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Abstract The present problem aims to study the scattering behavior of SH-waves by a circular cavity near
two symmetrically permeable interface cracks in the piezoelectric bi-material half-space. The steady-state
response of the problem is obtained, with the aid of the Green’s function method and the complex function
method. Above all, the essential expression of Green’s function is constructed by the mirror method. This
expression satisfies the conditions of being stress-free and electric insulation on the horizontal boundary of
the orthogonal space where the circular cavity is located, and the condition of bearing a harmonic out-plane
line source force on the vertical boundary. Next, on the basis of dividing the bi-material medium into two parts
along the vertical boundary, the first kind of Fredholm integral equation with uncertain anti-plane forces is
established by using the conjunction method and the crack-division technology. Then, the solution is obtained
by solving an algebraic equation with finite terms, which is an effective truncation of the integral equation.
Finally, the dynamic stress concentration factor around the edge of the circular cavity and the dynamic stress
intensity factor at the crack tip are calculated numerically. On this basis, the effects of incident wave frequency,
crack length, crack location and circular cavity position on the dynamic stress concentration factor and dynamic
stress intensity factor are discussed.

1 Introduction

Piezoelectricity, also known as electromechanical coupling, is the property that certain materials acquire
a charge when they are compressed, twisted, or deformed. Due to the electromechanical coupling effect,
piezoelectric materials can not only realize the exchange of the mechanical vibration and alternating current
but also realize self-diagnosis and self-repair of structures. This makes piezoelectric materials widely used
in smart structures and sensor elements, and play a critical role in aviation detection, marine sonar, urban
development, new energy research and development, national defense and the military industry. However,
piezoelectricmaterialsmay cause equipment failure under electrical andmechanical loads due to brittleness and
defects, affecting the normal use and reliability of the equipment. These defects may be caused by processing
technologies, environmental changes and production processes, such as cavities in piezoelectric materials,
interface cracks caused by the fracture of different materials, and so on. Or they are artificially added in order
to improve the performance of the material, such as in porous piezoelectric materials. The dynamic stress
concentration at the crack tip and around the cavity in piezoelectric materials is more complex than in ordinary
materials. So, many studies [1–14] have focused on the scattering behavior of elastic waves by the defects in
piezoelectric materials.

Previously, Shu [10] analyzed the solutions of orthogonally laminated piezoelectric composite plates under
different boundary conditions by the equivalent single layer theory. Wang [12] investigated the anti-plane
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problem of a crack near an elliptical cavity in isotropic piezoelectric bi-materials using Stroh’s theory. Song
and Shindo used the function expansion method to study the dynamic characteristics of the circular rigid
inclusion [4], the circular hole [3], the impermeable crack [7], and the circular piezoelectric inclusion [2]
in infinite piezoelectric materials, respectively. Du [1] applied the permeable crack model to investigate the
scattering problems of an anti-plane shear wave caused by partial debonding around a circular inclusion. Feng
[5] discussed the scattering of an SH-wave on the debonding inclusion in piezoelectric material via the singular
integral equation technique. Yang [8] studied the interaction of N randomly distributed cylindrical inclusions
in the piezoelectric matrix. In terms of piezoelectric bi-materials, Song et al. further studied the dynamic
problems of an impermeable crack [11], a circular cavity near the interface [15], and a circular cavity with
interface crack [9] in piezoelectric bi-materials.

The SH-wave scattering problem, as the simplest elastic wave scattering problem, has a relatively mature
theory, but there are still many boundary value problems that have not been solved. Few papers have studied the
problem of elastic wave scattering in a homogeneous isotropic piezoelectric bi-material half-space. Although
many valuable results have been achieved, they all belong to the global space [9,11,15]. Based on our previous
researches on the problem of SH-wave scattering in elastic bi-materials [16], we further extended this research
to bi-material piezoelectric materials. In a previous article by Qi [13], an exact, analytical solution to the
boundary-value problem of the two-dimensional scattering of anti-plane (SH) waves by a circular inclusion
near the interface cracks in the piezoelectric bi-material half-spacewas presented.However, due to the existence
of standing waves in the inclusion, the dynamic performance of the circular cavity and circular inclusion
subject to the SH-waves is quite different [3,4]. Therefore, in order to enrich the scattering problems in the
piezoelectric bi-material half-space, this paper studies the problem of SH-wave scattering by a circular cavity
near the interface crack in the piezoelectric bi-material half-space. For this issue, the Green’s function method
and the complex function method are used, the boundary conditions of defects are assumed to be stress-free
and electrically permeable, and besides, the analytic expression of the wave function is obtained by the mirror
method. Finally, the dynamic stress concentration factors around the circular cavity and the dynamic stress
intensity factor at the crack tip are given. Those results demonstrate that the influence of interface crack can
not be ignored.

2 Theoretical model

Figure 1 provides a half-space model of the piezoelectric bi-material with a vertical interface crack and a
circular cavity nearby. As the figure shows, the isotropic plane which is subjected to out-of-plane displacement
and in-plane electric field lies in the xy plane, while the polarization direction of the isotropic plane is along
the z-axis. There are two mediums in the figure. Medium I is the right-angle space with a circular cavity
and a permeable crack, while medium II is the right-angle space with a permeable crack. In medium I, �H:
horizontal boundary; �V:vertical boundary; a: radius of cavity; ρ1: mass density; cI44: shearing modulus; eI15:
piezoelectric constant; κ I

11: dielectric constant; e
c
15 and κc

11: piezoelectric constant and dielectric constant of
the cavity, respectively; h and d: the distance from the center of the circular cavity to the horizontal and vertical
boundary, respectively. In medium II, ρ1: mass density; cI44: shearing modulus; eI15: piezoelectric constant;
κ I
11: dielectric constant; A: half-length of the vertical interface crack; h1: distance from the crack tip to the
horizontal boundary.

The local coordinate system x ′o′y′ is established at the center of the crack. The complex coordinate systems
corresponding to the global coordinate system xoy and the local coordinate system x ′o′y′ are η = x+yi = reiθ

and η′ = x ′ + y′i = r ′eiθ ′
, respectively. The relationships between the local and the global are:

{
x ′ = x − d,
y′ = y + h1 + A − h.

(1)

Let an SH-wave propagate frommedium I tomedium II at an incident angleα0 relative to the positive x-axis.
When the SH-wave is applied on the medium I, the scattering wave can be produced and propagate away from
the center of the circular cavity. Then, the scattering wave is reflected and refracted at the vertical interface,
but the expressions of the reflected wave and refracted wave are complicated. In order to overcome this barrier,
the bi-material half-space is divided into two right-angle spaces in Sect. 4. First, the left right-angle space
with the circular cavity is investigated. By means of the mirror method, the expression of the scattering wave
is obtained, which satisfies the stress-free and electric insulation conditions on the line boundaries. Second,
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Fig. 1 The model of a piezoelectric bi-material half -space with a circular cavity and interface cracks

with the aid of the conjunction method, unknown anti-plane forces are applied on the vertical boundaries to
satisfy the continuity condition on the vertical boundary of the two right-angle spaces. So, the two right-angle
spaces could be thought of as a whole half-space. However, it is difficult to solve for the unknown anti-plane
forces in Sect. 4. The Green’s function method is applied, because anti-plane forces consist of a large number
of line source forces. Thus, the expression of the Green’s function related to the right-angle space containing
the circular cavity and bearing the line source force is obtained in Sect. 3, which is the foundation to solve for
the unknown anti-plane forces in Sect. 4.

The engineering background of the model in this paper is common in practical projects. For example, cavi-
ties and fractures in piezoelectric elements or piezoelectric plates could be caused by processing technologies,
environmental changes, and production processes. These examples could be simplified as the model in this
study when they are subjected to plane waves.

3 Green’s function

The polarization direction is along the z-axis, and the time harmonic factor e−iωt is omitted. Taking the absence
of body forces and free charges into account, the steady-state equilibrium equations are expressed as follows:

c44∇2w + e15∇2φ + ρω2w = 0,

e15∇2w − κ11∇2φ = 0, (2)

where w, φ and ω stand for anti-plane displacement, electric potential and circular frequency, respectively.
Equation (2) can be simplified as follows:

∇2w + k2w = 0, φ = e15
κ11

(w + f ), ∇2 f = 0 (3)

where the wavenumber k = ρω2/c∗, and the effective piezoelectric stiffness c∗ = c44 + e215/κ11. These
equations describe the electro-mechanical behavior of a homogeneous and isotropic piezoelectric material
under anti-plane mechanical and in-plane electrical loading.

By means of the complex function method, complex variables η = x + yi , η̄ = x − yi are introduced. In
complex coordinates, Eq. (3) can be expressed as follows:

∂2w

∂η∂η̄
+ 1

4
k2w = 0, φ = e15

κ11
(w + f ),

∂2 f

∂η∂η̄
= 0. (4)
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Fig. 2 The right-angle plane model impacted by a line source force

Introducing complex variables η = reiθ , η̄ = re−iθ , the anti-plane shear stress components (τr z and τθ z )
and the in-plane electric displacement components (Dr and Dθ ) can be expressed as:

τr z =
(
c44 + e215

κ11

)(
∂w

∂η
eiθ + ∂w

∂η̄
e−iθ

)
+ e215

κ11

(
∂ f

∂η
eiθ + ∂ f

∂η̄
e−iθ

)
,

τθ z =
(
c44 + e215

κ11

)
i

(
∂w

∂η
eiθ − ∂w

∂η̄
e−iθ

)
+ e215

κ11
i

(
∂ f

∂η
eiθ − ∂ f

∂η̄
e−iθ

)
,

Dr = −e15

(
∂ f

∂η
eiθ + ∂ f

∂η̄
e−iθ

)
,

Dθ = −e15i

(
∂ f

∂η
eiθ − ∂ f

∂η̄
e−iθ

)
. (5)

Figure 2 shows the model of medium I bearing a line source force δ(η − η0) , with η0 = d + yi(y ≤ h)
presenting the point on the vertical boundary.

The boundary condition of medium I can be expressed as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�H : τ Iyz

∣∣∣
y=h

= 0, DI
y

∣∣∣
y=h

= 0

�V : τ Ixz

∣∣
x=d = δ(η − η0)

�C : τ Ir z

∣∣
r=a,−π≤θ≤π

= 0

�C : GI
φ

∣∣∣
r=a,−π≤θ≤π

= Gc
φ

∣∣∣
r=a,−π≤θ≤π

�C : DI
r

∣∣
r=a,−π≤θ≤π

= Dc
r

∣∣
r=a,−π≤θ≤π

(6)

where GI
w, τ

I
r z , G

I
φ and DI

r are anti-plane displacement, radial shear stress, electrical potential and electrical
displacement, respectively; Gc

φ and Dc
r are the electrical potential and electrical displacement of the electrical

field impacted by air in the circular cavity. δ(�) is the Dirac-Delta function and G is the Green’s function.
The essential solution has satisfied three conditions, including Eq. (6), the disturbance of the line source

load δ(z− z0), and the scattering displacement field due to the circular cavity. All of them could be regarded as
the incident wave and the scattering wave, respectively. They also have satisfied both stress-free and electrical
insulation conditions on the horizontal boundary. The incident wave can be expressed as follows by the mirror
method and the multi-polar coordinate method:

Gi
w = i

2cI44(1 + λI)

[
H (1)
0 (k1 |η − η0|)+ H (1)

0 (k1 |η − η̄0 − 2hi |)
]
, Gi

φ = eI15
κ I
11

Gi
w, (7)

where λI = (eI15)
2/(cI44κ

I
11) is the non-dimensional piezoelectric parameter.
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The wave scattered by the circular cavity is reflected many times due to the boundary effect, with stress-
free and electrical insulation conditions on the linear boundary of the right-angle space in medium I. It can be
expressed as follows by the mirror method and the multi-polar coordinate method:

Gs
w = i

2cI44(1+λI)

+∞∑
n=−∞

An

4∑
j=1

S( j)
n ,Gs

φ = eI15
κ I11

(
Gs

w + f s
)
,

f s =
∞∑
n=1

[
Bn

4∑
j=1

ϕ
( j)
1n + Cn

4∑
j=1

ϕ
( j)
2n

]
,

(8)

where

S(1)
n = H (1)

n (k1 |η|) [η/|η|]n ,

S(2)
n = H (1)

n (k1 |η1|) [η1/|η1|]−n ,

S(3)
n = (−1)nH (1)

n (k1 |η2|) [η2/|η2|]n ,

S(4)
n = (−1)nH (1)

n (k1 |η3|) [η3/|η3|]−n ,

ϕ
(1)
1n = η−n, ϕ

(2)
1n = (η̄ + 2hi)−n,

ϕ
(3)
1n = (−1)n(η̄ − 2d)−n, ϕ

(4)
1n = (−1)n(η − 2d − 2hi)−n,

ϕ
(1)
2n = η̄−n, ϕ

(2)
2n = (η − 2hi)−n,

ϕ
(3)
2n = (−1)n(η − 2d)−n , ϕ

(4)
2n = (−1)n(η̄ − 2d + 2hi)−n,

η1 = η − 2hi, η2 = η1 − 2d, η3 = η − 2d.

The total Green’s function of displacement and the total Green’s function of the electrical potential for medium
I can be expressed as follows:

GI
w = Gi

w + Gs
w, GI

φ = Gi
φ + Gs

φ (9)

The expression of the electrical field in the cavity is:

Gc
φ = ec15

κc
11

f c, f c = D0 +
+∞∑
n=1

(Dnη
n + En η̄

n), (10)

where An , Bn , Cn , Dn and En are unknown coefficients to be determined by the boundary conditions.
According to Eq. (6), the equations to determine the unknown quantities An , Bn , Cn , Dn and En are

established as follows:

+∞∑
n=−∞

Anξ
(11)
n +

+∞∑
n=1

Bnξ
(12)
n +

+∞∑
n=1

Cnξ
(13)
n +

+∞∑
n=0

Dnξ
(14)
n +

+∞∑
n=1

Enξ
(15)
n = ξ (1),

+∞∑
n=−∞

Anξ
(21)
n +

+∞∑
n=1

Bnξ
(22)
n +

+∞∑
n=1

Cnξ
(23)
n +

+∞∑
n=0

Dnξ
(24)
n +

+∞∑
n=1

Enξ
(25)
n = ξ (2),

+∞∑
n=1

Bnξ
(32)
n +

+∞∑
n=1

Cnξ
(33)
n +

+∞∑
n=0

Dnξ
(35)
n +

+∞∑
n=1

Enξ
(36)
n = ξ (3), (11)

where

ξ (11)
n = ik1

4

⎡
⎣ 4∑

j=1

χ
( j)
n exp(iθ) +

4∑
j=1

γ
( j)
n exp(−iθ)

⎤
⎦ ,

ξ (12)
n = (eI15)

2

κ I
11

⎡
⎣ 2∑

j=1

ς
( j)
n exp(iθ) +

2∑
j=1

ϑ
( j)
n exp(−iθ)

⎤
⎦ ,
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ξ (13)
n = (eI15)

2

κ I
11

⎡
⎣ 2∑

j=1

υ
( j)
n exp(iθ) +

2∑
j=1

ψ
( j)
n exp(−iθ)

⎤
⎦ ,

ξ (14)
n = − (ec15)

2

κc
11

nηn exp(iθ), ξ (15)
n = − (ec15)

2

κc
11

nη̄n exp(−iθ), ξ (21)
n = eI15i

2cI44(1 + λI)κ I
11

4∑
j=1

S( j)
n ,

ξ (22)
n = eI15

κ I
11

4∑
j=1

ϕ
( j)
1n , ξ (23)

n = eI15
κ I
11

4∑
j=1

ϕ
( j)
2n , ξ (24)

n = − ec15
κc
11

ηn, ξ (25)
n = − ec15

κc
11

η̄n,

ξ (32)
n = −eI15

⎡
⎣ 2∑

j=1

ς
( j)
n exp(iθ) +

2∑
j=1

ϑ
( j)
n exp(−iθ)

⎤
⎦ ,

ξ (33)
n = −eI15

⎡
⎣ 2∑

j=1

υ
( j)
n exp(iθ) +

2∑
j=1

ψ
( j)
n exp(−iθ)

⎤
⎦ ,

ξ (34)
n = ec15nηn−1 exp(iθ), ξ (35)

n = ec15nη̄n−1 exp(−iθ),

ξ (1) = − ik1
4

{[
H (1)

−1 (k1 |η − η0|) η̄−η̄0|η−η0|+ H (1)
−1 (k1 |η − η̄0 − 2hi |) η̄−η0+2hi

|η−η̄0−2hi |
]
eiθ

+
[
H (1)

−1 (k1 |η − η0|) η−η0|η−η0|+ H (1)
−1 (k1 |η − η̄0 − 2hi |) η−η̄0−2hi

|η−η̄0−2hi |
]
e−iθ

}
,

ξ (2) = − ieI15
2cI44(1 + λI)κ I

11

[
H (1)
0 (k1 |η − η0|)+ H (1)

0 (k1 |η − η̄0 − 2hi |)
]
,

ξ (3) = 0

χ(1)
n = H (1)

n−1(k1 |η|) [η/|η|]n−1 , χ(2)
n = −H (1)

n+1(k1 |η1|) [η1/|η1|]−n−1 ,

χ(3)
n = (−1)nH (1)

n−1(k1 |η2|) [η2/|η2|]n−1 ,

χ(4)
n = −(−1)nH (1)

n+1(k1 |η3|) [η3/|η3|]−n−1 ,

γ (1)
n = −H (1)

n+1(k1 |η|) [η/|η|]n+1 , γ (2)
n = H (1)

n−1(k1 |η1|) [η1/|η1|]−n+1 ,

γ (3)
n = −(−1)nH (1)

n+1(k1 |η2|) [η2/|η2|]n+1 ,

γ (4)
n = (−1)nH (1)

n−1(k1 |η3|) [η3/|η3|]−n+1 ,

ς(1)
n = −nη−n−1, ς(2)

n = −(−1)nn(η − 2d − 2hi)−n−1,

ϑ(1)
n = −n(η̄ + 2hi)−n−1, ϑ(2)

n = −(−1)nn(η̄ − 2d)−n−1,

υ(1)
n = −n(η − 2hi)−n−1, υ(2)

n = −n(−1)n(η − 2d)−n−1,

ψ(1)
n = −nη̄−n−1, ψ(2)

n = −(−1)nn(η̄ − 2d + 2hi)−n−1.

In order to solve Eq. (11), both sides are multiplied by exp(−imθ), (m = 0,±1, ±2 · · · ). Corresponding to
the interval (−π, π), the equation is determined and integrated as well. Next, a series of algebraic equations
is obtained:

+∞∑
n=−∞

Anξ
(11)
mn +

+∞∑
n=1

Bnξ
(12)
mn +

+∞∑
n=1

Cnξ
(13)
mn +

+∞∑
n=0

Dnξ
(14)
mn +

+∞∑
n=1

Enξ
(15)
mn = ξ (1)

m ,

+∞∑
n=−∞

Anξ
(21)
mn +

+∞∑
n=1

Bnξ
(22)
mn +

+∞∑
n=1

Cnξ
(23)
mn +

+∞∑
n=0

Dnξ
(24)
mn +

+∞∑
n=1

Enξ
(25)
mn = ξ (2)

m ,
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Fig. 3 Reflected and refracted waves caused by interface

+∞∑
n=1

Bnξ
(32)
mn +

+∞∑
n=1

Cnξ
(33)
mn +

+∞∑
n=0

Dnξ
(35)
mn +

+∞∑
n=1

Enξ
(36)
mn = ξ (3)

m , (12)

where

ξ
(11)
mn =

∫ π

−π
ξ
(11)
n e−imθdθ, ξ

(12)
mn =

∫ π

−π
ξ
(12)
n e−imθdθ, ξ

(13)
mn =

∫ π

−π
ξ
(13)
n e−imθdθ, ξ

(14)
mn =

∫ π

−π
ξ
(14)
n e−imθdθ,

ξ
(15)
mn =

∫ π

−π
ξ
(15)
n e−imθdθ, ξ

(21)
mn =

∫ π

−π
ξ
(21)
n e−imθdθ, ξ

(22)
mn =

∫ π

−π
ξ
(22)
n e−imθdθ, ξ

(23)
mn =

∫ π

−π
ξ
(23)
n e−imθdθ,

ξ
(24)
mn =

∫ π

−π
ξ
(24)
n e−imθdθ, ξ

(25)
mn =

∫ π

−π
ξ
(25)
n e−imθdθ, ξ

(32)
mn =

∫ π

−π
ξ
(32)
n e−imθdθ, ξ

(33)
mn =

∫ π

−π
ξ
(33)
n e−imθdθ,

ξ
(35)
mn =

∫ π

−π
ξ
(35)
n e−imθdθ, ξ

(36)
mn =

∫ π

−π
ξ
(36)
n e−imθdθ, ξ

(1)
m =

∫ π

−π
ξ(1)e−imθdθ, ξ

(2)
m =

∫ π

−π
ξ(2)e−imθdθ,

ξ
(3)
m = 0.

The Green’s function for medium II can be expressed as follows:

GI
w = i

2cI44(1 + λI)

[
H (1)
0 (k2 |η − η0|)+ H (1)

0 (k2 |η − η̄0 − 2hi |)
]
, GI

φ = eI15
κ I
11

GI
w. (13)

4 Scattering of SH-wave

A well-bonded piezoelectric bi-material with a cavity and cracks is subjected to an incident SH-wave in this
section. Figure 3 shows the reflected and refracted waves caused by the interface.

The boundary conditions of the well-bonded piezoelectric bi-material are:

(1) The two cracks are assumed to be stress-free and electrically permeable.
(2) The electro-elastic fields are continuous at the well-bonded linking section outside the crack of the bi-

material media.

It is difficult to obtain the expression of the incident elastic displacementwi and incident electrical potential
φi , which satisfies stress-free and electrical insulation conditions on the horizontal boundary and the continuity
condition for the SH-wave on the vertical boundary. In order to overcome these difficulties, the mirror method
which can transform the right-angle space to the global space, and the multi-polar coordinate method are used.



1120 H. Qi et al.

According to references [3,4,11,15], the equivalent incident wavewi and the corresponding electrical potential
φi can be expressed as follows, respectively:

wi = w0

{
exp

{
ik1
2

[
(η − d − hi)e−iα0 + (η̄ − d + hi)eiα0

]}
+ exp

{
ik1
2

[
(η − d − hi)eiα0 + (η̄ − d + hi)e−iα0

]}}
,

φi = φ0

{
exp

{
ik1
2

[
(η − d − hi)e−iα0 + (η̄ − d + hi)eiα0

]}
+ exp

{
ik1
2

[
(η − d − hi)eiα0 + (η̄ − d + hi)e−iα0

]}}
.

(14)

Similarly, the equivalent reflected wave wr and the corresponding electrical potential φr are:

wr = w1

{
exp

{
ik1
2

[
(η − d − hi)e−iβ + (η̄ − d + hi)eiβ

]}
+ exp

{
ik1
2

[
(η − d − hi)eiβ + (η̄ − d + hi)e−iβ

]}}
,

φr = φ1

{
exp

{
ik1
2

[
(η − d − hi)e−iβ + (η̄ − d + hi)eiβ

]}
+ exp

{
ik1
2

[
(η − d − hi)eiβ + (η̄ − d + hi)e−iβ

]}}
.

(15)

The equivalent refracting wavew f and the corresponding electrical potentialφ f are:

w f = w2

{
exp

{
ik2
2

[
(η − d − hi)e−iα2 + (η̄ − d + hi)eiα2

]}
+ exp

{
ik2
2

[
(η − d − hi)eiα2 + (η̄ − d + hi)e−iα2

]}}
,

φ f = φ2

{
exp

{
ik2
2

[
(η − d − hi)e−iα2 + (η̄ − d + hi)eiα2

]}
+ exp

{
ik2
2

[
(η − d − hi)eiα2 + (η̄ − d + hi)e−iα2

]}}
,

(16)

where β0 = π − α0, α0is the incident angle, α2 is the refracted angle, and the relationship of the parameters
above can be expressed as follows: ⎧⎨

⎩
w0 + w1 = w2,
φ0 + φ1 = φ2,
k1 sin α0 = k2 sin α2.

(17)

Thus, Eqs. (15)–(17) satisfy the continuity condition on the vertical boundary �V:
{

wi + wr = w f ,

φi + φr = φ f ,
(18)

ws = i
2cI44(1+λI)

+∞∑
n=−∞

Kn

4∑
j=1

S( j)
n , φs = eI15

κ I11

(
ws + f sw

)
,

f sw =
∞∑
n=1

[
Ln

4∑
j=1

ϕ
( j)
1n + Pn

4∑
j=1

ϕ
( j)
2n

]
,

φc = ec15
κc
11

f cw, f cw = R0 +
+∞∑
n=1

(Rnη
n + Tn η̄

n). (19)

The expression of the scattering wave and the standing wave by SH-wave are the same as those produced by
the Green’s function. The integral equations are constructed to determine the unknown quantities such as Kn ,
Ln , Pn , Rn and Tn from the boundary condition, just like Eq. (6). In which, determined coefficients are the
same as those in Eq. (12). The solution process is similar to the method to solve Green’s function.

As Fig. 4 shows, the conjunction method and the crack-division technique are used in order to obtain the
expression of the displacement field and electric field from the SH-wave. According to references [15–17],
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Fig. 4 Conjunction of piezoelectric bi-material half-space with a circular cavity and an interface crack

the bi-material half-space is divided into two parts along the vertical boundary based on the assumption of
stress-free and electrical permeable cracks. Then, a pair of unknown anti-plane forces f1(r ′

0, θ
′
0) and f2(r ′

0, θ
′
0)

is applied on the left (or right) section of the vertical boundary outside the crack, respectively, to satisfy the
continuity condition of stress and displacement on the vertical boundary outside the crack. Meanwhile, a pair
of anti-plane forces is defined as τ Izθ and τ IIzθ , respectively, and in opposite direction to each other. So, the
residual force is zero and the electrical field is continuous on the left (or right) section of the region which can
be thought of as the permeable crack. According to the continuity conditions, the first kind of Fredholm integral
equations containing undetermined anti-plane forces is established, where r ′

0 and θ ′
0 are the polar coordinates

at the linking sections in the local coordinate system x ′o′y′, when θ ′
0 = β1 = π/2, A ≤ r ′

0 ≤ A + h1, when
θ ′
0 = β2 = −π/2, A ≤ r ′

0 ≤ ∞.
The total displacements W I, W II and the total stresses τ Iθ z , τ

II
θ z at the linking sections are:

W I = wi + wr + ws, τ Iθ z = τ iθ z + τ rθ z + τ sθ z,

W II =w f , τ IIθ z = τ
f

θ z . (20)

The displacement continuity conditions at the interface can be expressed as:

W I + w f 1 + wc1 = W II + w f 2 + wc2. (21)

According to wi+wr = w f we can obtain

ws + w f 1 + wc1 = w f 2 + wc2, (22)

where w f 1 is the displacement field on the vertical boundary and produced by the anti-plane external force
system f1(r ′

0, θ
′
0) acting on the vertical boundary of medium I. w f 2 is the displacement field on the vertical

boundary and produced by the anti-plane external force system f2(r ′
0, θ

′
0) acting on the vertical boundary of

medium I. wc1 is the displacement field on the vertical boundary and produced by the anti-plane external force
system −τ Izθ acting on the region where crack appear in medium I. wc2is the displacement field on the vertical
boundary and produced by the anti-plane external force system −τ IIzθ acting on the region where the crack
appears in medium II. The expression of w f 1, w f 2, wc1 and wc2 can be written as follows:

w f 1 =
∫ A+h1

A
f1(r

′
0, β1)G

I
w(r ′

0, β1; r ′, θ ′)dr ′
0 +

∫ ∞

A
f1(r

′
0, β2)G

I
w(r ′

0, β2; r ′, θ ′)dr ′
0,

w f 2 = −
∫ A+h1

A
f2(r

′
0, β1)G

II
w(r ′

0, β1; r ′, θ ′)dr ′
0 −

∫ ∞

A
f2(r

′
0, β2)G

II
w(r ′

0, β2; r ′, θ ′)dr ′
0,

wc1 = −
∫ A

0
τ Iθ z(r

′
0, β1)G

I
w(r ′

0, β1; r ′, θ ′)dr ′
0 +

∫ A

0
τ Iθ z(r

′
0, β2)G

I
w(r ′

0, β2; r ′, θ ′)dr ′
0,

wc2 =
∫ A

0
τ IIθ z(r

′
0, β1)G

II
w(r ′

0, β1; r ′, θ ′)dr ′
0 −

∫ A

0
τ IIθ z(r

′
0, β2)G

II
w(r ′

0, β2; r ′, θ ′)dr ′
0.

(23)
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The stress continuity conditions at the linking section can be expressed as:

τ Iθ z sin θ ′
0 + f1(r

′
0, θ

′
0) = τ IIθ z sin θ ′

0 + f2(r
′
0, θ

′
0). (24)

According to τ ixz + τ rxz = τ
f
xz , we get

f1(r
′
0, θ ′

0) = f2(r
′
0, θ

′
0), θ ′

0 = β1, β2. (25)

The integral equations containing the unknown anti-plane forces are established as:

f1(r ′
0, θ

′
0) = f2(r ′

0, θ
′
0), θ ′

0 = β1, β2;∫ A+h1
A f1(r ′

0, β1)
[
GI

w(r ′
0, β1; r ′, θ ′)+ GI

w(r ′
0, β1; r ′, θ ′)

]
dr ′

0+ ∫∞
A f1(r ′

0, β2)
[
GII

w(r ′
0, β2; r ′, θ ′)+ GI

w(r ′
0, β2; r ′, θ ′)

]
dr ′

0
= −ws + ∫ A

0 τ IIθ z(r
′
0, β1)GI

w(r ′
0, β1; r ′, θ ′)dr ′

0

− ∫ A
0 τ Iθ z(r

′
0, β2)GI

w(r ′
0, β2; r ′, θ ′)dr ′

0

+ ∫ A
0 τ IIθ z(r

′
0, β1)GII

w(r ′
0, β1; r ′, θ ′)dr ′

0

− ∫ A
0 τ IIθ z(r

′
0, β2)GII

w(r ′
0, β2; r ′, θ ′)dr ′

0.

(26)

The integral equations above are Fredholm equations of the first kind. When the mirror point and source point
of theGreen’s function coincide, there is a singularity from the logarithm in the Fredholm equations. According
to the attenuation characteristic of Green’s function and the scattering wave, Eq. (26) could be converted to
algebraic equations by a direct discrete method, and the unknown forces f1(r ′

0, θ
′
0) and f2(r ′

0, θ
′
0) could be

determined at a series of discrete points.

5 Dynamic stress concentration factor (DSCF)

The circumferential shear stresses around the cylindrical cavity can be expressed as follows:

τθ z = τ Iθ z +
∫ A+h1

A
f1(r

′
0, β1)

μ1

r ′
0

∂GI
w(r ′

0, β1; r ′, θ ′)
∂θ ′ dr ′

0 +
∫ ∞

A
f1(r

′
0, β2)

μ1

r ′
0

∂GI
w(r ′

0, β2; r ′, θ ′)
∂θ ′ dr ′

0. (27)

The dynamic stress concentration factor (DSCF) can be expressed as

τ ∗
θ z = |τθ z/τ0| , (28)

where τ0 = ik1μ1w0 is amplitude of the shear stress induced by the incident wave.

6 Dynamic stress intensity factor (DSIF)

The external force system f1(r ′
0, θ

′
0) has a singularity of the square root at the crack tip, so the dynamic stress

intensity factor is introduced as:

kI I I = lim
r ′
0→A

f1(r
′
0, θ

′
0) ·

√
2(r ′

0 − A). (29)

In order to make Eq. (26) include the dynamic stress intensity factor kI I I directly, the integrand function can
be transformed as follows:

f1
(
GI

w + GII
w

) =
[
lim
r ′
0→A

f1 ·
√
2(r ′

0 − A)

]
·
[(
GI

w + GII
w

)
/

√
2(r ′

0 − A)

]
. (30)

The value at the crack tip is the dynamic stress intensity factor kI from solving the transformed equation (26).
The non-dimensional dynamic stress intensity factor is defined as:

k3 =
∣∣∣∣ kI I I
(τ0Q)

∣∣∣∣ , (31)
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Fig. 5 The verification of the method presented in this paper
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Fig. 6 Distribution of DSCF around circular cavity edge vs. ka by horizontal SH-wave

where Q is a characteristic parameter with dimension of square of length.
As illustrated above, the dynamic stress concentration factor (DSCF) around the cylindrical inclusion and

the dynamic stress intensity factor (DSIF) at the crack tip are given. The effects of free boundary, vertical inter-
face, length of crack and different combinations of material parameters are discussed. Here, the dimensionless
parameters are k1 = k, k∗ = k2/k1, h∗ = h/a, h∗

1 = h1/a, d∗ = d/a and A∗ = A/a.
Figure 5a gives the distribution of the dynamic stress concentration factor (DSCF) around the cylindrical

cavity disturbed by the SH-wave under the extreme condition of λI = λII = 0, cI44 = cII44, ρ1 = ρ2, k1 = k2
and A = 0. The effect of the crack is ignored, and the numerical examples in this paper could degenerate
to the case of a cylindrical hole in an elastic half space, which is the case of reference [18]. Figure 5b gives
the variation of the dynamic stress concentration factor (DSCF) around the cylindrical cavity disturbed by the
SH-wave under the extreme condition of λI = λII = 0, cII44 = 0, k2 = 0, ρ2 = 0 and A = 0. In this situation,
the crack is ignored, and the numerical examples in this paper can degenerate to the case of a cylindrical hole
in an elastic quarter space, which is reported in reference [6]. When the combined parameters of references
[6,18] are applied in this study, those newly obtained results are in good agreement with the previous report.
So, the methods used in this investigation are fully verified.

Figure 6 gives the distribution of the dynamic stress concentration factor (DSCF) around the circular
cavity disturbed by the horizontal SH-wave when the incident wave frequency ka has different values. When
ka = 0.1, that is the “quasi-static” case, the graphic is almost symmetric, the maximum of DSCF is 2.8, at the
point θ = 93◦. However, the change of the DSCF is obvious in the middle and high frequency range. When
ka = 2, the value of the DSCF reaches the maximum of 5.7 (θ = −118◦), and this value is about twice the one
in the “quasi-static” case. So, the incident wave frequency ka should not be ignored. The larger the frequency
is, the more obvious the effect of the interface would be.

Figure 7 gives the variation of the dynamic stress concentration factor (DSCF) around the circular cavity
disturbed by the SH-wave with various incidence angles. When the incident wave is horizontal or vertical, the
value of the DSCF is much larger than at oblique angle. The maximum is in the upper and lower region of
the circular cavity when the incident wave is vertical, while the maximum is in the left and right region of
the circular cavity when the incident wave is horizontal. When the incident wave in the “quasi-static” case is
vertical, the value of the DSCF reaches the maximum of 2 (θ = 0◦). Compared with the case of horizontal
incident wave, this value is increased by more than 1.6 times.

Figures 8 and 9 give the distribution of the dynamic stress concentration factor (DSCF) around the circular
cavity varying with the non-dimensional piezoelectric parameters λI and λII, respectively, under the incidence
of horizontal SH-wave. We find that the larger λI is, the higher the DSCF and the larger λII is, the lower
the DSCF. When λII = 0.3, the value of the DSCF reaches the maximum of 6.91 (θ = −119◦). Compared
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Fig. 7 Variation of DSCF around circular cavity edge by SH-wave with different incident angles

Fig. 8 Distribution of DSCF around circular cavity edge vs λI under horizontal incidence of SH-wave

with the maximum in the case of λI = 1, this value is increased by more than 24.8%. So, the effect of the
non-dimensional piezoelectric parameter is essential and the influence of λII is more obvious than that of λI.

Figure 10 gives the variation of the dynamic stress concentration factor (DSCF) around the circular cavity
disturbed by the horizontal SH-wave, when k∗ has different values. So, the larger k∗ is, the smaller the value of
the DSCF would be. That is because the soft medium can absorb part of the energy. When k∗ = 0.5, the value
of the DSCF reaches the maximum of 5.3 (θ = −119◦). Compared with the case of incident wavenumber
ratio k∗ = 2, this value is increased by more than 1.8 times.

Figure 11 gives the distribution of the dynamic stress concentration factor (DSCF) around the circular
cavity varying with A∗ under horizontal incidence of the SH-wave. The larger A∗ is, the larger the value of
the DSCF is. When A∗ = 2, the value of the DSCF reaches the maximum of 3.1 (θ = 143◦). Compared with
the case of A∗ = 1, this value is increased by more than 1.7 times.
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Fig. 9 Distribution of DSCF around circular cavity edge vs. λII under horizontal incidence of SH-wave

Fig. 10 Variation of DSCF around circular cavity edge vs. k∗ by horizontal SH-wave

Figure 12 gives the variation of the dynamic stress intensity factor (DSIF) at the crack tip disturbed by the
horizontal SH-wave when the non-dimensional piezoelectric parameter λI has different values. We can find
that the larger value of λI, the smaller the value of the DSIF is. The graphic is pulsating and first increases, then
decreases and finally increases. When λI = 0.3 and ka = 1.7, the value of the DSIF reaches the maximum of
2.2.

Figure 13 gives the distribution of the dynamic stress intensity factor (DSIF) at the crack tip varying with
A∗ under horizontal incidence of the SH-wave. We could find that the larger A∗ is, the higher the DSIF. The
graphic is pulsating and first increases, then reduces and finally increases. When the crack length A∗ = 2 and
ka = 1.6, the value of the DSIF reaches the maximum of 1.3.

The physical meaning of the results is significant. The dynamic stress concentration factor indicates the
possibility of damage in the region around the circular cavity. The larger the dynamic stress concentration
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Fig. 11 Distribution of DSCF around circular cavity edge vs. A∗ under horizontal incidence SH-wave

Fig. 12 Variation of DSIF at crack tip vs. λI by horizontal SH-wave

factor is, the higher the probability of damage is, and cracks will appear around the cavity if the dynamic stress
concentration factor is large enough. The dynamic stress intensity factor indicates the possibility of crack
propagation along the linking section of the piezoelectric bi-material. The larger dynamic stress intensity
factor is, the larger the probability of crack propagation. If the dynamic stress intensity factor is large enough,
those cracks would expand along the vertical boundary to cause facture. So, the dynamic stress concentration
factor and dynamic stress intensity factor reflect the reliability of the piezoelectric bi-material and the possibility
of fracture of structure.

As Table 1 shows, several specific combinations of physical parameters of the piezoelectric bi-material are
obtained by numerical examples in which the constant parameters are h∗

1 = 8, h∗ = 12 and d∗ = 12. If the
ratio of the parameters is the same as the ratio in Table 1, the maximum of the dynamic stress concentration
factor and the dynamic stress intensity factor can be locked up, so Table 1 provides a reference for practical
engineering.
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Fig. 13 Distribution of DSIF at crack tip vs. A∗ under horizontal incidence of SH-wave

Table 1 Specific combination of physical parameters

Examples Variables Maximum of DSCF DSIF
ka α0 λI λII k∗ A∗

A circular cavity in piezoelectric bi-material for case 6 0.1 0◦ 1 0.5 0.5 1.5 1.78 1.16
1 5.24 0.20
2 5.38 0.06

A circular cavity in piezoelectric bi-material for case 7 0.1 0◦ 1 0.5 0.5 1.5 1.78 1.16
45◦ 1.24 –
90◦ 2 –

A circular cavity in piezoelectric bi-material for case 8 2 0◦ 0.3 0.5 0.5 1.5 3.59 0.08
0.5 3.91 0.08
1 5.38 0.06

A circular cavity in piezoelectric bi-material for case 9 2 0◦ 1 0.3 0.5 1.5 6.91 –
0.5 5.38 0.06
1 4.36 –

A circular cavity in piezoelectric bi-material for case 10 2 0◦ 1 0.5 0.5 1.5 5.38 0.06
1 4.85 –
2 2.93 –

A circular cavity in piezoelectric bi-material for case 11 0.1 0◦ 1 0.5 0.5 1 1.78 0.16
1.5 2.51 0.16
2 3.13 0.15

7 Conclusion

In this paper, the Green’s function method, mirror method, and crack-division method are applied to inves-
tigating the SH-wave scattering problem by a vertical interface crack and the nearby circular cavity in the
piezoelectric bi-material half-space. Valuable numerical results under various combinations of parameters are
obtained, which could provide references for practical engineering. The numerical analysis showed that the
dynamic stress concentration factor (DSCF) around the circular cavity and dynamic stress intensity factor
(DSIF) at the crack tip are affected by the incident wave, incident angle, the combination of medium param-
eters, and crack length to some extent. When the incident wave is at high frequency and vertical angle, the
damage is serious. When medium II is softer than medium I, the damage is more serious. The longer the crack
is, the more serious the damage would be. The influence of high frequency on the DSIF is obvious. A specific
combination of physical parameters of the piezoelectric bi-material could decrease the DSCF, so a suitable
combination of parameters can reduce the probability of structural fracture.
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