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Abstract The present paper is focused on theMoore–Gibson–Thompson (MGT) thermoelasticity theory. The
MGT thermoelasticity theory is a generalized form of the Lord–Shulman (LS) thermoelasticity theory as well
as the Green-Naghdi thermoelasticity theory with energy dissipation (GN-III). The present work is aimed at
establishing the domain of influence results in the context of this new thermoelasticity theory. We consider a
mixed boundary-initial value problem representing natural stress–heat-flux disturbance inside an isotropic and
homogeneous medium. We establish an identity regarding this present problem. Further, we derive the domain
of influence theorem based on this identity under the MGT thermoelasticity theory. From this theorem, we
conclude that for prescribed bounded support of thermomechanical loading and for a finite time, the disturbance
generated by the pair of stress and heat flux vanishes outside a bounded domain. It is also analyzed that the
domain of influence relies on the thermoelastic material parameters. We further compare the present domain
of influence results with the corresponding results of LS thermoelasticity theory.

1 Introduction

It is well understood that the uncoupled thermoelasticity theory suffers from a deficiency that the temperature
and elastic changes are not affected by each other. In order to address this shortcoming, an elegant model of
coupled thermoelasticity has been formulated by Biot [1]. This theory has eliminated the apparent deficiency
of the uncoupled theory and thereby admitted the coupling effects of elasticity and thermal field. However,
Biot’s theory is developed depending on the classical Fourier’s law which leads to the parabolic nature of
heat conduction equation. According to this, the resulting heat waves propagate at an infinite speed which
violates the physical phenomena. Overcoming this apparent paradox in the classical coupled thermoelasticity
theory has been a challenging and interesting area of research since the last few decades. Several efforts have
therefore been carried out to develop various non-Fourier heat conduction models. Consequently, various
thermoelasticity theories by the use of these non-Fourier heat conduction models have been introduced. We
must recall some achievements in this direction as described in review articles and some books [2–11].

It is worth to be mentioned that Lord and Shulman [12] established the first generalized thermoelasticity
theory, and this extended theory is known as the LS thermoelasticity theory. The LS theory is based on the
modified heat conduction equation reported by Cattaneo and Vernotte [13–15] in which a new parameter
defining thermal relaxation time has been incorporated in the classical heat conduction equation. The modified
heat conduction law is defined in the Catteneo-Vernotte model as follows:

−→q + τ
∂

∂t
−→q = −K

−→∇ θ (1)
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where τ acts as a nonnegative time relaxation parameter, K represents the thermal conductivity, −→q represents
the heat flux vector, and θ represents the temperature.

Further, the other generalized thermoelasticity theory without affecting the classical Fourier’s law has
been proposed by Green and Lindsay [16]. This model has been formulated with the idea of introducing the
temperature-rate terms among the constitutive relations. Later on, another generalized thermoelasticity theory
was established byGreen andNaghdi [17–19]. This theory has given rise to three types of thermoelastic models
which are now referred to as GN-I, GN-II and GN-III models, respectively. In view of the GN-III model, the
modified constitutive law of heat conduction is considered in the following way:

−→q = −K
−→∇ θ − K ∗−→∇ α (2)

where K ∗ is introduced as a new material parameter and is termed as the conductivity rate of the material.
Here, α represents a new constitutive variable called thermal displacement with the property that α̇ = θ (see
Refs. [17–19]). In a condition by taking K ∗ = 0 in Eq. (2), we obtain the GN-I model and recover the classical
Fourier law of heat conduction. Moreover, if we consider K = 0, then we obtain the GN-II model with no
thermal energy dissipation. Consequently, the GN-I and GN-II models can be easily retrieved from the GN-III
model as special cases. However, out of these three models, the GN-II model overcomes the apparent drawback
of the infinite propagation of heat waves in thermoelasticity.

The GN-III model asserts that this model leads to a similar deficiency as the classical Fourier’s theory. To
overcome this deficiency, a modification of Eq. (2) by incorporating a relaxation parameter has been proposed.
Hence, the modification of Eq. (2) follows as(

1 + τq
∂

∂t

)
−→q = −K

−→∇ θ − K ∗−→∇ α (3)

where τq is the parameter of time relaxation. Therefore, Eq. (3) is the generalization of heat conduction
equations defined in the LS theory and GN-III theory. Subsequently, by adjoining the energy equation and
Eq. (3), we obtain a completely new equation which is referred to as the Moore–Gibson–Thompson (MGT)
equation [20]. TheMGT equation has dragged the interest of the researchers and prompted them to work in this
direction. Recently, another type of generalized thermoelasticity theory has been proposed by Quintanilla [20]
where the MGT equation describes the heat conduction equation. Therefore, this generalized thermoelasticity
theory is introduced as the MGT thermoelasticity theory. The MGT thermoelasticity theory is a generalized
form of the LS theory as well as the GN-III theory. Consequently, the MGT theory is a new generalized
thermoelasticity theory proposed in the context of thermoelasticity. The stability and the well posedness of
the solutions in this theory are also analyzed by Quintanilla [20]. Subsequently, the thermoelasticity theory
of MGT type with history dependence in the temperature has been established by Conti et al. [21] in which
an integro-differential form of the MGT equation has been considered. Further, uniqueness and instability for
some thermomechanical problems in the theory of MGT thermoelasticity have been discussed by Pellicer and
Quintanilla [22] in detail.

One of the useful results to understand the deformation of a medium in terms of any thermomechanical
disturbance is known as the domain of influence theorem. This theorem implies that, outside a bounded domain,
a solution of a given systemvanishes for a finite time and in accordancewith a data specified in bounded support.
Accordingly, this theorem proves the hyperbolicity of the present model. Ignaczak [23] introduced the domain
of influence theorem in view of linear thermoelasticity. Further, Ignaczak [24] also discussed the domain
of influence theorem under asymmetric elastodynamics. In linear elastodynamics, the theorem of domain of
influence with energy inequalities was reported by Carbonaro and Russo [25]. Ignaczak [26] and Hetnarski
and Ignaczak [27] presented the domain of influence theorems under the generalized thermoelasticity theories
of LS type and also of GL type. Later on, the concepts of domain of influence were described by Ignaczak and
Ostoja-Starzewski [28] in detail. Flavin et al. [29] investigated the energy bounds for the transient solutions of
the equations in linear and nonlinear elastodynamics. Based on the idea proposed by Flavin et al. [29] in view
of linear elastodynamics, the principle of Saint–Venant was obtained by Chirita and Quintanilla [30]. Under
the generalized thermoelasticity theory, the spatial decay estimates in terms of Saint–Venant’s principle have
further been analyzed by Chirita and Quintanilla [31]. The domain of influence theorem had been established
by Mukhopadhyay et al. [32] in the context of the DPL model. Further, Kumar and Kumar [33] investigated
the domain of influence theorem under the TPL model. Kumari and Mukhopadhyay [34] obtained the domain
of influence theorem under the GN-II model in regard to a problem based on stress-heat-flux. Later on, Kumari
and Mukhopadhyay [35] also discussed the domain of influence theorem in the context of the GN-II model
for the case of a pair of potential to the displacement and temperature.



A domain of influence theorem for a natural stress–heat-flux problem 179

The present work is motivated to extend the concept of domain of influence for the theory of MGT
thermoelasticity. We describe a thermoelastic process corresponding to the natural stress-heat-flux problem
in the present context and aim to prove the domain of influence theorem. We start with summarizing the
fundamental equations in terms of stress and heat flux pair concerning an isotropic and homogeneous medium
under the MGTmodel. Further, we present the mixed boundary-initial value problem involving stress and heat
flux and derive an identity in the present context. Lastly, the domain of influence theorem regarding this identity
has been established. According to this theorem, we conclude that the pair of stress with heat flux generates
the stress–heat-flux disturbance vanishing outside the bounded domain for a finite time and for a prescribed
thermomechanical load support which is bounded. We also find that the domain of influence depends on the
thermoelastic coupling constant and other material parameters.

2 Basic equations and problem formulation

We consider that B̃ represents the closure of a connected, open, and bounded set. Let B denote the interior of
B̃ and ∂ B denote the boundary of B̃ enclosing an isotropic and homogeneous material. In three-dimensional
Euclidean space, we consider a rectangular coordinate system, and let ni denote the components of unit
outward normal to ∂ B. The basic governing equations and the constitutive relations in view of theMGT theory
of thermoelasticity are considered in the following way:

Stress equation of motion:
σi j, j + li = ρüi ; (4)

Energy equation:
−qi,i + r = CS θ̇ + θ0ασ̇kk; (5)

Strain-stress-temperature relation:

ei j = 1

2μ

(
σi j − λ

3λ + 2μ
σkkδi j

)
+ αθδi j ; (6)

Heat conduction equation: (
1 + τq

∂

∂t

)
q̇i = −

(
K ∗ + K

∂

∂t

)
θ,i ; (7)

Strain-displacement relation:

ei j = 1

2

(
ui, j + u j,i

) = u(i, j). (8)

In the above equations, σi j are the components of the stress tensor, ui represents the components of the
displacement vector, r denotes the external heat source, ρ is the mass density, li represents the components of
the body force vector, qi represents the heat flux vector components, CS denotes the specific heat at constant
stress, α represents the linear thermal expansion coefficient, θ represents the temperature variation from θ0,
where θ0 is the uniform reference temperature, ei j represents the components of the strain tensor, λ and μ are
the constants of Lamé elastic, τq is the phase-lag parameter, K represents the thermal conductivity, and K ∗
represents the conductivity rate of the material as termed in the Green-Naghdi theory. The comma notation
represents partial derivatives with respect to space variables, and for representing the differentiation with
respect to time, we take overdots. The subscripts i, j, k take the values 1, 2, 3, and index repetition implies the
summation.

Now, with the help of above Eqs. (4)–(8), we consider a problem on natural stress-heat-flux for an isotropic
and homogeneous material under the MGT thermoelasticity theory involving a pair (σi j , qi ) that satisfies the
field equations as follows:

ρ−1σ(ik,k j) −
[

1

2μ

(
σ̈i j − λ

3λ + 2μ
σ̈kkδi j

)
− θ0α

2

CS
σ̈kkδi j

]
+ α

CS
q̇k,kδi j = 1

CS
αṙδi j − ρ−1l(i, j); (9)

(
K ∗ + K

∂

∂t

)
1

CS

(
qk,k + αθ0σ̇kk

)
,i −

(
1 + τq

∂

∂t

)
q̈i =

(
K ∗ + K

∂

∂t

)
1

CS
r,i (10)

where we use the notation l(i, j) = 1
2

(
li, j + l j,i

)
.
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Here, we must recall that Eq. (9) is a generalization of the Ignaczak equation (see Refs. [28,36]).
The material parameters satisfying the following conditions are assumed:

ρ > 0, μ > 0, λ > 0, CS > 0, α > 0, θ0 > 0,

τq > 0, K ∗ > 0, 3λ + 2μ > 0. (11)

Further, we consider the relation
K > K ∗τq . (12)

We must recall here the fact reported by Quintanilla [20] that the solution under the MGT thermoelasticity
theory is exponentially stable if the material parameters τq , K and K ∗ satisfy the relation (12) (see Quintanilla
[20]).

Now, we set the following notations in Eqs. (9) and (10):

L(i j) = ρ−1l(i, j) − 1

CS
αṙδi j , (13)

mi = −
(

K ∗ + K
∂

∂t

)
1

CS
r,i . (14)

Then, from Eqs. (9) and (10), we find

ρ−1σ(ik,k j) −
[

1

2μ

(
σ̈i j − λ

3λ + 2μ
σ̈kkδi j

)
− θ0α

2

CS
σ̈kkδi j

]
+ α

CS
q̇k,kδi j = −L(i j), (15)

(
K ∗ + K

∂

∂t

)
1

CS

(
qk,k + αθ0σ̇kk

)
,i −

(
1 + τq

∂

∂t

)
q̈i = −mi . (16)

We assume the initial conditions on x ∈ B to above Eqs. (15) and (16) in the following way:

σi j (x, 0) = σ 0
i j ,

σ̇i j (x, 0) = σ̇ 0
i j ,

qi (x, 0) = q0
i ,

q̇i (x, 0) = q̇0
i ,

q̈i (x, 0) = q̈0
i , (17)

and boundary conditions on ∂ B × [0,∞ [ are taken as:

σi j n j = σ ′
i ,

qi ni = q ′. (18)

The present problem which is based on the pair of stress and heat flux is known as a natural stress–heat-
flux problem [28]. Therefore, a solution to the natural stress–heat-flux problem is called a stress–heat-flux
disturbance.

3 Some definitions

Now, we discuss the concepts of the support of thermomechanical load and the set of the domain of influence
before moving on to the main results.

Definition 1 We consider that t ∈ (0,∞) is a fixed time. Then, the set

D0 (t)

=

⎧⎪⎨
⎪⎩x ∈ B̃ :

(1) forx ∈ B, σ 0
i j �= 0 or σ̇ 0

i j �= 0 or q0
i �= 0 or q̇0

i �= 0 or q̈0
i �= 0

(2) for (x, τ ) ∈ ∂ B × [0, t] , σ ′
i �= 0 or q ′ �= 0

(3) for (x, τ ) ∈ ∂ B × [0, t] , L(i j) �= 0 ormi �= 0

(19)

is said to be the support of the thermomechanical load of the present system (15)–(18) at time t .



A domain of influence theorem for a natural stress–heat-flux problem 181

Definition 2 We take an open ball 
(x, νt) with center x and radius νt , where ν is any real parameter. For
the above thermomechanical load D0(t), the set

D(t) =
{

x ∈ B̃ : 
 (x, νt) ∩ D0 (t) �= Ø
}

(20)

which defines the domain of influence. Thus, the set D(t) defines a set of all the points of B̃ which can be
accessed by the thermomechanical disturbances propagating from D0(t) with a finite speed not exceeding ν
(see [28]).

4 Main results

Now, we formulate an identity regarding the present context, and it is analogous to the identity formulated by
Ignaczak and Ostoja-Starzewski [28]. Further, we will derive the domain of influence theorem based on this
identity under the MGT thermoelasticity theory. The domain of influence theorem is valid if the inequality is
satisfied by ν in the following way:

ν ≥ max(ν1, ν2, ν3, ν4), (21)

where

ν1 =
(
2μ

ρ

) 1
2

, (22)

ν2 =
{

K

τqCS

[
1 + CS

CE

(
1 − CE

CS

) 1
2
]} 1

2

, (23)

ν3 =
{

K ∗

CS

[
1 + CS

CE

(
1 − CE

CS

) 1
2
]} 1

2

, (24)

ν4 =
⎧⎨
⎩

(3λ + 2μ)

ρ

CS

CE

[
1 −

(
1 − CE

CS

) 1
2
]−1

⎫⎬
⎭

1
2

, (25)

where CE represents the specific heat at constant strain satisfying the following relation with CS :
CS = CE + 3α2 (3λ + 2μ) θ0. (26)

Now, we derive the following energy identity in the context of the present problem in view of the above
definitions.

Theorem 1 Let
(
σi j , qi

)
satisfy the mixed problem (15)–(18) with smoothness property, and e(x) ∈ C1(B̃) is

considered to be a scalar field in such a way that the set

J0 =
{

x ∈ B̃ : e(x) > 0
}

(27)

is bounded. Then,

1

2

∫
B

{
E0 (x, e (x)) − [

e (x) Ė0 (x, 0) + E0 (x, 0)
]}

dB + 1

2

∫
B

{∫ e(x)

0
E1 (x, t) dt − e (x) E1 (x, 0)

}
dB

+
∫

B

{∫ e(x)

0
[e (x) − t] F (x, t) dt

}
dB +

∫
B

{∫ e(x)

0
Gi (x, t) e,i (x) dt

}
dB

=
∫

∂ B

{∫ e(x)

0
[e (x) − t]Gi (x, t) ni (x) dt

}
dA +

∫
B

{∫ e(x)

0
[e (x) − t] H (x, t) dt

}
dB, (28)
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where

E0 (x, t) = K ∗τq

θ0
(q̇i )

2 , (29)

E1 (x, t) = ρ−1σ̂ik,k σ̂i j, j + 1

2μ

(
˙̂σi j

˙̂σi j − λ

3λ + 2μ

( ˙̂σkk

)2) − α2θ0

CS

( ˙̂σkk

)2

+ 1

CSθ0

(
q̂k,k

)2 + K ∗

θ0
(q̇i )

2 + K τq

θ0
(q̈i )

2 ,

(30)

F (x, t) =
(
K − K ∗τq

)
θ0

(q̈i )
2 , (31)

Gi (x, t) = ρ−1 ˙̂σi j σ̂ jk,k + 1

CS

(
α ˙̂σkk + 1

θ0
q̂k,k

)(
K ∗ + K

∂

∂t

)
q̇i , (32)

H (x, t) = L(i j)
˙̂σi j + 1

θ0
mi

˙̂qi , (33)

where for any function g = g (x, t) defined on x ∈ B̃ × [0,∞ [ , ĝ( ) is denoted in the following way:

ĝ =
(

K ∗ + K
∂

∂t

)
g. (34)

Proof First, we apply the cap operator as represented by Eq. (34) on Eq. (15) and multiply by ˙̂σi j both sides
of Eq. (15), then we obtain

ρ−1σ̂(ik,k j)
˙̂σi j −

[
1

2μ

(
¨̂σi j

˙̂σi j − λ

3λ + 2μ
¨̂σkk

˙̂σkk

)
− θ0α

2

CS

¨̂σkk
˙̂σkk

]
+ α

CS

˙̂qk,k
˙̂σkk = −L(i j)

˙̂σi j . (35)

Now, we multiply both sides of Eq. (16) by θ−1
0

˙̂qi and get{(
K ∗ + K

∂

∂t

)
1

CS

(
qk,k + αθ0σ̇kk

)
,i

}
θ−1
0

˙̂qi −
{(

1 + τq
∂

∂t

)
q̈i

}
θ−1
0

˙̂qi = −miθ
−1
0

˙̂qi . (36)

Adding Eqs. (35) and (36) and after some straight-forward manipulations, the following equation is
obtained:

1

2

∂

∂t

{
∂

∂t
E0 (x, t) + E1 (x, t)

}
+ F (x, t) = Gi,i (x, t) + H (x, t) , (37)

where E0, E1, F, Gi , and H are given by Eqs. (29)–(33), respectively.
The following relation holds:

∫ e(x)

0
Gi,i [e (x) − t] dt =

∫ e(x)

0

{
[Gi (x, t) [e (x) − t]],i − Gi (x, t) e,i (x)

}
dt

=
[∫ e(x)

0
Gi (x, t) [e (x) − t] dt

]
,i

−
∫ e(x)

0
Gi (x, t) e,i (x) dt. (38)

Therefore, taking double integration of Eq. (37) from t = 0 to t = e (x) over t and making use of Eq. (38),
we get

1

2

[
E0 (x, e (x)) − E0 (x, 0) − e (x) Ė0 (x, 0)

]+1

2

[∫ e(x)

0
E1 (x, t) dt − e (x) E1 (x, 0)

]

+
∫ e(x)

0
[e (x) − t] F (x, t) dt +

∫ e(x)

0
Gi (x, t)e,i (x) dt

=
[∫ e(x)

0
Gi (x, t) [e (x) − t] dt

]
,i

+
∫ e(x)

0
[e (x) − t] H (x, t) dt. (39)
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The set J0 is bounded from Eq. (27). So, each term in Eq. (39) is considered to be bounded. Therefore, taking
the integration of Eq. (39) over B and employing the divergence theorem in the RHS, equation (28) is obtained.
This proves Theorem 1.

Now, we will derive the following domain of influence theorem for a natural stress–heat-flux problem
under the MGT thermoelasticity theory.

Theorem 2 Let ν denote a real parameter satisfying the inequality defined by Eq. (21). Then, if the domain of
influence is defined by the set D (t) at time t and for the thermomechanical load D0 (t) and if the pair

(
σi j , qi

)
satisfies the problem (15)–(18) with smoothness property, then

σi j = 0, qi = 0 on
{

B̃ − D(t)
}

× [0, t] . (40)

Proof We consider a fixed point (w, τ) ∈ {B − D (t)} × (0, t) . Let

� = B̃ ∩ 
 (w, ντ), (41)

and we consider the following:

eτ (x) =
{

τ − 1
ν

|x − w| for x ∈ �

0 for x /∈ �
, (42)

where ν is a parameter given by Eq. (21).

Now, from the definitions of domain D (t) and � defined by Eqs. (20) and (41), respectively, and from the
inequality τ < t, we find

D0 (t) ∩ � = Ø. (43)

Therefore, we obtain
σi j n j = 0, qi ni = 0 on (� ∩ ∂ B) × [0, t] (44)

and

˙̂σi j n j = 0, q̇i ni = 0, q̈i ni = 0 on (� ∩ ∂ B) × [0, t] , (45)

L(i j) = 0, mi = 0 on � × (0, t) . (46)

Further, we get
σi j (x, 0) = σ̇i j (x, 0) = qi (x, 0) = q̇i (x, 0) = q̈i (x, 0) on �. (47)

Now, in view of Eqs. (32), (42), and (45), we obtain

∫
∂ B

{∫ eτ (x)

0
[eτ (x) − t]Gi (x, t) ni (x) dt

}
dA = 0. (48)

Similarly, in view of Eqs. (33), (42), and (46), we obtain

∫
B

{∫ eτ (x)

0
[eτ (x) − t] H (x, t) dt

}
dB = 0. (49)

Clearly, applying the definitions of E0 (x, t) , E1 (x, t), and eτ (x) , we find the following results after
some straight-forward manipulations:

E0 (x, eτ (x)) − E0 (x, 0) − eτ (x) Ė0 (x, 0) =
{

E0 (x, eτ (x)) for x ∈ �

0 for x /∈ �
(50)

and ∫ eτ (x)

0
E1 (x, t) dt − eτ (x) E1 (x, 0) =

{∫ eτ (x)

0 E1 (x, t) dt for x ∈ �

0 for x /∈ �
. (51)
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Now, substituting lτ (x) into Eq. (28) and making use of Eqs. (48)–(51), we obtain

1

2

∫
�

E0 (x, eτ (x)) dB + 1

2

∫
�

∫ eτ (x)

0
E1 (x, t) dtdB +

∫
�

{∫ eτ (x)

0
[eτ (x) − t] F (x, t) dt

}
dB

= −
∫

�

{∫ eτ (x)

0
Gi (x, t) eτ,i (x) dt

}
dB, (52)

since Eq. (12) implies that F ≥ 0 on �. Therefore, from Eqs. (42) and (52), we find the inequality as follows:

1

2

∫
�

E0 (x, eτ (x)) dB + 1

2

∫
�

∫ eτ (x)

0
E1 (x, t) dtdB ≤ 1

ν

∫
�

∫ eτ (x)

0
|Gi (x, t) dt | dB. (53)

Now,

1

ν
|Gi | ≤ ρ−1

∣∣∣∣∣
˙̂σi j

ν
σ̂ jk,k

∣∣∣∣∣ + 1

CS

∣∣∣∣α ˙̂σkk + 1

θ0
q̂k,k

∣∣∣∣
∣∣∣∣
(

K ∗ + K
∂

∂t

)
q̇i

ν

∣∣∣∣

≤ ρ−1

∣∣∣∣∣
˙̂σi j

ν

∣∣∣∣∣
∣∣σ̂ jk,k

∣∣ + |α|
CS

∣∣∣ ˙̂σkk

∣∣∣
∣∣∣∣K ∗q̇i + K q̈i

ν

∣∣∣∣ + 1

CSθ0

∣∣q̂k,k
∣∣
∣∣∣∣K ∗q̇i + K q̈i

ν

∣∣∣∣ . (54)

To compute each term of the RHS of Eq. (54) and simplify Eq. (54), we use the following relation:

√
mn ≤ 1

2

(
εm + ε−1n

)
, (55)

where ε denotes a positive parameter with no dimension and m and n are nonnegative physical fields with the
equal dimension.

In order to compute the first term of Eq. (54), we employ m = (
σ̂ jk,k

)2
, n =

( ˙̂σi j
ν

)2

, and ε = 1 in Eq. (55)

and then obtain ∣∣σ̂ jk,k
∣∣
∣∣∣∣∣
˙̂σi j

ν

∣∣∣∣∣ ≤ 1

2

(
σ̂i j, j σ̂ik,k + 1

ν2
˙̂σi j

˙̂σi j

)
. (56)

In order to compute the second term of Eq. (54), we use

m =
( ˙̂σkk

)2
, n = 1

ν2 (αθ0)
2

(
K ∗q̇i + K q̈i

)2
, ε = CE

CS

(
1 − CE

CS

)− 1
2

. (57)

Therefore, using Eq. (57) in Eq. (55), we obtain

∣∣∣ ˙̂σkk

∣∣∣ 1

ν |α| θ0
∣∣K ∗q̇i + K q̈i

∣∣ ≤ 1

2

{
CE

CS

(
1 − CE

CS

)− 1
2 ( ˙̂σkk

)2 + CS

CE

(
1 − CE

CS

) 1
2 1

ν2α2θ20

(
K ∗q̇i + K q̈i

)2}

≤ 1

2

{
CE

CS

(
1 − CE

CS

)− 1
2 ( ˙̂σkk

)2 + CS

CE

(
1 − CE

CS

) 1
2 1

ν2α2θ20

[(
K ∗q̇i

)2 + (K q̈i )
2
]}

+ K ∗K

2ν2α2θ20

CS

CE

(
1 − CE

CS

) 1
2 d

dt
(q̇i )

2 . (58)

Now, by fixing m = (
q̂k,k

)2
, n =

(
K ∗q̇i +K q̈i

ν

)2
, and ε = 1 in Eq. (55), we get the last term of Eq. (54) as

∣∣q̂k,k
∣∣
∣∣∣∣K ∗q̇i + K q̈i

ν

∣∣∣∣ ≤ 1

2

{(
q̂k,k

)2 + 1

ν2

(
K ∗q̇i + K q̈i

)2}

≤ 1

2

{(
q̂k,k

)2 + 1

ν2

[(
K ∗q̇i

)2 + (K q̈i )
2
]}

+ K ∗K

2ν2
d

dt
(q̇i )

2 . (59)
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Thus, Eqs. (54), (56), (58), and (59) yield

1

ν
|Gi | ≤ ρ−1

2

(
σ̂i j, j σ̂ik,k + 1

ν2
˙̂σi j

˙̂σi j

)

+α2θ0

2CS

{
CE

CS

(
1 − CE

CS

)− 1
2 ( ˙̂σkk

)2 + CS

CE

(
1 − CE

CS

) 1
2 1

ν2α2θ20

[(
K ∗q̇i

)2 + (K q̈i )
2
]}

+ 1

2CSθ0

{(
q̂k,k

)2 + 1

ν2

[(
K ∗q̇i

)2 + (K q̈i )
2
]}

+ K ∗K

2ν2CSθ0

{
1 + CS

CE

(
1 − CE

CS

) 1
2
}

d

dt
(q̇i )

2 . (60)

Further, the relation (26) implies that

α2θ0

CS
= 1

3 (3λ + 2μ)

(
1 − CE

CS

)
. (61)

Therefore, in view of the definitions of E0 and E1 given by (29),(30), respectively, and using Eqs. (53),(60)
and relation (61), we arrive at

(
1

2μ
− 1

ρν2

)∫
�

∫ eτ (x)

0

(
˙̂σi j − 1

3
˙̂σkkδi j

)(
˙̂σi j − 1

3
˙̂σkkδi j

)
dtdB

+ K ∗

θ0

[
1 − K ∗

CSν2

{
1 + CS

CE

(
1 − CE

CS

) 1
2
}]∫

�

∫ eτ (x)

0
(q̇i )

2dtdB

+ K

θ0

[
τq − K

CSν2

{
1 + CS

CE

(
1 − CE

CS

) 1
2
}]∫

�

∫ eτ (x)

0
(q̈i )

2dtdB

+1

3

[
1

3λ + 2μ

CE

CS

{
1 −

(
1 − CE

CS

) 1
2
}

− 1

ρν2

]∫
�

∫ eτ (x)

0

( ˙̂σkk

)2
dtdB

+ K ∗

θ0

[
τq − K

CSν2

{
1 + CS

CE

(
1 − CE

CS

) 1
2
}]∫

�

(q̇i )
2dB ≤ 0. (62)

From Eq. (21), we conclude that the coefficients of all the integrals in Eq. (62) are nonnegative. Thus,
the nonnegativity of all integrals with the equality sign in this equation implies the vanishing of each term of
Eq. (62) on �.

Particularly, we have
˙̂σi j (x, eτ (x)) = 0, q̇i (x, eτ (x)) = 0 on �. (63)

Since
(
σi j , qi

)
is sufficiently smooth, and from the definition of eτ (x) , we get

˙̂σi j (x, eτ (x)) → ˙̂σi j (w, τ)

q̇i (x, eτ (x)) → q̇i (w, τ)

}
as x → w. (64)

Consequently, we take the limit x → w in Eq. (63) and find the following from Eq. (42):

˙̂σi j (w, τ) = 0, q̇i (w, τ) = 0 on
{

B̃ − D(t)
}

× [0, t] . (65)

In view of an arbitrary point (w, τ) of
{

B̃ − D(t)
}

× (0, t) and from the smoothness property of
(
σi j , qi

)
in

B̃ × [0, ∞) , we find that
˙̂σi j = 0, q̇i = 0 on

{
B̃ − D(t)

}
× [0, t] . (66)
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Now, with regard to (x, τ ) ∈
{

B̃ − D (t)
}

× [0, t] , Eq. (66) implies the following results:

σi j (x, τ ) = σi j (x, 0) +
{
1 − e− K∗

K τ
} K

K ∗ σ̇i j (x, 0) (67)

and
qi (x, τ ) = qi (x, 0) (68)

Since the definition of D(t) yields

σi j (x, 0) = σ̇i j (x, 0) = qi (x, 0) = 0 on
{

B̃ − D (t)
}

, (69)

hence, by combining Eqs. (67) and (68) with Eq. (69), we finally obtain

σi j = 0, qi = 0 on
{

B̃ − D(t)
}

× [0, t] . (70)

Thus, this proves the Theorem 2.
This theorem indicates that the pair

(
σi j , qi

)
satisfying the system (15)–(18) under theMGTmodel generates

the stress–heat-flux disturbance vanishing outside the bounded set D (t) for a prescribed bounded support of
thermomechanical load and for a finite time t if the condition (12) holds. Furthermore, this theorem implies
that if the relation given by Eq. (12) is considered, then we find that the stress–heat-flux disturbance propagates
with finite speed not exceeding ν defined by Eq. (21). Clearly, ν is observed to be dependent on the phase lag
τq , K , K ∗ and some other thermoelastic parameters. We also conclude that for a given load the associated
domain of influence is specified with a boundary layer of νt thickness. We can also find the upper bound of the
speed of stress–heat-flux disturbances from this theorem. We must mention that the condition given by (12) is
considered here in view of the fact as analyzed by Quintanilla [20] that if the condition K ∗τq < K holds, then
the solution under theMGT theory is exponentially stable, otherwise leads to instability solution (seeRef. [20]).
Therefore, we can conclude that the inequality ν ≥ max {ν1, ν2, ν3, ν4} reduces to ν ≥ max {ν1, ν2, ν4} which
is interestingly the same inequality as obtained by Ignaczak and Ostoja-Starzewski [28] for the case of the
generalized thermoelasticity theory of Lord and Shulman. Hence, we can conclude that the hyperbolicity of the
MGT thermoelastic model is established if condition (12) is satisfied and the maximum speed of propagation
of disturbance of stress-heat-flux under the MGT model depends on material parameters in a similar way like
in the Lord-Shulman theory.
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