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Abstract A shape memory alloy (SMA) is a temperature-dependent smart material that can be used to tune
the stiffness of structures in a thermal environment. In the present article, vibrations of hybrid laminated
composite plates reinforced with shape memory alloy fibers under temperature change are studied. Parametric
free vibration analysis is conducted to study the effect of theSMAvolume fraction, SMAfibers prestrain, length-
to-width ratio, and thickness-to-length ratio on the fundamental natural frequency and critical thermal buckling
temperature of the hybrid plate subject to fully clamped and fully simply supported boundary conditions.
With the objective of maximizing the fundamental natural frequency of the hybrid plate, for the first time,
simultaneously, the optimum stacking sequence of the hybrid plate and the best layers to embed the shape
memory alloy fibers are found. Interestingly, the study shows that the notion of embedding SMA fibers in
the composite plate does not guarantee an increase in the fundamental natural frequency. Depending on the
stacking sequence and the layers in which the SMA fibers are embedded, adverse effects might happen. It
is shown that inserting the SMA fibers in layers close to the mid-plane maximizes the fundamental natural
frequency of the plate.

1 Introduction

Shape memory alloys (SMAs) have attracted the attention of many scientists due to their unique functional
properties. The two most well-known properties of SMAs are their shape memory effect and their super-
elasticity, which are regaining a predetermined shape after unloading and heating and exhibiting a large
amount of recoverable inelastic deformation after unloading, respectively [1–3].

Embedding SMAfibers in composites is one of themost promising advances in aerospace, marine, and civil
engineering [4]. The dynamic analysis of composite structures reinforcedwith SMAfibers has long attracted the
attention of researchers. Rogers et al. used SMA wires to control the frequency of a graphite/epoxy laminated
beam based on active strain energy tuning and active property tuning [5]. Birman [6] studied the effect of
composite and SMA stiffeners on the stability of composite cylindrical shells and rectangular plates subjected
to compressive load. It was concluded that in plates and long shallow shells, SMA stiffeners are more efficient
than composite ones. Finite element analysis was carried out by Lau [7] to obtain the vibrational characteristic
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of SMA composite beams with various boundary conditions. It was shown that the natural frequencies and
the damping ratio of smart composite beams with SMA fibers increase as the temperature rises. Park et al.
[8] studied the vibrational behavior of thermally buckled composite plates reinforced with SMA fibers. They
showed that using SMA fibers in composite plates increases their critical temperature. Zhang et al. [9] studied
the dynamic characteristics of a laminated composite plate containing a woven SMA layer and unidirectional
SMA wires both experimentally and theoretically. Using a finite element method, Kuo et al. [10] showed that
inserting SMA fibers in the mid-plane of a laminated composite plate improves its buckling load. Kim et al.
[11] numerically studied the low-velocity impact behavior of composite plates reinforced with thin films of
SMA. Asadi et al. [12,13] studied free vibration of a shape memory alloy hybrid composite (SMAHC) beam
and the thermal stability of a geometrically imperfect SMAHC plate reinforced with SMA. They showed that
by proper use of SMAfibers, the thermal bifurcation could be delayed and thermal post-buckling deflection can
be controlled. Dehkordi et al. [14] performed a nonlinear transient dynamic analysis on a sandwich plate with a
flexible core and laminated composite sheets with embedded SMAwires. They proposed amixed layerwise and
equivalent single-layer model and used Brinson’s constitutive model for SMA fibers. Using the Ritz method,
Mahabadi et al. [15] studied the effect of the orientation of reinforcing SMA fibers on the fundamental natural
frequency of an SMAHC plate. Developing a meshless method, Nazari et al. [16] performed the free vibration
analysis of a hybrid sandwich composite plate consisting of shape memory alloy wires, functionally graded
face sheets, and fiber-reinforced composite core. They showed that the thickness of these layers and the angle
of the embedded SMA wires affect the fundamental natural frequency of this hybrid plate. Nekouei et al. [17]
presented a semi-analytical solution for the free vibration of SMAHC conical shells. They showed that using
SMA fibers has significant effect on increasing the fundamental natural frequency of SMAHC conical shells.

Although considerable research has been devoted to the dynamic analysis of structures reinforced by
SMA fibers, optimization of reinforced hybrid composite structures has not been studied extensively in the
literature. Shokuhfar et al. [18] used the response surface method and optimized an SMAHC plate under
low-velocity impact in order to minimize the maximum transverse deflection of the plate. Park et al. [19]
conducted the optimal design of a variable-twist proprotor by maximizing its twist actuation. They used an
SMAHC to change the built-in twist. They embedded SMA fibers neither in the outermost nor in the mid-
layers; the fibers were inserted in other layers. Salim et al. [20] studied the thermal buckling and free vibration
of an SMAHC cylindrical shell and used a genetic algorithm to find the optimum stacking sequence which
maximizes the shell’s fundamental natural frequency. Kamarian and Shakeri [21] used the first-order shear
deformation theory (FSDT), Brinson’smodel, and generalized differential quadrature solutionmethod to obtain
the critical buckling temperature of rectangular and skew SMAHC plates. They used the firefly algorithm to
find the optimum stacking sequence that leads to a maximum critical buckling temperature of the skew plate. In
[20,21], the SMA fibers were inserted in the outermost layers and only the best stacking sequence is obtained.

To the best of the authors’ knowledge, optimization of an SMAHC plate to maximize its natural frequency
has not been addressed in the available literature yet. In the present study, using a genetic algorithm based
on free vibration, optimization of nickel–titanium SMA fibers arrangements in an eight-layered rectangular
composite plate is carried out. The one-dimensional Brinson model [22] is used to simulate the behavior of
the SMA fibers. To obtain the free vibrational response of the SMAHC plate, the FSDT and the Ritz method
are utilized. In the first section of the numerical results, the effect of various parameters on the fundamental
natural frequency is studied. Using a genetic algorithm, the study is concluded by the optimization process.
With the aim of maximizing the fundamental natural frequency, for the first time and simultaneously the best
stacking sequence of the SMAHC plate and the best two layers to insert the SMA fibers are obtained.

2 Theoretical development

2.1 Problem description

Figure 1 shows an eight-layered SMAHC plate of length a, width b, and thickness h in the x-, y-, and z-
directions, respectively. The global Cartesian coordinate system (x, y, z) is located in the middle plane of the
plate. The angle between the fiber’s orientation and the x-axis is denoted by θ . The study is carried out for
two different boundary conditions of fully clamped (CCCC) and fully immovable simply supported (SSSS).
SMA fibers are inserted along the composite fibers. In the schematic Fig. 1, the SMA fibers are located in the
outermost layers, even though they can be inserted in any other layers.
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Fig. 1 Schematic of an SMAHC plate along with the coordinate system

2.2 Problem formulation

2.2.1 Brinson’s constitutive model

On the basis of the simplified one-dimensional Brinson model [22], the total martensitic fraction (ζ ) is the sum
of the stress-induced martensitic fraction (ζs) and the temperature-induced martensitic fractions (ζT) [23],

ζ = ζs + ζT. (1)

According to the Reuss scheme, Young’s modulus of the SMA fibers, Es, is defined as

Es(ζ ) = EA

1 +
(

EA
EM

− 1
)

ζs

, (2)

where EA and EM are Young’s modulus of the SMA in the pure austenite and pure martensitic phase, respec-
tively [23]. The recovery stress (σ r) can be calculated based on the strain (ε), the thermoelastic coefficient
(�), the difference in temperature from its reference value (�T ), the maximum recoverable strain of the SMA
fibers (εL) and Young’s modulus of the SMA fibers as follows [24]:

σ r = Es(ζ )(ε − εLζs) + � �T . (3)

Under the conditions of T > As and CA(T − Af) < σ r < CA(T − As), the martensitic fractions during the
heating stage, phase transformation, can be approximated by the following kinetics cosine formulation

ζ = ζ0

2

[
cos

(
π

Af − AS

(
T − AS − σ r

CA

))
+ 1

]
, (4)

ζS = ζS0
ζ

ζ0
, (5)

ζT = ζT0
ζ

ζ0
, (6)

where T is the temperature, the constant CA is the gradient of the curve of critical stress for the reverse phase
transformation, and the subscript 0 stands for the initial state. As and Af are the austenitic start and finish
temperatures, respectively. During the heating stage for T > As and CA(T − Af) < σ r < CA(T − As),
recovery stress and martensitic fractions can be obtained by solving Eqs. (3)–(6) simultaneously [22].

2.2.2 Laminated Composite plate

Considering the multicell mechanics approach [25], at a given martensitic fraction, the effective thermome-
chanical properties of an SMAHC plate, i.e., Young’s modulus (E), shear modulus (G), Poisson’s ratio (ν),
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linear thermal expansion coefficient (α) and mass density (ρ), can be estimated by Eqs. (7)–(15):

E11 = Es(ζ )Vs + E1m(1 − Vs), (7)

E22 = E2m

⎡
⎣(1 −√

Vs) +
√

Vs

1 − √
Vs

(
1 − E2m

Es(ζ )

)
⎤
⎦ , (8)

G12 = G13 = G12m ×
⎡
⎣1 −√

Vs +
√

Vs

1 − √
Vs

(
1 − G12m

Gs(ζ )

)
⎤
⎦ , (9)

G23 = G23m

1 − √
Vs(1 − G23m

Gs(ζ )
)
, (10)

Gs(ζ ) = Es(ζ )

2(1 + ν12s)
, (11)

ν12 = ν12sVs + ν12m(1 − Vs), (12)

α1 = VsαsEs(ζ ) + (1 − Vs)α1mE1m

E11
, (13)

α2 = E2m

E22

⎡
⎣α2m(1 −√

Vs) + α2m
√

Vs − √
Vs(α2m − αs)

1 − √
Vs

(
1 − E2m

Es(ζ )

)
⎤
⎦ , (14)

ρ = ρsVs + ρm(1 − Vs), (15)

where the subscripts m and s stand for the composite and the SMA fibers, respectively, and Vs denotes the
volume fraction of SMA fibers.

Following the FSDT assumptions, the displacement components can be written as:

u(x, y, z, t) = u0(x, y, z, t) + zφx (x, y, t),
v(x, y, z, t) = v0(x, y, z, t) + zφy(x, y, t),
w(x, y, z, t) = w0(x, y, t),

(16)

in which u0, v0, andw0 are displacements of the mid-plane (z = 0) in the x-, y-, and z-directions, respectively.
Furthermore, φx and φy represent the rotations of the transverse normal of the mid-plane about the y- and
x-axes, respectively [26]. The linear strain–displacement relationships are

⎧⎪⎪⎪⎨
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, (17)

where εxx and εyy are the normal strains and γyz , γxz , and γxy are the shear strains. For an SMAHC plate
under thermal loading, the constitutive law can be written as [12]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
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, (18)

where σxx and σyy are the normal stresses, τyz , τxz , and τxy are the shear stresses, and Q̄i j are the components
of the transformed reduced stiffness matrix, relations for the computation of which are mentioned in Appendix
A.
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In view of the FSDT, multiplying the first, second, and fifth rows of Eq. (18) by (1, z) and integrating the
results in the z-direction leads to
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where the resultant force (N ), the resultant moment (M), the thermal resultant force (NT), the thermal moment
resultant (MT), the resultant force induced by the recovery stress (N r), and the moment resultant induced by
the recovery stress (M r) of the kth layer with the fiber orientation of θk with respect to the x−axis, as shown
in Fig. 1, can be written as

⎡
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⎡
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⎤
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In the principal coordinates of the plate, the components of the extensional matrix (Ai j ), the coupling matrix
(Bi j ), and the bending stiffness matrix (Di j ) are as follows [27]

Ai j =
NL∑
k=1

(Q̄i j )k[hk − hk−1] (i, j = 1, 2, 6),

Ai j = 5
4

NL∑
k=1

(Q̄i j )k[hk − hk−1 − 4
3 (h

3
k − h3

k−1)
1

h2
] (i, j = 4, 5),

Bi j = 1
2

NL∑
k=1

(Q̄i j )k[h2
k − h2

k−1] (i, j = 1, 2, 6),

Di j = 1
3

NL∑
k=1

(Q̄i j )k[h3
k − h3

k−1] (i, j = 1, 2, 6),

(23)

where hk is the distance of the kth layer upper surface from the mid-plane and NL is the number of layers.
It should be noted that to compensate for the inaccuracy of constant shear strain and shear stress across the
thickness, a shear correction factor of 5/6 is used in this study.

2.3 Solution method

The Ritz method is used to acquire the fundamental natural frequency of the SMAHC plate. Assuming an
undamped small amplitude periodic motion, the displacement field may be written as
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⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u0(x, y, t) = ∑N
n=1

∑M
m=1 Umneiωt um(x)un(y),

v0(x, y, t) = ∑N
n=1

∑M
m=1 Vmneiωtvm(x)vn(y),

w0(x, y, t) = ∑N
n=1

∑M
m=1 Wmneiωtwm(x)wn(y),

φx (x, y, t) = ∑N
n=1

∑M
m=1 Xmneiωt xm(x)xn(y),

φy(x, y, t) = ∑N
n=1

∑M
m=1 Ymneiωt ym(x)yn(y),

(24)

where Umn, Vmn, Wmn, Xmn , and Ymn are unknown coefficients to be determined and um , un , vm , vn , wm ,
wn , xm , xn , ym , and yn are the assumed functions which satisfy the geometric boundary conditions. The
displacement field must be substituted in the energy functions. The kinetic energy, K , is

K = 1

2

∫

�0

{∫ h
2

− h
2

ρ

[(
∂u

∂t

)2

+
(

∂v

∂t

)2

+
(

∂w

∂t

)2
]
dz

}
dxdy, (25)

Substituting the displacement components from Eq. (16) into Eq. (25) and some mathematical manipulation
yields

K = 1

2

∫
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[
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∂φx
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)2

+
(

∂φy
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)2
)
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∂u0

∂t

∂φx

∂t
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∂φy

∂t

)

+I0
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∂u0
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)2

+
(

∂v0

∂t

)2

+
(

∂w0
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)2
)]

dxdy, (26)

where the inertia terms I0, I1, and I2 are defined as

Ii =
∫ h

2

− h
2

ρzidz (i = 0, 1, 2). (27)

The total strain energy due to bending, U , is

U = 1

2

∫

�0

{∫ h
2

− h
2

[σxxεxx + σyyεyy + σxyγxy + σxzγxz + σyzγyz]dz

}
dxdy. (28)

The work done by external forces, V , as presented by [28] is

V = 1

2

∫

�0

[
N̂x

(
∂w

∂x

)2

+ N̂y

(
∂w

∂y

)2

+ 2N̂xy

(
∂w

∂x

∂w

∂y

)]
dxdy, (29)

N̂ = N r − NT, (30)

where N̂ stands for the resultant force induced by applying uniform thermal loads on the SMA fibers. The
CCCC and SSSS boundary conditions and their corresponding assumed displacement fields are as follows:

• Immovable simply supported plate
• Boundary conditions

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u0(0, y) = 0, u0(a, y) = 0, u0(x, 0) = 0, u0(x, b) = 0;
v0(0, y) = 0, v0(a, y) = 0, v0(x, 0) = 0, v0(x, b) = 0;
w0(0, y) = 0, w0(a, y) = 0, w0(x, 0) = 0, w0(x, b) = 0;
φy(0, y) = 0, φy(a, y) = 0, φx (x, 0) = 0, φx (x, b) = 0;

Mx (0, y) = 0, Mx (a, y) = 0, My(x, 0) = 0, My(x, b) = 0

(31)

• Assumed displacement field
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u0 (x, y, t) = ∑N̄
n=1

∑M̄
m=1 Umneiωt sin

(mπ
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)
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b y

)
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∑M̄
m=1 Vmneiωt sin

(mπ
a x

)
sin

( nπ
b y

)
,

w0 (x, y, t) = ∑N̄
n=1

∑M̄
m=1 Wmneiωt sin

(mπ
a x

)
sin

( nπ
b y

)
,

φx (x, y, t) = ∑N̄
n=1

∑M̄
m=1 Xmneiωt cos

(mπ
a x

)
sin

( nπ
b y

)
,

φy (x, y, t) = ∑N̄
n=1

∑M̄
m=1 Ymneiωt sin

(mπ
a x

)
cos

( nπ
b y

)

(32)

• Clamped plate
• Boundary conditions

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u0(0, y) = 0, u0(a, y) = 0, u0(x, 0) = 0, u0(x, b) = 0;
v0(0, y) = 0, v0(a, y) = 0, v0(x, 0) = 0, v0(x, b) = 0;
w0(0, y) = 0, w0(a, y) = 0, w0(x, 0) = 0, w0(x, b) = 0;
φx (0, y) = 0, φx (a, y) = 0, φx (x, 0) = 0, φx (x, b) = 0;
φy(0, y) = 0, φy(a, y) = 0, φy(x, 0) = 0, φy(x, b) = 0

(33)

• Assumed displacement field

⎧
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0(x, y, t) = ∑N̄
n=1

∑M̄
m=1 Umneiωt xm(x − a)yn(y − b),

v0(x, y, t) = ∑N̄
n=1

∑M̄
m=1 Vmneiωt xm(x − a)yn(y − b),

w0(x, y, t) = ∑N̄
n=1

∑M̄
m=1 Wmneiωt xm(x − a)yn(y − b),

φx (x, y, t) = ∑N̄
n=1

∑M̄
m=1 Xmneiωt xm(x − a)yn(y − b),

φy(x, y, t) = ∑N̄
n=1

∑M̄
m=1 Ymneiωt xm(x − a)yn(y − b)

(34)

To form the mass and stiffness matrices, the Lagrangian functional L := K − (U + V ) is formed [29]. Taking
into consideration Eqs. (17)–(23), the assumed displacement fields are substituted in the equations of the
strain energy, kinetic energy, and work done by external forces, namely Eqs. (26), (28), and (29), respectively.
The stationary value of L is obtained by differentiating it with respect to the unknown coefficients of the
displacement field:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂(K−(U+V ))
∂Umn

= 0,

∂(K−(U+V ))
∂Vmn

= 0,

∂(K−(U+V ))
∂Wmn

= 0,

∂(K−(U+V ))
∂ Xmn

= 0,

∂(K−(U+V ))
∂Ymn

= 0,

(m = 1, 2, ..., M̄; n = 1, 2, ..., N̄ ), (35)

which yields a matrix eigenvalue problem in terms of the variable column vector X as follows:

[K ]X = ω2[M]X, (36)

where

X = {Umn, Vmn, Wmn, Xmn, Ymn}. (37)

The detailed derivations of stiffness and mass matrices are provided in Appendix B. The approximate natural
frequencies are the square roots of the eigenvalues of [M]−1[K ]. The coefficients of the Ritz expansion mode
shapes give the corresponding eigenvectors.
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2.4 Optimization procedure

A genetic algorithm is an optimization method that emanates from natural biological evolution. It operates on
the potential solutions, called population, to create better solutions at each generation by utilizing operators
that exist in nature, called crossover and mutation. These operators help in finding better-suited answers to the
problem than the initial solutions; this means an improvement in the approximated solutions. Each individual
of the population is called a chromosome.

In the present study, a genetic algorithm is utilized to find the best stacking sequence of the SMAHC plate
and the best two layers in which the SMA fibers should be inserted to maximize the fundamental natural
frequency of the SMAHC plate. The assumed chromosomes contain the angle of fibers in each layer and the
layer numbers with SMA fibers. In this study, the number of both population and generations is considered
to be 100. In the optimization process, fifty percent of the population is selected randomly for mutation. For
each one of these chromosomes, the mutation operator randomly picks two genes. Selected genes can be
either the angle or the layer number. In the former case, the angle of the layer is replaced by its complement,
and in the latter case, a new random number is reproduced. The crossover operator selects 70 percent of the
population based on a tournament selection and creates new chromosomes out of them. In each selection
stage, three chromosomes are picked, and the one with the highest fundamental natural frequency is chosen
as the first parent. By repeating the same procedure, the second parent is selected. By combining the selected
chromosomes, two newchromosomes are produced. The procedure of optimization is displayed in the flowchart
shown in Fig. 2.

3 Results and discussion

3.1 Comparative studies

The proposed method is verified by comparing the fundamental natural frequency of three cases with those
available in open literature studies [12,27–38].

Case 1) An SSSS rectangular laminated composite plate with the stacking sequence of [0/90/90/0].
The dimensionless material and geometric properties are

ρ = 1600 (kg/m3),
E1

E2
= 40,

E2

E3
= 1,

G12

E2
= G13

E2
= 0.6,

G23

E2
= 0.5,

ν12 = ν13 = ν23 = 0.25,
a

b
= 1,

a

h
= 50.

In Table 1, the dimensionless fundamental natural frequency, ω = ω b2
√

ρ/E2/h, obtained from the present
study and those reported by [27–33] are listed.

Case 2) A CCCC square laminated composite plate with the stacking sequence of [0/90/0].
The dimensionless material and geometric properties are

ρ = 1586 (kg/m3),
E1

E2
= 40,

E2

E3
= 1,

G12

E2
= G13

E2
= 0.6,

G23

E2
= 0.5,

ν12 = ν13 = ν23 = 0.25,
a

b
= 1,

a

h
= 1000.

The dimensionless fundamental natural frequency is defined as ω̄ = ω × b2
√
12ρ(1 − ν12ν21)/E2h2/π2.

The dimensionless fundamental natural frequencies obtained by the present and [34–36] studies are listed
in Table 2. RBF and 1D-IRBFN stand for the radial basis function and the one-dimensional integrated RBF
networks, respectively. Tables 1 and 2 show that the results of the present study are in good correlation with
the published data as the maximum discrepancy between the results reaches 0.36 % and 1.0% for SSSS and
CCCC plates, respectively.

Case 3) An eight-layered composite square plate under thermal loading with SSSS boundaries.
Using the material properties given in Table 3, the critical buckling temperatures are compared with

[12,37,38] in Table 4. The reference temperature is 20◦C.
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Fig. 2 Flowchart of the genetic algorithm code

Table 1 Comparison of the dimensionless fundamental natural frequency of an SSSS laminated composite plate

Reference Theory Solution method ω Discrepancy (%)

Present FSDT Ritz 18.6702
[27] HSDT Navier 18.6718 0.009
[31] Modified HSDT Navier 18.7381 0.364
[32] Extended Mindlin Navier 18.6742 0.021
[33] Refined HSDT Navier 18.6713 0.006

Table 2 Comparison of the dimensionless fundamental natural frequency of a CCCC laminated composite plate

Reference Theory Solution method ω Discrepancy

Present FSDT Ritz 14.6658
[34] FSDT RBF-pseudospectral 14.8138 1.009
[35] Reissner/Mindlin p-Ritz 14.6655 0.002
[36] FSDT 1D-IRBFN 14.6722 0.043
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Table 3 Lamina material properties (G12 = G13 = G23) [37]

Temperature (◦C)
Property 20 200 260 600 3316

E1 (GPa) 141 141 141 141 141
E2 (GPa) 13.1 10.3 0.138 0.0069 0.0069
G12 (GPa) 9.31 7.45 0.0069 0.0034 0.0034
v12 0.28 0.28 0.28 0.28 0.28
α11 × 10−6(◦C−1) 0.018 0.054 0.054 0.054 0.054
α22 × 10−6(◦C−1) 21.8 37.8 37.8 37.8 37.8

Table 4 Comparison of the critical buckling temperature of two different stacking sequences (a/h = 100, a/b = 1)

Reference Theory Solution method Stacking sequence

[±45]4s [0/90]4s
Tcr(◦C) Tcr(◦C)

Present FSDT Ritz 80 60
[12] HSDT Galerkin 79.133 59.458
[37] Von Karman–Mindlin Nonlinear finite element 80.5 61
[38] Layer-wise Hermitian finite element 76.9 58.7

Table 5 Thermomechanical properties of graphite/epoxy and NiTi fibers

Graphite/epoxy [39] NiTi fibers [22]

E1m = 155(1 − 3.53 × 10−4�T ) GPa E A = 67 GPa; EM = 26.3 GPa
E2m = 8.07(1 − 4.27 × 10−4�T ) GPa Ms = 18.4 ◦C; M f = 9 ◦C
G12m = G13m = 4.55(1 − 6.06 × 10−4�T ) GPa As = 34.5 ◦C; A f = 49 ◦C
G23m = 3.25(1 − 6.06 × 10−4�T ) GPa � = 0.55 M Pa◦C ; εL = 0.067
α1m = −0.07 × 10−6(1 − 1.25 × 10−3�T ) 1◦C CM = 8 M Pa◦C ; CA = 13.8 M Pa◦C
α2m = 30.1 × 10−6(1 + 0.41 × 10−4�T ) 1◦C αs = 10.26 × 10−6 1◦C
ν12m = 0.22

3.2 Parametric studies

In this section, the effects of various material and geometric parameters on the fundamental natural frequency
and critical buckling temperature of an eight-layered SMAHC plate are investigated. In the present study, a
NiTi/graphite/epoxy rectangular laminated plate with the total thickness, length, and width of 0.02 (m), 1 (m),
and 1 (m), respectively, is studied. The symmetric stacking sequence of [0/90/90/0]S is considered. The
thermomechanical properties of graphite/epoxy and NiTi fibers are listed in Table 5. The default values for the
volume fraction and prestrain of SMA fibers are 0.15 and 0.01, respectively. SMA fibers are inserted uniformly
in layers 1 and 8, aligned with the graphite fibers. The reference temperature is considered 20 ◦C.

3.2.1 Effect of SMA fibers prestrain

The effects of prestrain on the fundamental natural frequency of the SMAHCplate are depicted in Fig. 3. At low
temperatures, the generated recovery stress of SMA fibers is not enough to increase the stiffness significantly.
On the other hand, since the SMA fibers have higher density compared with the original plate, the increase in
mass due to inserting the SMAfibers outweighs the increase in stiffness, which in turn decreases the frequency.
As the temperature increases above the austenite start temperature, the generated recovery stress of SMAfibers
rises significantly, which dramatically increases the stiffness of the plate. This stiffness rise outweighs the
increase in the mass, which results in increasing the natural frequency and postpones the buckling to higher
temperatures. This increasing trend for natural frequency continues up to the austenite finish temperature. After
that, the effect of rising the temperature on softening the plate dominates the stiffening effect of the recovery
stress. Hence, the fundamental natural frequency decreases.
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(a) (b)

Fig. 3 Influence of SMA fibers prestrain and increasing temperature on the fundamental natural frequency of the a SSSS and b
CCCC rectangular plate

Table 6 Critical thermal buckling temperature of the rectangular SMAHC plate for different SMA

Boundary conditions εL(%) Twithout SMA
cr (◦C) TwithSMA

cr (◦C)
(

TwithSMA
cr −Twithout SMA

cr
Twithout SMA
cr

× 100
)

SSSS 1 233 325 39.5
SSSS 2 233 423 81.5
SSSS 3 233 533 128.8
SSSS 4 233 657 182.0
SSSS 5 233 808 246.8
CCCC 1 708 823 16.2
CCCC 2 708 955 34.9
CCCC 3 708 1114 57.3
CCCC 4 708 1324 87.0
CCCC 5 708 1500 111.9

The critical thermal buckling temperatures of the SSSS and CCCC laminated composite plate for various
prestrains are listed in Table 6. It can be concluded that reinforcing a composite plate with SMA fibers
postpones critical thermal buckling of the plate to a higher temperature. Furthermore, increasing the SMA
prestrain dramatically increases both the fundamental natural frequency and the critical buckling temperature.
The increase in stiffness of a reinforced laminated composite plate with the SSSS boundary condition is more
than that of a similar plate with the CCCC support, which is due to higher structural stiffness of the clamped
supported plate in comparison with the simply supported one.

3.2.2 SMA fibers volume fraction

For three different values of SMA fibers volume fraction, the fundamental natural frequency and thermal
buckling temperature are illustrated in Fig. 4. It can be observed that increasing the volume fraction of the
SMA fibers affects the fundamental natural frequency and postpones the thermal buckling. The more SMA
fibers are inserted in the plate, the more the recovery stress is generated. On the other hand, this will increase
the mass of the plate, which is a limiting factor that affects the value of the natural frequency. Table 7 specifies
the critical thermal buckling temperature of the plate for four values of volume fractions of SMA fibers. It can
be observed that inserting the SMA fibers in the SSSS and CCCC plates is more effective in the former one.

3.2.3 Geometrical parameters

Variations in the fundamental natural frequency of the plate versus temperature for various length-to-width
ratios, a/b, are depicted in Fig. 5. For each aspect ratio, both the laminated composite and the SMAHC plates
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(a) (b)

Fig. 4 Influence of SMA fibers volume fraction and increasing temperature on the fundamental natural frequency of the a SSSS
and b CCCC rectangular plate

Table 7 Influence of SMA fibers volume fraction on the critical thermal buckling temperature of the rectangular SMAHC plate

Boundary conditions εL Vs Twithout SMA
cr (◦C) Twith SMA

cr (◦C)
(

Twith SMA
cr −Twithout SMA

cr
Twithout SMA
cr

× 100
)

SSSS 0.01 0.05 233 262 12.4
SSSS 0.01 0.1 233 292 25.3
SSSS 0.01 0.15 233 325 39.5
CCCC 0.01 0.05 708 742 4.8
CCCC 0.01 0.1 708 779 10.0
CCCC 0.01 0.15 708 823 16.2

Table 8 Critical thermal buckling temperature (◦C) of the laminated composite plate for different aspect ratios of plate

Boundary conditions a/b Twithout SMA
cr (◦C) Twith SMA

cr (◦C)
(

Twith SMA
cr −Twithout SMA

cr
Twithout SMA
cr

× 100
)

SSSS 1 233 325 39.5
SSSS 1.5 160 219 36.9
SSSS 2 154 194 26.0
CCCC 1 708 823 16.2
CCCC 1.5 528 607 15.0
CCCC 2 510 576 12.9

are studied. In this section, the length is held constant. Keeping the length constant while decreasing thewidth is
equivalent to a fewer number of SMA fibers for the rectangular plate in comparison with the square one. Thus,
the generated recovery stress andmass of the rectangular plate are less than the square onewith the same length.
Given the results of Fig. 5, it can be concluded that this decrease in stiffness has outweighed the reduction
in mass. The critical thermal buckling temperatures for different aspect ratios are presented in Table 8. For
either type of the boundary conditions, increasing the aspect ratio decreases the critical temperature, though
this effect is more pronounced for the SSSS plate. As the width of the rectangular plate grows, the percentage
change in the critical thermal buckling temperature due to embedding the SMA fibers further increases.

The fundamental natural frequency of the SMAHC plate is computed for various thickness-to-length ratios,
h/a. Figure 6 shows the variation in the fundamental natural frequency versus temperature for two cases of
the laminated composite and SMAHC plate. As the thickness decreases, the effect of embedding the SMA
fibers in the laminated composite plate becomes more noticeable. In the case that thermal buckling occurs at
a temperature below the austenitic start temperature, the SMA fibers do not affect the fundamental natural
frequency of the plate. For instance, the SSSS plate with the thickness-to-length ratio of 0.005 thermally
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(a) (b)

Fig. 5 Influence of aspect ratio and increasing temperature on the fundamental natural frequency of the a SSSS and b CCCC
plate (dash line: without SMA fibers, straight line: with SMA fibers)

(a) (b)

Fig. 6 Influence of thickness-to-length ratio and increasing temperature on the fundamental natural frequency of the a SSSS and
b CCCC plate (dash line: without SMA fibers, straight line: with SMA fibers)

buckles at 34 ◦C, which is before the activation of the SMA fibers. The results presented in Table 9 show that
for either type of boundary conditions, increasing the thickness postpones the thermal buckling to a higher
temperature, which is more noticeable for the SSSS plate.

3.3 Optimization

3.3.1 Comparative optimization study

In this section, to obtain the maximum fundamental natural frequency, the best stacking sequence and the best
two layers to embed the SMA fibers are generated using the genetic algorithm. To verify the optimization pro-
cess, for an eight-layered graphite epoxy composite square plate, the proposed stacking sequence is compared
with [40,41] which used the layerwise optimization approach and the complex method, respectively. To find
the best stacking sequence, the orientation angle varied between − 90◦ and 90◦ with an increment of 5◦. The
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Table 9 Influence of inserting SMA fibers on the critical thermal buckling temperature of the rectangular plate with different
thickness-to-length ratios

Boundary conditions h/a TwithoutSMA
cr (◦C) TwithSMA

cr (◦C)
(

TwithSMA
cr −TwithoutSMA

cr
TwithoutSMA
cr

× 100
)

SSSS 0.005 34 34 0
SSSS 0.008 55 140 154.5
SSSS 0.01 74 160 116.2
CCCC 0.005 65 138 112.3
CCCC 0.008 135 217 60.7
CCCC 0.01 198 283 42.9

Table 10 Optimization of stacking sequence for SSSS square plate

Stacking sequence ω̄

Present [−45/45/45/45]S 56.31
[40] [45/ − 45/ − 45/ − 45]S 56.32
[41] [45/ − 45/45/ − 45]S 55.30

mechanical properties of the graphite epoxy composite are given as

EL = 138 (GPa), ET = 8.96 (GPa), GLT = 7.1 (GPa), νLT = 0.3,
a

b
= 1.

In Table 10, for a square plate with SSSS boundary conditions, the maximum dimensionless frequency, ω̄ =
ω a2(

12(1−νLTνTL)ρ

ETh3
)
1
2 , obtained by the present study is comparedwith [40,41]. It is concluded that themaximum

fundamental natural frequency obtained by the genetic algorithm is close to the results of [40,41]. The stacking
sequences of the present study and [40] are essentially the same.

3.3.2 Optimization results

For square and rectangular eight-layered SMAHC plates with SSSS and CCCC boundary conditions, the best
and worst two layers to insert the SMA fibers and their corresponding stacking sequences are obtained. For
the optimization, like the comparative study, the orientation angle increment is 5◦. The dimensions of the
square and rectangular plates are 1 (m) × 1 (m) × 0.02 (m), and 1.5 (m) × 1 (m) × 0.02 (m), respectively.
The mechanical properties of the SMAHC plate are listed in Table 5. The volume fraction and prestrain of the
SMA fibers are 0.15 and 0.05, respectively.

The results of the optimization study are provided in Figs. 7, 8, Tables 11 and 12. It can be observed that the
best layers to insert the SMA fibers are the closest ones to the mid-plane. The reason is embedding the SMA
fibers in layers with the highest stiffness; i.e., the vicinity of the mid-plane maximizes the fundamental natural
frequency since the plate’s mass is independent of the SMAfiber locations. Comparing the fundamental natural
frequency of the worst layup of the SMAHC plate and the best stacking sequence of the laminated composite
plate leads to a very important and unforeseen result: inserting the SMA fibers in a laminated composite plate
does not guaranty a higher fundamental natural frequency and might cause an adverse effect. Thus, optimizing
the stacking sequence and finding the best layers to insert the SMA fibers are essential.

As an example, for the CCCC rectangular plate, the fundamental natural frequency of the worst layup of
the SMAHC case is 920.3 rad/s, which is below the frequency of the best case of the laminated composite
plate without SMA fibers, which is 1152.1 rad/s.

The obtained results for both types of boundary conditions and shapes are compared in Table 13. Since the
optimization is intrinsically a random process, it is possible that the genetic algorithm sticks to a local optimum
which is still close to the global one. An apparent example is the obtained optimum stacking sequence for the
simply supported square plate with the optimum sequence of [45/45/45/40(SMA)]S; due to the symmetry
of the shape and boundary conditions, it is expected that the orientation of the middle layers be 45◦. The
fundamental natural frequency of the [45/45/45/45(SMA)]S square plate is 806.3 rad/s, which is very close
to the 806.2 rad/s of the found local optimum solution.

As was discussed in the Introduction [20,21] embedded the SMA fibers in the outermost layers. Just for
the sake of comparison, for the same SSSS square plate, the stacking of [45(SMA)/45/45/45]S yields the
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(a) (b)

(c) (d)

Fig. 7 Genetic algorithm results for the square plate: a SSSS without SMA, b SSSS with SMA, c CCCC without SMA, d CCCC
with SMA

Table 11 Best and worst combination of the stacking sequences and layers to insert the SMA fibers for the square plate

Boundary conditions SMA fibers Type ω(rad/s) Stacking sequence

SSSS – Best 620.3 [45/45/45/45]S
Worst 357.6 [−90/ − 80/ − 90/25]S

SSSS � Best 806.2 [45/45/45/40(SMA)]S
Worst 639.5 [−85(SMA)/ − 90/ − 10/ − 50]S

CCCC – Best 1152.1 [5/ − 85/90/50/65/5/0/ − 90]
Worst 628.4 [−85/ − 85/90/50/65/5/0/0]

CCCC � Best 1280.7 [−85/ − 10/35/40 (SMA)/50 (SMA)/25/ − 15/90]
Worst 920.3 [50 (SMA)/70/45/ − 40/ − 45 / − 5/ − 55 (SMA)/ − 35]

Table 12 Best and worst combination of the stacking sequences and layers to insert the SMA fibers for the rectangular plate

Boundary conditions SMA fibers Type ω(rad/s) Stacking sequence

SSSS – Best 439.9 [65/65/85/90]S
Worst 21.5 [−5/85/25/ − 40]S

SSSS � Best 689.3 [−65/70/85/90(SMA)]S
Worst 238.9 [−5/10(SMA)/0/ − 45]S

CCCC – Best 1122.3 [85/85/ − 65/70/25/85/85/ − 85]
Worst 428.8 [−85/80/ − 70/60/45/5/ − 10/5]

CCCC � Best 1239.8 [−85/80/85/55 (SMA)/45 (SMA)/75/90/90]
Worst 554.9 [−5/ − 10 (SMA)/ − 20/ − 75/85/ − 20/ − 45/ − 25 (SMA)]

fundamental natural frequency of 788.7 rad/s, which is smaller than the obtained optimum one. It can also be
observed that reinforcing the plate with SMA fibers increases the fundamental natural frequency of the simply
supported plates more than for the clamped ones. For the studied SMAHC rectangular simply supported
plate, using the optimum stacking sequences and optimum layers for inserting the SMA fibers increases the
fundamental natural frequency by approximately 57%.
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(a) (b)

(c) (d)

Fig. 8 Genetic algorithm results for the rectangular plate: a SSSS without SMA, b SSSS with SMA, c CCCC without SMA, d)
CCCC with SMA

Table 13 Comparison of maximum fundamental frequency obtained by the genetic algorithm

Boundary conditions Plate geometry ωwithoutSMA (rad/s) ωwithSMA (rad/s)
(

ωwithSMA−ωwithoutSMA
ωwithoutSMA

× 100
)

SSSS Square 620.3 806.3 30.0
SSSS Rectangle 439.9 689.3 57.0
CCCC Square 1152.1 1280.7 11.2
CCCC Rectangle 1122.3 1239.8 10.5

4 Conclusion

In the present study, vibrations of rectangular laminated composite plates reinforced with shape memory alloy
fibers under temperature change are studied. In order to simulate the behavior of the SMA fibers and account
for the generated recovery stress in themartensitic phase transformation, the one-dimensional Brinsonmodel is
employed. Furthermore, to obtain the fundamental natural frequency of the hybrid laminated composite plate,
the first-order shear deformation theory and the Ritz method are used. Parametric studies on the influence of
the SMA fibers volume fraction and prestrain as well as the plate aspect and thickness-to-length ratios on the
structure’s fundamental natural frequency and critical thermal buckling temperature are carried out. After that,
a genetic algorithm is utilized to find, for the first time and simultaneously, the optimum stacking sequence
and the best layers to insert the SMA fibers, which maximize the fundamental natural frequency of the plate.
Through comparative studies, both the solution method, Ritz, and optimization procedure, genetic algorithm,
are validated. The main concluding remarks are summarized as follows:

• Increase in either the prestrain or volume fraction of the SMA fibers affects the fundamental natural
frequency and increases the critical buckling temperature dramatically.

• Reinforcing laminated composite plates with SMA fibers is more efficient in the simply supported plates
compared to the fully clamped ones.

• A square SMAHC plate has higher fundamental frequencies than a rectangular one with the same length.
• Decreasing the thickness-to-length ratio increases the effect of inserting SMA in the cases that their thermal
buckling occurs after the austenitic start temperature.
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• Inserting SMA fibers in a laminated composite plate does not necessarily increase the fundamental natural
frequency of the structure. Improper selection of the stacking sequence and the layers in which the SMA
fibers are embedded might reduce the natural frequency of the laminated composite plate.

• For the purpose of maximizing the fundamental natural frequency, the best layers to insert the SMA fibers
are the ones closest to the mid-plane.

Appendix A

The reduced stiffness matrix (Qi j ) and the transformed reduced stiffness matrix (Q̄i j ) of the kth layer with
the fiber orientation of θk are

Q11 = E11

1 − ν12ν21
, Q22 = E22

1 − ν12ν21
, Q12 = Q21 = ν21E11

1 − ν12ν21
,

Q44 = G23, Q55 = G13, Q66 = G12,

Q̄11 = Q11 cos
4 θk + 2(Q12 + 2Q66) sin

2 θk cos
2 θk + Q22 sin

4 θk,

Q̄12 = (Q11 + Q22 − 4Q66) sin
2 θk cos

2 θk + Q12(cos
4 θk + sin4 θk),

Q̄22 = Q11 sin
4 θk + 2(Q12 + 2Q66) sin

2 θk cos
2 θk + Q22 cos

4 θk,

Q̄16 = − cos θk sin
3 θk Q22 + cos3 θk sin θk Q11,

− sin θk cos θk(cos
2 θk − sin2 θk)(Q12 + 2Q66),

Q̄26 = − cos3 θk sin θk Q22 + cos θk sin
3 θk Q11

+ cos θk sin θk(cos
2 θk − sin2 θk)(Q12 + 2Q66),

Q̄66 = (Q11 + Q22 − 2Q12) cos
2 θk sin

2 θk + Q66(cos
2 θk sin

2 θk)
2,

Q̄44 = Q44 cos
2 θk + Q55 sin

2 θk,

Q̄45 = (Q55 − Q44) cos θk sin θk,

Q̄55 = Q55 cos
2 θk + Q44 sin

2 θk . (A.1)

Appendix B

The detailed derivations of stiffness and mass matrices are as follows:

∂U

∂Umn
= 1

2

∫

�0

[(B11e
iωt um,x un + B16e

iωt umun,y)(Xkle
iωt xk,x xl)

+(B12e
iωt um,x un + B26e

iωt umun,y)(Ykle
iωt yk yl,y)

+(B16e
iωt um,x un + B66e

iωt umun,y)(Xkle
iωt xk xl,y

+Ykle
iωt yk,x yl) + (2A11Ukle

iωt uk,x ul + A12Vkle
iωtvkvl,y

+A16(2Ukle
iωt ukul,y + Vkle

iωtvk,xvl)

+B11Xkle
iωt xk,x xl + B12Ykle

iωt yk yl,y

+B16(Xkle
iωt xk xl,y + Ykle

iωt yk,x yl) − NT
x + N r

x )(e
iωt um,x un)

+(A12e
iωt um,x un + A26e

iωt umun,y)(Vkle
iωtvkvl,y)

+(2A16Ukle
iωt uk,x ul + A26Vkle

iωtvkvl,y

+A66(2Ukle
iωt ukul,y + Vkle

iωtvk,xvl)

+B16Xkle
iωt xk,x xl + B26Ykle

iωt yk yl,y

+B66(Xkle
iωt xk xl,y + Ykle

iωt yk,x yl) − NT
xy + N r

xy)(e
iωt umun,y)

+(A16e
iωt um,x un + A66e

iωt umun,y)(Vkle
iωtvk,xvl)]dxdy, (B.1)
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∂U

∂Vmn
= 1

2

∫

�0

[B12e
iωtvmvn,y + B16e

iωtvm,xvn)(Xkle
iωt xk,x xl)

+(B22e
iωtvmvn,y + B26e

iωtvm,xvn)(Ykle
iωt yk yl,y)

+(B26e
iωtvmvn,y + B66e

iωtvm,xvn)(Xkle
iωt xk xl,y + Ykle

iωt yk,x yl)

+(A12e
iωtvmvn,y + A16e

iωtvm,xvn)(Ukle
iωt uk,x ul)

+(A12Ukle
iωt uk,x ul + 2A22Vkle

iωtvkvl,y

+A26(Ukle
iωt ukul,y + 2Vkle

iωtvk,xvl)

+B12Xkle
iωt xk,x xl + B22Ykle

iωt yk yl,y

+B26(Xkle
iωt xk xl,y + Ykle

iωt yk,x yl) − NT
y + N r

y)(e
iωtvmvn,y)

+(A26e
iωtvmvn,y + A66e

iωtvm,xvn)(Ukle
iωt ukul,y)

+(A16Ukle
iωt uk,x ul + 2A26Vkle

iωtvkvl,y

+A66(Ukle
iωt ukul,y + 2Vkle

iωtvk,xvl)

+B16Xkle
iωt xk,x xl + B26Ykle

iωt yk yl,y

+B66(Xkle
iωt xk xl,y + Ykle

iωt yk,x yl) − NT
xy + N r

xy)(e
iωtvm,xvn)]dxdy, (B.2)

∂U

∂Wmn
= 1

2

∫

�0

[(ks(A45(2Wkle
iωtwkwl,y + Ykle

iωt yk yl)

+A55(2Wkle
iωtwk,xwl + Xkle

iωt xk xl)))(e
iωtwm,xwn)

+(ks(A45(e
iωtwmwn,y) + A55(e

iωtwm,xwn)))(Xkle
iωt xk xl)

+(ks(A44(2Wkle
iωtwkwl,y + Ykle

iωt yk yl)

+A45(2Wkle
iωtwk,xwl + Xkle

iωt xk xl)))(e
iωtwmwn,y)

+(ks(A44(e
iωtwmwn,y) + A45(e

iωtwm,xwn)))(Ykle
iωt yk yl)]dxdy, (B.3)

∂U

∂ Xmn
= 1

2

∫

�0

[(B11Ukle
iωt uk,x ul + B12Vkle

iωtvkvl,y

+B16(Ukle
iωt ukul,y + Vkle

iωtvk,xvl)

+2D11Xkle
iωt xk,x xl + D12Ykle

iωt yk yl,y

+D16(2Xkle
iωt xk xl,y + Ykle

iωt yk,x yl) − MT
x + M r

x )(e
iωt xm,x xn)

+(D12e
iωt xm,x xn + D26e

iωt xm xn,y)(Ykle
iωt yk yl,y)

+(B16Ukle
iωt uk,x ul + B26Vkle

iωtvkvl,y

+B66(Ukle
iωt ukul,y + Vkle

iωtvk,xvl)

+2D16Xkle
iωt xk,x xl + D26Ykle

iωt yk yl,y

+D66(2Xkle
iωt xk xl,y + Ykle

iωt yk,x yl) − MT
xy + M r

xy)(e
iωt xm xn,y)

+(D16e
iωt xm,x xn + D66e

iωt xm xn,y)(Ykle
iωt yk,x yl)

+(B11e
iωt xm,x xn + B16e

iωt xm xn,y)(Ukle
iωt uk,x ul)

+(B12e
iωt xm,x xn + B26e

iωt xm xn,y)(Vkle
iωtvkvl,y)

+(B16e
iωt xm,x xn + B66e

iωt xm xn,y)(Ukle
iωt ukul,y + Vkle

iωtvk,xvl)

+(ks A55e
iωt xm xn)(Wkle

iωtwk,xwl)

+(ks(A45(Wkle
iωtwkwl,y + Ykle

iωt yk yl)

+A55(Wkle
iωtwk,xwl + 2Xkle

iωt xk xl)))(e
iωt xm xn)
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+(ks A45e
iωt xm xn)(Wkle

iωtwkwl,y + Ykle
iωt yk yl)]dxdy, (B.4)

∂U

∂Ymn
= 1

2

∫

�0

[(D12e
iωt ym yn,y + D16e

iωt ym,x yn)(Xkle
iωt xk,x xl)

+(B12Ukle
iωt uk,x ul + B22Vkle

iωtvkvl,y

+B26(Ukle
iωt ukul,y + Vkle

iωtvk,xvl)

+D12Xkle
iωt xk,x xl + 2D22Ykle

iωt yk yl,y

+D26(Xkle
iωt xk xl,y + 2Ykle

iωt yk,x yl) − MT
y + M r

y)(e
iωt ym yn,y)

+(D26e
iωt ym yn,y + D66e

iωt ym,x yn)(Xkle
iωt xk xl,y)

+(B16Ukle
iωt uk,x ul + B26Vkle

iωtvkvl,y

+B66(Ukle
iωt ukul,y + Vkle

iωtvk,xvl)

+D16Xkle
iωt xk,x xl + 2D26Ykle

iωt yk yl,y

+D66(Xkle
iωt xk xl,y + 2Ykle

iωt yk,x yl) − MT
xy + M r

xy)(e
iωt ym,x yn)

(B12e
iωt ym yn,y + B16e

iωt ym,x yn)(Ukle
iωt uk,x ul)

+(B22e
iωt ym yn,y + B26e

iωt ym,x yn)(Vkle
iωtvkvl,y)

+(B26e
iωt ym yn,y + B66e

iωt ym,x yn)(Ukle
iωt ukul,y + Vkle

iωtvk,xvl)

+(ks A45e
iωt ym yn)(Wkle

iωtwk,xwl + Xkle
iωt xk xl)

+(ks A44e
iωt ym yn)(Wkle

iωtwkwl,y)

+(ks(A44(Wkle
iωtwkwl,y + 2Ykle

iωt yk yl)

+A45(Wkle
iωtwk,xwl + Xkle

iωt xk xl)))(e
iωt ym yn)]dxdy, (B.5)

∂K

∂Umn
= −ω2

2

∫

�0

[
I1(e

iωt umun Xkle
iωt xk xl) + I0(2e

iωt umunUkle
iωt ukul)

]
dxdy, (B.6)

∂K

∂Vmn
= −ω2

2

∫

�0

[
I1(e

iωtvmvnYkle
iωt yk yl) + I0(2e

iωtvmvn Vkle
iωtvkvl)

]
dxdy, (B.7)

∂K

∂Wmn
= −ω2

2

∫

�0

[
I0(2e

iωtwmwnWkle
iωtwkwl)

]
dxdy, (B.8)

∂K

∂ Xmn
= −ω2

2

∫

�0

[
I2(2e

iωt xm xn Xkle
iωt xk xl) + I1(Ukle

iωt ukule
iωt xm xn)

]
dxdy, (B.9)

∂K

∂Ymn
= −ω2

2

∫

�0

[
I2(2e

iωt ym ynYkle
iωt yk yl) + I1(Vkle

iωtvkvle
iωt ym yn)

]
dxdy, (B.10)

∂V

∂Wmn
= 1

2

∫

�0

[N̂x2e
iωtwm,xwnWkle

iωtwk,xwl + N̂y2e
iωtwmwn,y Wkle

iωtwkwl,y]dxdy. (B.11)
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Using the above equations, the stiffness and mass matrices are computed as follows:

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
∂U

∂Umn

)
Ukl

(
∂U

∂Umn

)
Vkl

(
∂U

∂Umn

)
Wkl

(
∂U

∂Umn

)
Xkl

(
∂U

∂Umn

)
Ykl(

∂U
∂Vmn

)
Ukl

(
∂U

∂Vmn

)
Vkl

(
∂U

∂Vmn

)
Wkl

(
∂U

∂Vmn

)
Xkl

(
∂U

∂Vmn

)
Ykl(

∂V
∂Wmn

)
Ukl

(
∂U

∂Wmn

)
Vkl

(
∂U

∂Wmn

)
Wkl

+
(

∂V
∂Wmn

)
Wkl

(
∂U

∂Wmn

)
Xkl

(
∂U

∂Wmn

)
Ykl(

∂U
∂ Xmn

)
Ukl

(
∂U

∂ Xmn

)
Vkl

(
∂U

∂ Xmn

)
Wkl

(
∂U

∂ Xmn

)
Xkl

(
∂U

∂ Xmn

)
Ykl(

∂U
∂Ymn

)
Ukl

(
∂U

∂Ymn

)
Vkl

(
∂U

∂Ymn

)
Wkl

(
∂U

∂Ymn

)
Xkl

(
∂U

∂Ymn

)
Ykl

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.12)

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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∂K

∂Umn
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Ukl

(
∂K

∂Umn

)
Vkl

(
∂K

∂Umn

)
Wkl

(
∂K

∂Umn

)
Xkl

(
∂K

∂Umn

)
Ykl(

∂K
∂Vmn

)
Ukl

(
∂K

∂Vmn

)
Vkl

(
∂K

∂Vmn

)
Wkl

(
∂K

∂Vmn

)
Xkl

(
∂K

∂Vmn

)
Ykl(

∂K
∂Wmn

)
Ukl

(
∂K

∂Wmn

)
Vkl

(
∂K

∂Wmn

)
Wkl

(
∂K

∂Wmn

)
Xkl

(
∂K

∂Wmn

)
Ykl(

∂K
∂ Xmn

)
Ukl

(
∂K

∂ Xmn

)
Vkl

(
∂K

∂ Xmn

)
Wkl

(
∂K

∂ Xmn

)
Xkl

(
∂K

∂ Xmn

)
Ykl(

∂K
∂Ymn

)
Ukl

(
∂K

∂Ymn

)
Vkl

(
∂K

∂Ymn

)
Wkl

(
∂K

∂Ymn

)
Xkl

(
∂K

∂Ymn

)
Ykl

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B.13)
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