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Abstract In the context of Bak’s model, guided waves in a 1-D hexagonal piezoelectric quasi-crystal plate
are investigated by applying the Legendre polynomial method. Three cases of quasi-periodic directions are
discussed. The dispersion curves, phonon, and phason displacement distributions are illustrated. Some new
wave phenomena are revealed: The phase velocity of Lamb wave phason modes decreases as the phonon–
phason coupling parameters, Ri , increase. Phason displacements and the electric potential have consistent
distributions with those of phonon displacement components in the quasi-periodic direction. These obtained
results lay the theoretical basis for the design and optimization of piezoelectric devices.

1 Introduction

There existed an accepted fact that solid matters were either crystals or amorphous materials until 1980s.
However, it was broken down by the discovery of a novel kind of material, i.e., quasi-crystals (QCs) with
long-range orientational and quasi-periodic translational orders [1]. Due to their unique arrangement of atoms,
quasi-crystals are of some desirable material properties. For example, their frictional and adhesion coefficients
are quite low, but their electric resistivity, abrasion and thermal resistances are very high [2–4]. Accordingly,
they have promising applications in the coating surface of engines, thin films, thermoelectric converters,
electronics, communication, and so on [5,6].

As one of the important properties, the piezoelectricity of QCs has been paid increasing attention. The
governing equations of piezoelectric quasi-crystal media were described by Altay et al. [7]. The piezoelasticity
theory of 1-D QCs was investigated by using the operator and complex variable function methods [8]. The
axial shear fracture of a transversely isotropic piezoelectric quasi-crystal cylinder was studied by Li et al. [9].
A generally loaded strip crack in a half-space of a 1-D hexagonal piezoelectric quasi-crystal was investigated
by Tupholme [10]. The closed-form solutions were obtained for wedges in 1-D piezoelectric QCs by Zhang
et al. [11]. Two collinear permeable anti-plane shear or mode-III cracks in a 1-D piezoelectric quasi-crystal
structure were studied by Zhou and Li [12]. The mechanical and electric behaviors of 1-D piezoelectric QCs
subjected to different loads were studied by Wu et al. [13].

The above references were mainly focused on static investigations. To our best knowledge, kinetic inves-
tigations are relatively rare owing to the complexity of the dynamic deformation in QCs. However, they have
drawn increasing attentionwith increasing actual application needs. Actually, there are different opinions about
the role of the phason field played in the dynamic deformation. And there exist two commonly used kinetic
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Fig. 1 Schematic diagram of an infinite 1-D hexagonal piezoelectric quasi-crystal plate

models: the Bak’s and elasto-hydrodynamic models. As for the Bak’s model [14], the phason field is in analogy
to the phonon field that obeys Newton’s second law. Owing to its simple mathematical description, it is the
most one used by scholars. Amoving shear crack in 1-D piezoelectric QCs was investigated by Tupholme [15].
The free vibration and harmonic response to a patch loading for layered 1-D quasi-crystal plates were inves-
tigated, respectively in [16–18]. The bending analysis in a 1-D orthorhombic quasi-crystal plate under static
and transient dynamic loads was investigated by Sladekv et al. [19] utilizing the meshless Petrov–Galerkin
method.

On the other hand, the elastohydrodynamic model suggests that the phason field obeys the diffusion law
rather than the conservation law. The wave propagation in quasi-crystal reinforced aluminum structures was
investigated by Chellappan et al. [20]. A general solution for 2-D quasi-crystal structures was obtained by
Li [21]. Chiang et al. [22] proposed the local radial basis function collocation method for the plate bending
analysis in orthorhombic QCs under static and transient dynamic loads.

From the above simple review, only few references about guided waves in the piezoelectric quasi-crystal
structures are available so far. It is well-known that the performance of piezoelectric devices has a close
relationship with wave characteristics including wave shapes, cut-off frequency, and so on. Therefore, for the
purpose of design and optimization of piezoelectric devices, guided wave characteristics in a 1-D hexagonal
piezoelectric quasi-crystal plate are investigated by applying the Legendre polynomial method. Owing to
its simple mathematical description, Bak’s model is chosen in this paper. The traction-free and open-circuit
boundary conditions are assumed.

2 Mathematics and formulation

The schematic diagram of a 1-D hexagonal piezoelectric quasi-crystal plate in the Cartesian coordinate system
(x , y, z) is illustrated in Fig. 1. Its thickness is h. Guided waves are propagating in the x-direction.

There exist three kinds of coupled fundamental fields in the piezoelectric QCs: the phonon, phason, and
electric fields. In the context of Bak’s model, the kinetic equations without body forces and free charges are
written as follows :

Ti j, j = ρüi , Hi j, j = ρẅi , Di,i = 0 (1)

where Ti j , Hi j , and Di are phonon stresses, phason stresses, and electric displacements, respectively. ui and
wi are the displacements in the phonon and phason fields, respectively. ρ represents the density.

The extended relationship of the strain displacement can be denoted as follows:

εi j = 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
, wi j = ∂wi

∂x j
, Ei = − ∂φ

∂xi
(2)

where φ is the electric potential. εi j and wi j are the phonon and phason strains, respectively. Ei represents the
electric field.

As for the 1-D hexagonal piezoelectric quasi-crystal plate, if its quasi-periodic direction is identical to the
z-direction, and the other two directions are periodic, it is defined as the z-direction quasi-crystal plate in this
paper. By that analogy, there are the x- and y-direction quasi-crystal plates. Therefore, the wave propagation
in these three cases is analyzed in detail.

2.1 The z-direction piezoelectric quasi-crystal plate

As for the z-direction quasi-crystal plate, its polarized and thickness directions are both identical with the
z-direction. Only phason displacements in the z−direction are existing, and phason displacements in x- and
y-direction vanish.
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The generalized constitutive equations for the z-direction piezoelectric quasi-crystal plate are written as
follows [23]:

Txx = (
C11εxx + C12εyy + C13εzz + R1wzz − e31Ez

)
π (z) ,

Tyy = (
C12εxx + C22εyy + C13εzz + R1wzz − e31Ez

)
π (z) ,

Tzz = (
C13εxx + C13εyy + C33εzz + R2wzz − e33Ez

)
π (z) ,

Tyz = (
2C44εyz + R3wzy − e15Ey

)
π (z) ,

Txz = (2C55εxz + R3wzx − e15Ex ) π (z) ,

Txy = 2C66εxyπ (z) , (3.1)

Hzz = (
R1εxx + R1εyy + R2εzz + K1wzz − d33Ez

)
π (z) ,

Hzx = (2R3εxz + K2wzx − d15Ex ) π (z) ,

Hzy = (
2R3εyz + K2wzy − d15Ey

)
π (z) ,

(3.2)

Dz = [
e31

(
εxx + εyy

) + e33εzz + d33wzz+ ∈33 Ez
]
π (z) ,

Dx = [
2e15εzx + d15wzx+ ∈11 Ex

]
π (z) ,

Dy = [
2e15εzy + d15wzy+ ∈11 Ey

]
π (z) (3.3)

where π(z) is a window function to be described later. Ci j and ei j are elastic and piezoelectric coefficients in
the phonon field, respectively. Ki and di j represent elastic and piezoelectric coefficients in the phason field,
respectively.Ri represent the phonon–phason coupling coefficients, and ∈i j represent dielectric coefficients.

For the assumed traction-free and open-circuit boundary condition, it is required that displacements and
electric potential at the upper and bottom surfaces do not vanish, normal stress components and electric
displacement vanish,

Txz = Tyz = Tzz = Hzz = Dz = 0 at z = 0 and z = h. (4)

To deal with it, a rectangle window function π(z) is introduced in Eq. (3.1), which can be written as:

π(z) =
{
1, 0 ≤ z ≤ h
0, elsewhere . (5)

Actually, it is the subtraction of two Heaviside functions. Its derivative is δ (z) − δ (z − h) with δ (z) being
an impulse function, i.e., δ (z) − δ (z − h) = 0. Therefore, material parameters become position-dependent
physical constants. When substituted in the field equations, they lead by derivatives to delta functions multi-
plying the normal stress components, thus ensuring that the normal stresses vanish at the boundaries, and other
stresses may vanish or not.

Thus, the assumed boundary conditions are automatically incorporated into the constitutive equations. The
explanation of this method to deal with boundary conditions are detailed in Ref. [24].

For harmonic waves propagating in the x-direction, phonon and phason displacements, electric potential
can be denoted as follows:

ux = U (z)eikx−iωt , uy = V (z)eikx−iωt , uz = W (z)eikx−iωt ,

wz = γ (z)eikx−iωt , φ = X (z)eikx−iωt (6)

where U (z), V (z), W (z), and γ (z) represent the phonon and phason displacement amplitudes, respectively.
X (z) is the amplitude of the electric potential.

Subsequently, substituting Eqs. (2–6) into Eq. (1), the following differential equations can be obtained:

π(z)[−C11k
2U + C55U

′′ + (C13 + C55)ikW
′ + (R1 + R3)ikγ

′ + (e15 + e31)ikX
′]

+[δ(z − 0) − δ(z − h)][C55U
′ + C55ikW + R3ikγ + e15ikX ] = −ρω2U, (7.1)

π(z)[−C66k
2V + C44V

′′] + C44V
′[δ(z − 0) − δ(z − h)] = −ρω2V, (7.2)
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π(z)[(C13 + C55)ikU
′ − C55k

2W + C33W
′′ − R3k

2γ + R2γ
′′ − e15k

2X + e33X
′′]

+[δ(z − 0) − δ(z − h)][C13ikU + C33W
′ + R2γ

′ + e33X
′] = −ρω2W, (7.3)

π(z)[(R1 + R3)ikU
′ − R3k

2W + R2W
′′ − K2k

2γ + K1γ
′′ − d15k

2X + d33X
′′]

+[δ(z − 0) − δ(z − h)][R1ikU + R2W
′ + K1γ

′ + d33X
′] = −ρω2γ, (7.4)

π(z)[(e15 + e31)ikU
′ − e15k

2W + e33W
′′ − d15k

2γ + d33γ
′′+ ∈11 k

2X− ∈33 X ′′]
+[δ(z − 0) − δ(z − h)][e31ikU + e33W

′ + d33γ
′− ∈33 X ′] = 0 (7.5)

where the dash denotes the derivative with respect to the depth z. Obviously, Eq. (7.2) is independent of electric
and phason fields, which governs the SH waves. SH wave characteristics in this case are similar to those for
crystal plates. Therefore, they are not investigated in this paper.

To solve the coupled Eq. (7.1), U (z), W (z), γ (z), and X (z) are expanded into the Legendre polynomial
series:

U (z) =
∞∑

m=0

p1mQm (z) ,W (z) =
∞∑

m=0

p2mQm (z) ,

γ (z) =
∞∑

m=0

r1mQm (z) , X (z) =
∞∑

m=0

r2mQm (z) (8)

where pim (i = 1, 2) and r im are the undetermined coefficients. Qm(z) =
√

2m+1
h Pm( 2z−h

h ) with Pm being
the mth Legendre polynomial. Theoretically, m runs from 0 to ∞. However, as a matter of fact, the above
summations are truncated at some finite values m = M .

Multiply Eq. (7.1) by Q j (z) with j running from 0 to M . Subsequently, integrating over z from 0 to h, the
following system is obtained by utilizing the orthonormality of the Legendre polynomial:

Am, j
11 p1m + Am, j

12 p2m + Am, j
13 r1m + Am, j

14 r2m = ω2Mm, j p
1
m, (9.1)

Am, j
21 p1m + Am, j

22 p2m + Am, j
23 r1m + Am, j

24 r2m = ω2Mm, j p
2
m, (9.2)

Am, j
31 p1m + Am, j

32 p2m + Am, j
33 r1m + Am, j

34 r2m = ω2Mm, j r
1
m, (9.3)

Am, j
41 p1m + Am, j

42 p2m + Am, j
43 r1m + Am, j

44 r2m = 0 (9.4)

where Mm, j and Am, j
αγ (α, γ = 1, 2, 3) can be calculated from Eq. (7.1), which are detailed in the Appendix.

The following equation can be obtained from Eq. (9.4),

r2m = −
[
Am, j
44

]−1
(Am, j

41 p1m + Am, j
42 p2m + Am, j

43 r1m). (10)

Subsequently, Eq. (9.1) can be transformed into the following matrix system by substituting Eq. (10) into Eq.
(9.1): ⎡

⎢⎣
Ām, j
11 Ām, j

12 Ām, j
13

Ām, j
21 Ām, j

22 Ām, j
22

Ām, j
31 Ām, j

32 Ām, j
33

⎤
⎥⎦

⎧⎨
⎩

p1m
p2m
r1m

⎫⎬
⎭ = ω2

⎡
⎣ Mm, j 0 0

0 Mm, j 0
0 0 Mm, j

⎤
⎦

⎧⎨
⎩

p1m
p2m
r1m

⎫⎬
⎭ . (11)

Up to now, the problem is transformed as an eigenvalue problem to be solved. The values of ω are square
roots of the eigenvalues. The profiles of the phonon and phason displacement components can be obtained
according to the eigenvectors. They are calculated by standard computer programs written in the software
“Mathematica” .

In Eq. (11), k is a known quantity. Therefore, corresponding eigenvalues can be obtained and written as
ω[k] for a known k. Thus, the phase velocity is calculated by

Vph = ω [k]

k
. (12)
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Similarly, the eigenvectors
{
p1m p2m r1m

}T can be obtained for a known k. Then, substituting them into Eq.

(10), r2m can be obtained. Subsequently, substituting
{
p1m p2m r1m r2m

}T into Eq. (8), phonon and phason
displacement components and the electric potential can be obtained.

2.2 The x-direction piezoelectric quasi-crystal plate

In this case, only phason displacements in the x-direction are existing, phason displacements in the z- and
y-directions vanish, i.e., wz = wy = 0.

The generalized constitutive equations of the x-direction piezoelectric quasi-crystal plate can be denoted
as follows:

Tyy = (
C11εyy + C12εzz + C13εxx + R1wxx − e31Ex

)
π (z) ,

Tzz = (
C12εyy + C22εzz + C13εxx + R1wxx − e31Ex

)
π (z) ,

Txx = (
C13εyy + C13εzz + C33εxx + R2wxx − e33Ex

)
π (z) ,

Tyz = 2C66εyzπ (z) ,

Txz = (2C44εxz + R3wxz − e15Ez) π (z) ,

Txy = (2C44εxy + R3wxy − e15Ey)π (z) ,

(13.1)

Hxx = (
R2εxx + R1εyy + R1εzz + K1wxx − d33Ex

)
π (z) ,

Hxz = (2R3εxz + K2wxz − d15Ez) π (z) ,

Hxy = (
2R3εxy + K2wxy − d15Ey

)
π (z) ,

(13.2)

Dx = [
e31

(
εzz + εyy

) + e33εxx + d33wxx+ ∈33 Ex
]
π (z) ,

Dz = [
2e15εxz + d15wxz+ ∈11 Ez

]
π (z) ,

Dy = [
2e15εxy + d15wxy+ ∈11 Ey

]
π (z) . (13.3)

Its phonon displacements and electric potential are the same as those for the z-direction quasi-crystal plate,
and the phason displacement can be denoted as:

wx = α(z)eikx−iωt (14)

where α(z) is the phason displacement amplitude in the x-direction.
Substituting Eqs. (2) and (13.1–14) into Eq. (1), differential equations can be obtained:

π(z)[−C33k
2U + C44U

′′ + (C13 + C44)ikW
′ − R2k

2α + R3α
′′ − e33k

2X + e15X
′′]

+[δ(z − 0) − δ(z − h)][C44U
′ + C44ikW + R3α

′ + e15X
′] = −ρω2U, (15.1)

π(z)[−C44k
2V + C66V

′′] + C66V
′[δ(z − 0) − δ(z − h)] = −ρω2V, (15.2)

π(z)[(C13 + C44)ikU
′ − C44k

2W + C22W
′′ + (R3 + R1)ikα

′ + (e15 + e31)ikX
′]

+[δ(z − 0) − δ(z − h)][C13ikU + C22W
′ + R1ikα + e31X

′] = −ρω2W, (15.3)

π(z)[(R1 + R3)ikW
′ − R2k

2U + R3U
′′ − K1k

2α + K2α
′′ − d33k

2X + d15X
′′]

+[δ(z − 0) − δ(z − h)][R3ikW + R3U
′ + K2α

′ + d15X
′] = −ρω2α, (15.4)

π(z)[(e15 + e31)ikW
′ − e33k

2U + e15U
′′ − d33k

2α + d15α
′′+ ∈33 k

2X− ∈11 X ′′]
+[δ(z − 0) − δ(z − h)][e15U ′ + e15ikW + d15α

′− ∈11 X ′] = 0. (15.5)

Specifically, SHwaves are also independent of the phason and electric fields in this case. The following detailed
solving procedure is similar to that in Sect. 2.1. Therefore, it is not shown to save space.
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2.3 The y-direction piezoelectric quasi-crystal plate

In this case, only phason displacements in the y-direction are existing, phason displacements in the x- and
z-directions vanish, i.e., wz = wx = 0.

Its phonon displacements and electric potential are the same as those for z-direction quasi-crystal plates,
and phason displacements can be denoted as:

wy = β(z)eikx−iωt (16)

where β(z) is the phason displacement amplitude in the y-direction.
The generalized constitutive equations are as follows:

Tzz = [
C11εzz + C12εxx + C13εyy + R1wyy − e31Ey

]
π (z) ,

Txx = [
C12εzz + C22εxx + C13εyy + R1wyy − e31Ey

]
π (z) ,

Tyy = [
C13εzz + C13εxx + C33εyy + R2wyy − e33Ey

]
π (z) ,

Txz = 2C66εxzπ (z) ,

Txy = [
2C44εxy + R3wyx − e15Ex

]
π (z) ,

Tyz = [
2C44εyz + R3wyz − e15Ez

]
π (z) , (17.1)

Hyy = [
R2εyy + R1εzz + R1εxx + K1wyy − d33Ey

]
π (z) ,

Hyx = [
2R3εyx + K2wyx − d15Ex

]
π (z) ,

Hyz = [
2R3εyz + K2wyz − d15Ez

]
π (z) ,

(17.2)

Dy = [
e31 (εzz + εxx ) + e33εyy + d33wyy+ ∈33 Ey

]
π (z) ,

Dx = [
2e15εyx + d15wyx+ ∈11 Ex

]
π (z) ,

Dz = [
2e15εyz + d15wyz+ ∈11 Ez

]
π (z) . (17.3)

Subsequently, substituting Eqs. (2) and (16–17.1) into Eq. (1), the following equations are obtained:

π(z)[−C22k
2U + C66U

′′ + (C12 + C66)ikW
′]

+[δ(z − 0) − δ(z − h)][C66U
′ + C66ikW ] = −ρω2U, (18.1)

π(z)(−C44k
2V + C44V

′′ − R3k
2β + R3β

′′ − e15k
2X + e15X

′′)
+(C44V

′ + R3β
′ + e15X

′)[δ(z − 0) − δ(z − h)] = −ρω2V, (18.2)

π(z)[(C12 + C66)ikU
′ − C66k

2W + C11W
′′]

+[δ(z − 0) − δ(z − h)][C12ikU + C11W
′] = −ρω2W,

(18.3)

π(z)(−R3k
2V + R3V

′′ − K2k
2β + K2β

′′ − d15k
2X − d15X

′′)
+(R3V

′ + K2β
′ − d15X

′)[δ(z − 0) − δ(z − h)] = −ρω2β, (18.4)

π(z)(−e15k
2V + e15V

′′ − d15k
2β + d15β

′′+ ∈11 k
2X− ∈11 X ′′)

+(e15V
′ + d15β

′− ∈11 X ′)[δ(z − 0) − δ(z − h)] = 0. (18.5)

It can be observed that Eqs. (18.1) and (18.3) are coupled and independent of the phonon and electric fields.
Actually, they govern Lamb waves having the same wave characteristics with elastic Lamb waves in the crystal
plates. SH waves are governed by the other equations that are coupled with the phason and electric fields.

The detailed solving procedure is similar to that in the Sect. 2.1. Therefore, it is not shown to save space.



Guided wave propagating in a 1-D hexagonal piezoelectric quasi-crystal plate 141

Fig. 2 Phase velocity dispersion curves for the piezoelectric crystal plate. The lines: the Legendre polynomial method; the dotted
lines: the Peano-series method

3 Numerical results

As above mentioned, SH waves in the x- and z-direction quasi-crystal plates, and Lamb waves in the y-
direction quasi-crystal plates are independent of the phason and electric fields. Therefore, to investigate the
phonon–phason coupling and piezoelectric effects on wave characteristics, Lamb waves in the x- and z-
direction quasi-crystal plates, and SH waves in the y-direction quasi-crystal plates are investigated in this
paper, respectively.

3.1 Confirmation of the present method

To our best knowledge, investigations about the guided wave propagation in the piezoelectric quasi-crystal
plates are rare. However, if the phason field is absent, the piezoelectric quasi-crystal plate can be reduced to
the piezoelectric crystal plate. Therefore, to confirm the correctness of the present method in a special case,
the phason field is assumed to be absent, i.e., Ri = Ki j = di j =0, to make a comparison with results obtained
from the Peano-series method [25]. The corresponding material parameters are the same as those in Ref. [25].
The dispersion curves are illustrated in Fig. 2. The lines are results obtained from the present method, the
dotted lines are results obtained from the Peano-series method. Figure 2 shows that results obtained from these
two methods are in perfect agreement.

3.2 Lamb waves in the z-direction piezoelectric quasi-crystal plates

3.2.1 The influence of the phason field on wave characteristics

In this Subsection, Lamb waves propagating in the z-direction piezoelectric quasi-crystal plates are firstly
investigated. Their material parameters are listed in Table 1 [13]. For brevity, the undermentioned structures
are all z-direction piezoelectric quasi-crystal plates unless otherwise specified.

Firstly, the phonon–phason coupling effect is taken into account. Figure 3 shows its phason velocity
dispersion curves. Lines are results for the piezoelectric quasi-crystal plate, and dotted lines are results for the
piezoelectric crystal plate, i.e., Ri = Ki j = di j = 0 with other parameters being unaltered. It is worth noting
that the phonon–phason coupling effect on the dispersion curves is significant: Firstly, there are always some
modes in Fig. 3 corresponding to elastic wave modes in the piezoelectric crystal plate, which are attributed to
the phonon field. It is well-known that the phonon field is responsible for themacroscopic deformation of quasi-
crystal materials, which plays the same role as the elastic field in crystal materials. Therefore, these modes
are described as phonon modes. Meanwhile, like Lamb waves in crystal plates, they can also be divided into
symmetrical and anti-symmetrical modes, which can be distinguished according to displacement distributions
in Fig. 5. Therefore, they are named as A0 mode, S0 mode….. There is a class of independent modes that are
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Table 1 Material parameters of the z-direction piezoelectric quasi-crystal material

Property C11 C12 C13 C22 C23 C33 C44 C55

23.433 5.741 6.663 23.433 6.663 23.222 7.019 7.019
C66 ρ R1 R2 R3 K1 K2 e15
8.846 4.186 0.8846 0.8846 0.8846 12.2 2.4 11.6
e31 e33 e24 d15 d33 d24 ∈11 ∈33−4.4 18.6 11.6 1.16 1.86 1.16 5 10

Units: Ci j (1010 N/m2), ρ(103 kg/m3), Ri (109 N/m2), Ki (1010 N/m2), ei j (C/m2), di j (c/m2), ∈i j (10−9 C2/ (N m2))

Fig. 3 Phase velocity dispersion curves lines: the piezoelectric quasi-crystal plate; dotted lines: the piezoelectric crystal plate

Fig. 4 Phonon–phason coupling effect on dispersion curves

attributed to the phason field. Here, they are described as phason modes, i.e., P0 mode, P1 mode….. Moreover,
in comparison with Fig. 2, the first three modes have no cutoff frequencies for the piezoelectric quasi-crystal
plate, not as to the first two modes without cutoff frequencies for the piezoelectric crystal plate. Furthermore,
the lines and dotted lines are almost overlapped, i.e., the phonon–phason coupling effect on phonon modes is
extremely weak. The reason lies in the fact that phonon–phason coupling parameters Ri in Table 1 are much
smaller than elastic coefficients Ci j in the phonon field.

Then, the phonon–phason coupling coefficients are all multiplied by 5 and 10, respectively. Their phase
velocity dispersion curves of the first two modes are illustrated in Fig. 4. The influences on other modes are
similar. Therefore, no Figures are shown here. For the phonon modes, the phonon–phason coupling effect
increases, and phase velocity increases at high frequencies as the phonon–phason coupling coefficients Ri
increase. Besides, the phonon–phason coupling effect on phason modes is more significant than that of phonon
modes, and phase velocity decreases as the phonon–phason coupling coefficients Ri increase.

Subsequently, the phonon and phason displacement, electric potential distributions of the first threemodes at
kh = 0.5 are illustrated in Fig. 5. It can be seen that, for the phononmodes, amplitudes of phonon displacements
are far larger than those of phason displacements, i.e., energies aremainly concentrated in phonon displacement
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(a)

(b)

(c)

Fig. 5 Displacement and electric potential distributions of the first three modes at kh = 0.5

components. However, for the phason modes, amplitudes of phason displacements are far larger than those
of phonon displacements, i.e., energies are mainly concentrated in phason displacement components. This
phenomenon is also attributed to the weak phonon–phason coupling. Furthermore, phason displacements and
electric potential distributions have the same symmetry with those of the phonon displacement componentsW
in the quasi-periodic direction. It lies in the fact that some terms in Eq. (7.1) related to phason displacements
and electric potential are similar to those of phonon displacement components in the z-direction.

3.2.2 The piezoelectric effect on wave characteristics

As above mentioned, there are coupled phonon, phason, and electric fields in the 1-D hexagonal piezoelectric
quasi-crystal plate. Therefore, in addition to the phonon–phason coupling effect, it also exhibits the electro-
phononand electro-phason coupling effects. In this Subsection, it is necessary to investigate piezoelectric effects
on wave characteristics in the phonon and phason fields, respectively. Firstly, the phase velocity dispersion
curves of the piezoelectric and elastic quasi-crystal plates are illustrated in Fig. 6. Like the piezoelectric crystal
case [26], the phase velocity of phonon and phason modes in the piezoelectric quasi-crystal plate is higher than
that of the elastic quasi-crystal plate owing to the piezoelectric effects. Furthermore, the piezoelectric effect
in the phonon field is more considerable than that in the phason field. It lies in the reason that piezoelectric
parameters ei j in the phonon field in Table 1 are larger than piezoelectric parameters di j in the phason field.

It is well known that the piezoelectric effect has a close relationship with material parameters in the electric
field. Therefore, due to the phonon–phason coupling effect, the influence of material parameters in the electric
field on piezoelectric effects is studied. Firstly, the influence of piezoelectric parameters in the phonon field
is investigated. The piezoelectric parameters ei j in the phonon field are multiplied by 3 and 5, respectively.
Other parameters remain unchanged. Figure 7 shows that the influence of ei j on two piezoelectric effects is
opposite. For the phonon modes, the phase velocity increases with the increase of ei j . The piezoelectric effect
in the phonon field has a positive correlation with ei j , which is consistent with the case of the piezoelectric
crystal plate. For the phason modes, phase velocity decreases with the increase of ei j . The piezoelectric effect
in the phason field has a negative correlation with ei j . Furthermore, the influence of ei j on the piezoelectric
effect in the phonon field is stronger than that in the phason field, which is attributed to the difference between
piezoelectric parameters in the phonon and phason fields.

Secondly, the piezoelectric parameters di j in the phason field are multiplied by 3 and 5, respectively. Other
parameters remain unchanged. Figure 8 shows the corresponding dispersion curves. For the phonon modes,
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(a) (b)

Fig. 6 Phase velocity dispersion curves for the piezoelectric and elastic quasi-crystal plates

(a) (b)

Fig. 7 Phase velocity dispersion curves for the piezoelectric quasi-crystal plate with enlarged piezoelectric parameters ei j in the
phonon field

Fig. 8 Phase velocity dispersion curves for the piezoelectric quasi-crystal plate with enlarged piezoelectric parameters di j in the
phason field

the phase velocity increases at high frequencies with the increase of di j . For the phason modes, the phase
velocity always increases with the increase of di j . Furthermore, the influence of piezoelectric parameters di j
on the phonon modes is weaker than that on the phason modes. Besides, compared with Fig. 7, the influences
of the piezoelectric parameters ei j and di j on the phason modes are opposite.

At last, dielectric coefficients ∈i j are multiplied by 3 and 5, respectively. Other parameters remain
unchanged. Figure 9 shows the corresponding dispersion curves. For all phonon and phason modes, the phase
velocity always decreases as the dielectric coefficients ∈i j increase, i.e., the piezoelectric effects are negatively
related to the dielectric coefficients, which is consistent with this for the piezoelectric crystal plate.
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(a) (b)

Fig. 9 Phase velocity dispersion curves for the piezoelectric quasi-crystal plate with enlarged dielectric coefficients ∈i j in the
phason field

Fig. 10 Phase velocity dispersion curves for x- and z-direction piezoelectric quasi-crystal plates

3.3 Lamb waves propagating in the x-direction piezoelectric quasi-crystal plate

In this Subsection, Lamb waves propagating in the x-direction piezoelectric quasi-crystal plates are inves-
tigated. In this case, the quasi-periodic and polarization directions are all changed. Figure 10 shows the
corresponding dispersion curves. It can be seen that the quasi-periodic and polarization directions have signifi-
cant influence on the dispersion curves. Furthermore, their influences on different modes are different. For the
phonon modes, their influences are complex. For example, the phase velocity of the S0 mode increases at low
frequencies, and decreases at high frequencies. For the phason modes, the phase velocity of the x-direction
piezoelectric quasi-crystal plate is far larger than that of the z-direction piezoelectric quasi-crystal plate.

Figure 11 shows the phonon and phason displacement, electric potential distributions of the first three
modes at kh = 0.5 for the x-direction piezoelectric quasi-crystal plate. Compared with Fig. 5, the differences
of the phason displacement distributions are significant. It can be observed that the phason displacement and
electric potential distributions have the same symmetry with those of the phonon displacement componentsU
in the quasi-periodic direction. The reason lies in the fact that some terms in Eq. (15.1) related to the phason
displacement and electric potential are similar to those of the phonon displacement components U in the
x-direction. Furthermore, for the phonon modes, the amplitudes of the phason displacements are smaller than
those of the phonon displacements. It is opposite to the phason modes.
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(a)

(b)

(c)

Fig. 11 Displacement and electric potential distributions of the first three modes at kh = 0.5 for x-direction piezoelectric
quasi-crystal plates

Fig. 12 Phase velocity dispersion curves of SH waves

3.4 SH waves propagating in the y-direction piezoelectric quasi-crystal plate

3.4.1 The influence of the phason field

Firstly, the phonon–phason coupling effect on SH waves is investigated. Figure 12 shows dispersion curves of
the piezoelectric quasi-crystal and crystal plates (Ri = Ki = 0 and other material parameters are unchanged).
There are some modes in Fig. 12 corresponding to elastic wave modes in the piezoelectric crystal plate, which
is mainly governed by the phonon field. Therefore, these modes are described as SH phonon modes, i.e.,
SH0 mode, SH1 mode…. There is a class of independent modes attributed to the phason field. Here, they are
described as SH phason modes, i.e., PSH0 mode, PSH1 mode …. Moreover, the phonon–phason coupling
effect on SH phonon modes is also extremely weak. Furthermore, trends of phonon and phason modes are
consistent, i.e., they have similar wave characteristics, such as displacement distributions, which is shown in
Fig. 14 in detail.

Subsequently, the influence of phonon–phason coupling coefficients Ri on dispersion curves of SH waves
is illustrated in Fig. 13. Their influences on phonon and phason modes are opposite, i.e., as Ri increase, the
phase velocity of the phonon modes decreases, and the phase velocity of the phason modes increases.
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Fig. 13 The phonon–phason coupling effect on dispersion curves of SH waves

(a)

(b)

Fig. 14 Displacement and electric potential distributions of SH waves at kh = 1

The displacement and electric potential distributions of SH waves at kh = 1 are illustrated in Fig. 14.
The phason displacements and electric potentials have the same distribution trends with those of the phonon
displacement components V in the quasi-periodic direction. The reason lies in the fact that terms in Eq. (18.1)
related to the phason displacements and electric potential are similar to those of the phonon displacement
component in the y-direction.

3.4.2 The piezoelectric effect on SH waves

In this Subsection, the piezoelectric effects on SH waves are also investigated. Figure 15 shows the phase
velocity dispersion curves of SH waves for the piezoelectric and elastic quasi-crystal plates. In comparison
with Fig. 6, the piezoelectric effects make the phase velocity of phonon and phason modes increase, which is
consistent with that of Lamb waves.

Subsequently, the influence of electric parameters on the piezoelectric effects are investigated. Figure 16
shows the dispersion curves of SH waves with enlarged piezoelectric parameters ei j . For phonon and phason
modes, the phase velocity increases as ei j increase. Compared with Fig. 7, the influence of ei j on SH waves
is different from that on Lamb waves.
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(a) (b)

Fig. 15 Phase velocity dispersion curves of SH waves for the piezoelectric quasi-crystal and the elastic quasi-crystal plates

Fig. 16 Phase velocity dispersion curves for the piezoelectric quasi-crystal plate with enlarged piezoelectric parameters ei j in
the phonon field

Fig. 17 Phase velocity dispersion curves for the piezoelectric quasi-crystal plate with enlarged piezoelectric parameters di j in
the phason field

Then, the influence of piezoelectric parameters di j on SH waves is investigated, and the dispersion curves
with enlarged piezoelectric parameters di j are illustrated in Fig. 17. It can be seen that the influence of di j on
phonon and phason modes is opposite, i.e., as di j increases, the phase velocity of phason modes increases, and
that of phonon modes decreases.
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(a) (b)

Fig. 18 Phase velocity dispersion curves for the piezoelectric quasi-crystal plate with enlarged dielectric coefficients ∈i j in the
phason field

At last, Fig. 18 illustrates the phase velocity dispersion curves of SH waves with enlarged dielectric
coefficients ∈i j . Compared with Fig. 9, the influence of the dielectric coefficients ∈i j on the dispersion curves
of Lamb and SH waves is consistent.

4 Conclusions

In the context of Bak’s model, the Legendre polynomial method is utilized to investigate Lamb and SH wave
propagation in the 1-D hexagonal piezoelectric quasi-crystal plate. The dispersion curves, displacement, and
electric potential distributions in the phonon and phason fields are illustrated. The phonon–phason coupling
and piezoelectric effects on the dispersion curves are analyzed. Based on the above numerical results, the
following conclusions can be drawn:

(i) For the Lamb waves, the phase velocity of phason modes always decreases as the phonon–phason coupling
coefficients Ri increase. However, the phase velocity of phason modes for SH waves always increases as
the phonon–phason coupling coefficients Ri increase.

(ii) The piezoelectric effects make the phase velocity of Lamb and SH waves increase. And the influence of
varied piezoelectric parameters in the phonon and phason fields on wave characteristics is different. It
provides a way to regulate the piezoelectric effect of piezoelectric devices.

(iii) The phason displacement and electric potential of Lamb waves and SH waves have the same distribution
trends with those of phonon displacement components in the quasi-periodic direction, which lays the
theoretical basis for the design and optimization of piezoelectric devices.

(iv) The amplitudes of phason displacement components for the phonon modes are smaller than those of the
phonon displacement components. And it is opposite to the phason modes. This characteristic can be used
to distinguish the phonon and phason modes.
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APPENDIX

The coefficients in Eq. (9.1), Mm, j and Am, j
αγ (α, γ = 1, 2, 3), are as follows:

Am, j
11 = −C11 × k2 × u[m, j, 0, 0] + C55 × u[m, j, 0, 2] + C55 × K [m, j, 0, 1],

Am, j
12 = (C13 + C55) × i × k × u[m, j, 0, 1] + C55 × i × k × K [m, j, 0, 0],

Am, j
13 = (R1 + R3) × i × k × u[m, j, 0, 1] + R3 × i × k × K [m, j, 0, 0],
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Am, j
14 = (e15 + e31) × i × k × u[m, j, 0, 1] + e15 × i × k × K [m, j, 0, 0],

Am, j
21 = (C13 + C55) × i × k × u[m, j, 0, 1] + C13 × i × k × K [m, j, 0, 0],

Am, j
22 = −C55 × k2 × u[m, j, 0, 0] + C33 × u[m, j, 0, 2] + C33 × K [m, j, 0, 1],

Am, j
23 = −R3 × k2 × u[m, j, 0, 0] + R2 × u[m, j, 0, 2] + R2 × K [m, j, 0, 1],

Am, j
24 = −e15 × k2 × u[m, j, 0, 0] + e33 × u[m, j, 0, 2] + e33 × K [m, j, 0, 1],

Am, j
31 = (R1 + R3) × i × k × u[m, j, 0, 1] + R1 × i × k × K [m, j, 0, 0],

Am, j
32 = −R3 × k2 × u[m, j, 0, 0] + R2 × u[m, j, 0, 2] + R2 × K [m, j, 0, 1],

Am, j
33 = −K2 × k2 × u[m, j, 0, 0] + K1 × u[m, j, 0, 2] + K1 × K [m, j, 0, 1],

Am, j
34 = −d15 × k2 × u[m, j, 0, 0] + d33 × u[m, j, 0, 2] + d33 × K [m, j, 0, 1],

Am, j
41 = (e15 + e31) × i × k × u[m, j, 0, 1] + e31 × i × k × K [m, j, 0, 0],

Am, j
42 = −e15 × k2 × u[m, j, 0, 0] + e33 × u[m, j, 0, 2] + e15 × K [m, j, 0, 1],

Am, j
43 = −d15 × k2 × u[m, j, 0, 0] + d33 × u[m, j, 0, 2] + d33 × K [m, j, 0, 1],

Am, j
44 = ∈11 ×k2 × u[m, j, 0, 0]− ∈33 ×u[m, j, 0, 2]− ∈33 ×K [m, j, 0, 1],

Mm, j = −ρ × u[m, j, 0, 0]

where u[m, j, n, p] = ∫ b
a π(z) × Q j (z) × zn × ∂ pQm(r)

∂r p dz,

K [m, j, n, p] =
∫ b

a

∂π(z)

∂z
× Q j (z) × zn × ∂ pQm(r)

∂r p
dz.
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