equilibrium relations, see Eq. (29):

N,x = −nu, Q,x = 0, M,x = Q − c nu . (52)

Considering 3 boundary conditions at x = L ,

M(L) = 0, N (L) = 0, Q(L) = 0, (53)

one finds for M , Q and N :

M = −n0
2
cL(ξ − 1)2, N = −n0

2
L(ξ − 1)2, Q = 0, (54)

where the nondimensional axial coordinate ξ = x/L is introduced. In Figs. 7a, b, normal stresses are plotted
as functions of Young’s modulus E(η) = E0eαη with α = {0, 1/10, 1/5, 1/2}. Figure 7a shows the stress as
a function of the normal force N (x), and Fig. 7b shows the stress as a function of the bending moment M(x).
It is noted that the normalized axial stress is plotted: the reference stress σ ∗ = |M|c/I = 75N/mm2 denotes
the absolute axial stress at the upper fiber at η = 1 and ξ = 1/2 due to the bending moment M(1/2) of a
homogeneous configuration with α = 0 and the moment of inertia I = 2bc3/3, see the linear portion of Eq.
(45). It can be seen that the nonlinearity due to the normal force in Fig. 7a is negligible also for highly graded
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Fig. 7 Nondimensional axial stress distributions of a moderately thick beam with λ = 1/10 for different Young’s modulus
variations. The variable σ ∗ = |M |c/I = 75N/mm2 denotes the axial stress of the upper fiber at η = 1 of an isotropic
homogeneous beam (i.e., α = 0) due to pure bending. FEA calculations are performed for the configuration with the highest
material gradient α = 1/2, see (c)

materials (i.e., even for α ≥ 1/2 because the nonlinear part in Fig. 7a is relatively small compared to the mean
value 0.33). On the other hand the nonlinearity due to the bending moment can be observed for α > 1/5.

In Fig. 7c the total normalized axial stress σx/σ
∗ = (σxN + σxM )/σ ∗ is shown and compared to the FEA

(black points for α = 1/2) showing an excellent agreement of analytical and numerical results. It has to be
noted that for α = 1/2, the maximum normal stress σx max is 27% larger than σ ∗. The axial stress of the higher
iterations σ 0

x (derived from ψi with i > 1) is plotted in Fig. 7d. It is noted that this is a self-equilibrated stress,
which means that stress resultants vanish by integration over the cross-sectional area. One observes that the
quantity of σ 0

x is very low (i.e., below 0.75% of σ ∗) and the influence of the residual stress σ 0
x is practically

negligible.
In Fig. 8a the normal stress σy is plotted. This stress is often denoted as compressive stress in the literature,

and it vanishes at both surfaces, and also its derivative vanishes at η = −1: This follows directly from the
boundary conditions because σy ∝ ψ = 0 at η = ±1 and σy,y ∝ ψ,y ∝ τxy = 0 at η = −1 hold. In
relation to the stress σ 0

x presented in Fig. 7d, the quantity of σy is of very low influence: in general it holds
that O(σy) = O(σx )λ

2, i.e., the order of magnitude of the compressive stress is lower by a factor λ2 than the
axial stress. The shear stress distribution is shown in Fig. 8b: It vanishes at the lower surface at η = −1 and
fulfils the normalized traction load n0/σ ∗

x at the upper surface at η = 1. The FEA results for σy and τxy are
given for α = 1/2 and those match perfectly with our analytical solution.

Some final remarks concerning the stresses aremade: The nondimensional residual stress σ 0
x /σ ∗, in Fig. 7d,

and the compressive stress σy/σ
∗ in Fig. 8a are lower-order terms (quadratic order with respect to thickness-

to-length ratio λ) in comparison with the nondimensional axial stress σx/σ
∗ (e.g., σymax/σ

∗ = 0.0033).
Independent of the thickness-to-length ratio self-equilibrated stresses are of low impact and the compressive
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Fig. 8 Nondimensional compressive stress distribution (a) and shear stress distribution (b). FEA results are compared to the
analytical solutions for α = 1/2

stress is low. In addition to the beam considered in this study (λ = 1/10) this influence remains negligible
even for a thicker beam (λ = 1/5: the maximum value is σy/σ̄

∗ ≈ 0.014).

5.2 Displacements

The displacements are presented for different Young’s moduli in Fig. 9. The axial and transverse deflection
curves u(ξ, 0) and v(ξ, 0) are shown in Figs. 9a and b where the nondimensional axial coordinate ξ = x/L
is introduced. The displacement v∗ = vα=0(ξ = 1, 0) = 1.07mm denotes the vertical tip deflection of a
homogeneous beam with α = 0. Additionally, the deflection curves are plotted if only the results from the
first iteration are used, see Eqs. (47) and (48) for u1 and v1 (red curve for α = 1/2). It has to be noted that for
our example beam, where a thickness-to-length ratio of λ = 1/10 is considered which refers to a moderate
thick beam, the higher-order solution is almost equal to the first-order solution. The obtained analytical results
are in a very good accordance with the FEA solution. One observes that the higher the material is graded,
the lower is the horizontal deflection at η = 0 (Fig. 9a). This also holds for the vertical deflection (Fig. 9b).
Furthermore, considering only the first iterations (red curves for α = 1/2), one finds a very good agreement
with FEA results (black dots): The difference is less than < 1%. Taking into account also the higher-order
terms (black), the analytical solutions (black) practically coincide with FE results.

In Figs. 10a and b the normalized horizontal and vertical deflections are shown over the cross section at
ξ = 1/2. Again, the vertical tip deflection of an isotropic homogeneous beam v∗ = 1.07mm is used for
normalization. The FEA results are performed for the material gradient α = 1/2.

The influence of the higher-order terms, besides the fundamental solution from Eqs. (47) and (48), is
marginal. At the lower fiber at η = −1, the normalized axial deflection is 0.038 for all material configurations,
see Fig. 10a. The distribution remains almost linearly, but it decreases for higher graded materials. Again, the
FEA results agree with the analytical results, regardless of whether the higher-order terms are considered or
not (c.f. red, black and pointed curves). The vertical cross-sectional deflection is almost constant with respect
to the thickness (Fig. 10b). The first-order solution only differs slightly from the higher order and the FEA
result (error < 0.1%).

As a final statement the authors suggest that for thin beams (λ < 1/20) the first-order results yield accurate
solutions for industrial use, see Eqs. (44) and (45) for the normal stress distributions and column 1 of Table 2
in the Appendix for the displacements.

6 Comparison to literature

Anadditional verification of our theory is performed in this section,wherewe compare our results to an example
given in Chu [10]. In order to obtain a stress function in the case of vanishing tractions with tu = tl = {0, 0}T ,
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Fig. 9 Nondimensional deflections of the midspan axis for a beam with λ = 1/10 and the Young’s modulus E(η) = E0eαη.
FEA results are compared to the analytical solutions for α = 1/2. The vertical tip deflection v∗ = 1.07mm due to an isotropic
homogeneous beam is used for normalization
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Fig. 10 Nondimensional displacement over the cross section at ξ = 1/2 for a beam with λ = 1/10 and Young’s modulus
E(y) = E0eαy/c. The FEA results are compared to the analytical solutions for α = 1/2

see Eq. (1), the computation procedure for the stress function is similar to Sect. 4, but the load vector is adjusted
to q = {C1x + C2, C3, K1x + K2, K3}T .

A cantilever beam is investigated which is loaded by the end moment B, the shear force V and the normal
force H at x = L (see Fig. 11).

The constants C1, C2, C3 and K1, K2, K3 are related to three constants N0 = K3 −C3, Q0 = K1 −C1
and M0 = K2 −C2 − c(C3 + K3), see Eqs. (26)–(28) and determined by setting up three boundary conditions
at the free end at x = L:

M(L) = −B, Q(L) = V, N (L), = H. (55)
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Fig. 11 FGM cantilever with length L and thickness 2c subjected to a shear force V , a normal force H and a end moment B at
the free end at x = L

It follows for the stress resultants and the stresses:

M(x) = −B − V (L − x), Q(x) = V, N (x) = H, (56)

σx1M = −α2e
αy
c

αc cosh(α) − sinh(α)(c + αy)

c3
(
2α2 − cosh(2α) + 1

)
[
B + V (L − x)

]
,

σx1N = αe
αy
c

α cosh(α)(2c + αy) − sinh(α)
[(

α2 + 2
)
c + αy

]
c2
(
2α2 − cosh(2α) + 1

) H,

τxy = α2e−α −2eαc + ce
αy
c + (c − y)eα( y

c +2) + ye
αy
c

2c2
(
cosh(2α) − 2α2 − 1

) V, σy = 0. (57)

Chu [10] gives in his contribution the solution for the case where the bending moment M(x) = −B. The
solution of Eq. (57) in Chu [10] and our solution are identical if one sets α = λ2c, c = h/2, V = 0 and H = 0
in Eq. (57).

7 Conclusion

In the present contribution, an iterative solution procedure has been derived for the computation of the Airy
stress function of a functionally graded beam with rectangular cross section and transversely varying material
parameters. For this purpose, Boley’s method, which was initially developed for deriving analytical beam
solutions for isotropic thick beams, is here extended. We assume a functionally graded material (FGM) and
do not take advantage of a priori axiomatic assumptions, neither for the stress field nor for the displacement
field. Explicit results are given for a cantilever beam subjected to a linearly distributed shear load. For other
kinematic (no matter if statically determinate or indeterminate beams) and load boundary conditions the
proposed method can be easily adjusted. The analytical solution is obtained by solving algebraic equations
for the first iteration and simple ordinary differential equations for the higher iteration. Finally, a numerical
verification of our functionally graded beam model is presented. The solution is compared to two-dimensional
(2D)finite element results performed inABAQUS, showing that the analytical results are in excellent agreement
with the ABAQUS outcome. The obtained solution is an extension of the Bernoulli–Euler (BE) theory for FGM
which takes into account the thickness-to-length ratio of the structure; hence, it is valid for thicker structures.
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Appendix

Table 2 Midspan axis displacements for an isotropic FGM beam with Young’s modulus E(y) = E0ey/2c, constant Poisson’s
ratio ν, length L , thickness 2c subjected to a linear distributed shear force with nu(x) = n0(x/L − 1)

1 2

U (x) − c0
[E I ]eff

∫
M(x)dx+[

1

[E A]eff + c20
[E I ]eff

]∫
N (x)dx+

r0y + u0

n0
L4

[E I ]eff
[

2(ν + 1)

(e − 1)
√
e

(
1 − x

L

)
+

e(461ν + 540) − e2(79ν + 132) + e3(ν + 12) − 676ν − 720

48(e − 1)
(
1 − 3e + e2

) x

L

]
λ4

V (x)
1

[E I ]eff
[
c0

∫∫
N (x) dx2−∫∫

M(x) dx2
]

−
r0x + v0

−n0
L4

[E I ]eff
[

(ν + 1)(2e(ν − 1) + 5ν − 1)

2(e − 1)
√
e

λ5

+
e3(69ν + 48) − e2(277ν + 216) + e(319ν + 312) − 206ν − 216

48(e − 1)
(
1 − 3e + e2

) ( x
L

)2
λ3
]

[E I ]eff = 8
(
1 − 3e + e2

)
(e − 1)

√
e

c3E0 [E A]eff = 2(e − 1)√
e

cE0 c0 = − (e − 3)

e − 1
c λ = 2c/L

M(x) = M0 + Q0x + n0c
(
1 − x

2L

)
x N (x) = N0 + n0

(
1 − x

2L

)
x

Six constants, u0, v0, r0, M0, Q0 and N0, are to be determined by setting up three appropriate boundary conditions at each lateral
beams ends
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