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Abstract We consider the axisymmetric contact problem of a multi-elastic layer with various elastic constants
bonded to an elastic semi-infinite substrate indented by rigid flat-ended cylindrical and spherical indenters.
The transfer matrix method is applied to each elastic layer, and dual integral equations are reduced to an
infinite system of simultaneous equations by expressing the normal contact stress at the surface elastic layer
as an appropriate series with Chebyshev orthogonal polynomials. Numerical results demonstrate the effects
of the elastic constant of each elastic layer and the semi-infinite elastic substrate on the radial distribution of
the normal contact stress and normal displacement of the free surface of the elastic layer, stress singularity
factor at the edge of the cylindrical indenter, and axial load of a rigid indenter which penetrates the multi-layer
material to a constant depth. The results of axial load are in good agreement with previously reported results.
The numerical results are given for several combinations of the shear modulus of each elastic layer and the
substrate. These results will contribute to the establishment of indentation tests for composite materials and
serve as guidelines for the design of appropriate mechanical properties of layered materials.

1 Introduction

Improvements in the stiffness of material surfaces are of great interest in the thin film and tribology fields.
Indentation tests are widely used to measure the local mechanical properties of materials such as metal coating
layers and biological tissues. However, the load–displacement curve obtained from indentation tests includes
contributions from the material bulk, not only the surface, making it difficult to estimate the mechanical
properties of the surface. Therefore, an understanding of the stress and displacement of layered materials is
needed.

Indentation tests are based on a contact problem known as Boussinesq’s problem. This problem for a
semi-infinite space indented by conical, spherical, and flat-ended cylindrical indenters was solved by Harding
and Sneddon [1], Sneddon [2], andMuki [3]. Lebedev and Ufliand [4] solved the contact problem for an elastic
layer resting frictionlessly on a rigid foundation indented by a flat-ended cylindrical indenter by reducing the
dual integral equations of stress and displacement to a single Fredholm integral equation of the second kind.
Hayes et al. [5] solved the problem for an elastic layer bonded to a rigid foundation indented by flat-ended
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cylindrical and spherical indenters to provide an analytical method for evaluating the mechanical properties of
articular cartilage bonded to the subchondral bone via indentation tests. They introduced an indentation scaling
factor for considering the effect of layer thickness. Indentation scaling factors, commonly used in indentation
testing to account for thickness or substrate effects, for a spherical indenter and a monomial blunt indenter
were introduced for the asymptotic modeling approach by Argatov et al. [6] and Argatov and Sabina [7],
respectively. Argatov and Sabina [7] used an indentation scaling factor for a cylindrical indenter to evaluate
the incremental indentation stiffness for an arbitrary axisymmetric indenter that produces a circular area of
contact. Dhaliwal [8] solved the axisymmetric contact problem for an elastic layer bonded to an elastic semi-
infinite space indented by a flat-ended cylindrical indenter by reducing this boundary value problem to a single
Fredholm integral equation of the second kind to estimate the safety of foundations supporting cylindrical
columns. The indentation of an elastic layer perfectly bonded to an elastic substrate by flat-ended cylindrical,
conical, and spherical indenters was considered by Yu et al. [9]. They showed that the axial load of the rigid
indenter is related to layer thickness and the relative error between the axial load of the layered material and
that of the semi-infinite space with the mechanical properties of an elastic surface layer and found the optimal
conditions for accurately measuring the surface mechanical properties of coating materials via indentation
tests. Korsunsky and Constantinescu [10] considered the contact problem of an elastic layer perfectly bonded
to or freely sliding on an elastic substrate for blunted conical, flat-ended cylindrical, spherical, and conical
indenters using the method proposed by Lebedev and Ufliand [4]. They proposed the optimal conditions for
accurately measuring the mechanical properties of the surface elastic layer or substrate via indentation tests
for each indenter type based on the apparent contact modulus. Keer et al. [11] solved the contact problem
between two deformable bodies coated by an elastic surface layer by reducing dual integral equations to
a single Fredholm integral equation. Sakamoto et al. [12] solved the axisymmetric contact problem of two
deformable spheres coated by transversely isotropic elastic layer by reducing dual integral equations to an
infinite system of simultaneous equations using the technique of expanding the normal contact stress to an
infinite series.

Several approximate solutions have also been proposed for estimating the effect of an elastic substrate
or a multi-layer structure. Gao et al. [13] obtained a perturbation solution for the indentation problem of
a nonhomogeneous medium with piecewise constant or continuously varying moduli indented by a rigid
cylindrical punch. The validity of the perturbation solutions was examined by a comparison with finite element
method results. The results agreed when the elastic moduli of the specimen and substrate were similar. Argatov
[14] obtained a high-order asymptotic solution of the axisymmetric unilateral contact problem for a spherical
punch indenting an elastic layer attached to an elastic substrate in explicit form for estimating the substrate
effect on a thin film in the indentation process. A comparison with the perturbation results reported by Gao et
al. [13] demonstrated good agreement between the two asymptotic approaches in a sufficiently wide range of
the relative stiffness ratio. Furthermore, the paper reported that the applicability of the asymptotic models is
governed by the ratio of the diameter of the contact area to the specimen thickness.

The contact problem of layered materials and functionally graded materials (FGMs) has become increas-
ingly important. Volkov et al. [15] provided an approximate analytical solution to the contact problem for
a soft functionally graded layer that arbitrarily varies with depth indented by a circular indenter. The ker-
nel transform of the integral equation was constructed numerically using the method of modeling functions.
Selvadurai and Katebi [16] considered the adhesive contact problem for an incompressible elastic half-space
under the assumption that the shear modulus varies exponentially with depth. They represented the contact
stress distributions by discrete equivalent distributions to compute the integral equations numerically. Liu et
al. [17–19] considered the axisymmetric contact problem of FGMs by adding a multi-layer coating whose
mechanical properties vary linearly in each elastic layer to express arbitrarily varying mechanical properties;
however, the Poisson’s ratios for the coating and the half-space were limited to 1/3. They reduced this problem
to a Cauchy singular integral equation by using the transfer matrix method and the Hankel integral transform
technique. Liu and Xing [20] reconsidered the contact problem of FGMs without limiting Poisson’s ratio.
Constantinescu et al. [21] extended the problem considered by Korsunsky and Constantinescu [10] to the
axisymmetric indentation problem for a multi-layer elastic coating on an elastic substrate. They computed
transfer matrices derived from the continuous interface condition of the stress and displacement symbolically
in the software Mathematica. The Mathematica code for calculating the apparent contact modulus for various
indenter types is available in their paper. Wei et al. [22] studied a laminate composed of multiple orthotropic
rectangular layers with a viscoelastic adhesive at the interface subjected to a sinusoidal pressure at its top
surface using the state-space method and transfer matrix method.
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Recently,Ai andZhang [23] solved the problemof a rigid rectangular plate on a transversely isotropicmulti-
layer medium in Cartesian coordinates using the double Fourier transform, Laplace transform, and transfer
matrix method. They compared their numerical results with those obtained from the finite element method
software ABAQUS. Stan and Adams [24] solved the adhesive contact problem of an elastic multi-layer coated
substrate indented by a rigid spherical indenter using the transfer matrix method and the Hankel transform.
Zhang et al. [25] considered the thermoplastic contact problem of multi-layer materials under friction heating.

Miura et al. [26] obtained an analytical solution for the axisymmetric contact problem for an elastic layer
perfectly bonded to an elastic semi-infinite solid indented byflat-ended cylindrical and spherical indenters using
a method that expresses the normal contact stress at the upper surface elastic layer as an appropriate series with
Chebyshev orthogonal polynomials and by reducing the dual integral equations of stress and displacement
to an infinite system of simultaneous equations, instead of a single Fredholm integral equation of the second
kind. Their analytical method can be applied to various problems, such as crack problems [27] and the contact
problem of two deformable bodies [12].

The present study considers the axisymmetric contact problem for a multi-layer material with various
elastic modulus values in each layer bonded to an elastic semi-infinite solid indented by flat-ended cylindrical
and spherical indenters. This contact problem is reduced to an infinite system of simultaneous equations using
the method presented by Miura et al. [26], and the transfer matrices are derived from the continuous interface
conditions of stress and displacement, as done by Liu and Xing [20]. The analytical solution provided here is
exact because there is no approximation in the analysis procedure. The presented numerical results include not
only the axial load which is important for evaluating the mechanical properties from the load–displacement
curve obtained from indentation tests, but also the distribution of the normal contact stress below flat-ended
cylindrical and spherical indenters, the distribution of the normal displacement at the upper surface of the elastic
layer, and the stress singularity factor, which reveals the magnitude of the normal contact stress singularity
at the edge of the flat-ended cylindrical punch. The axial load results are validated by a comparison to those
calculated using the Mathematica code provided by Constantinescu et al. [21].

2 Problem formulation

Consider the problem of a composite material consisting of an arbitrary number of elastic layers perfectly
bonded to an elastic semi-infinite substrate indented by a rigid flat-ended cylindrical or spherical indenter,
as shown in Figs. 1 and 2. A cylindrical coordinate system (r , θ , z) is used in this study. The displacement
components along r , θ , and z are denoted by ur , vθ , and wz , respectively. The components of the stress tensor
are σr , σθ , σz, τr z , τθ z , and τrθ . A general solution of the equilibrium equations for the elastic layers and
substrate without torsion can be derived using harmonic stress functions ϕ0 and ϕ3, i.e., [28]

2G ju
( j)
r = ∂ϕ

( j)
0

∂r
+ z

∂ϕ
( j)
3

∂r
,

Fig. 1 Indentation of elastic multi-layer coating perfectly bonded to an elastic semi-infinite substrate
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(a) (b)

Fig. 2 Shape of axisymmetric indenter: a rigid cylindrical indenter and b rigid spherical indenter
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τ
( j)
rθ = τ

( j)
θ z = 0, ( j = 1, 2, . . . , N + 1), (1)

where the superscript j represents the number of elastic layers and j = N+1 represents the elastic semi-infinite
substrate. G j and ν j denote the shear modulus and Poisson’s ratio, respectively, of each elastic layer and the
substrate. The harmonic functions ϕ( j)0 and ϕ( j)3 for the elastic layers can be written as

⎧
⎨

⎩

ϕ
( j)
0 = ∫ ∞

0

{
D( j)(λ)coshλz + A( j)(λ)sinhλz

}
J0(λr)dλ,

ϕ
( j)
3 = ∫ ∞

0

{
B( j)(λ)sinhλz + C ( j)(λ)coshλz

}
J0(λr)dλ,

( j = 1, 2, . . . , N ), (2)

and those for the elastic substrate can be written as

ϕ
(N+1)
0 =

∫ ∞

0
A(N+1)(λ)J0(λr)e

−λzdλ,

ϕ
(N+1)
3 =

∫ ∞

0
B(N+1)(λ)J0(λr)e

−λzdλ,

(3)

where Jn(λr) is the Bessel function of the first kind of order n and A( j)(λ), B( j)(λ), C ( j)(λ), D( j)(λ),
A(N+1)(λ), and B(N+1)(λ) are unknown functions that can be obtained by matching appropriate boundary
conditions.

If the shear traction between the indenter and each layer is assumed to be negligible, then the boundary
conditions of the upper surface of the layer can be described by the following equations:

(wz)
(1)
z=0 = ε0 − f (r), (0 ≤ r ≤ a), (4)



Analytical solution of axisymmetric indentation 4081

(σz)
(1)
z=0 = 0, (a < r < ∞), (5)

(τr z)
(1)
z=0 = 0, (0 ≤ r < ∞). (6)

Under the condition of Eq. (4), for the cylindrical indenter, the normal displacement at contact area between
the indenter and a layer is equal to the penetration depth ε0, and thus, f (r) = 0. For the spherical indenter,
the normal displacement varies at the contact area, and thus, the function f (r) related to the geometry of the
indenter-layer interface is required.

The elastic layer is perfectly bonded to the next elastic layer or the semi-infinite substrate; therefore, the
continuity conditions of the components of displacement and traction at the interface between an elastic layer
and the next layer or the semi-infinite substrate, represented by z = h j can be written in the following form:

[{
S( j)

}
=

{
S( j+1)

}]

z=h j
, ( j = 1, 2, . . . , N ), (7)

where {
S( j)

}
=

[

u( j)
r w

( j)
z σ

( j)
z τ

( j)
r z

]T
. (8)

By substituting Eqs. (2) and (3) into the equilibrium equations (1), the components of displacement and traction
are expressed in the form of the Hankel transform as follows:

u( j)
r = 1

2G j

∫ ∞

0
ζ

( j)
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w
( j)
z = 1

2G j
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0
ζ

( j)
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σ
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0
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τ
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0
ξ

( j)
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(9)

The functions ζ ( j)r , ζ ( j)z , ξ ( j)z , and ξ ( j)r z are related to λ, which is a variable of the Hankel transform, and
the displacement in the z-direction. They are summarized as a matrix in the following form:

{
S̄( j)(λ, z)

}
=

[

ζ
( j)
r (λ, z) ζ

( j)
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( j)
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]T = [
L j (λ, z)
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}
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where
[
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]

=
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⎢
⎢
⎢
⎢
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⎢
⎢
⎣
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⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

{
A j (λ)

} =
[
λA( j)(λ) B( j)(λ) C ( j)(λ) λD( j)(λ)

]T
, ( j = 1, 2, . . . , N ).

(11)

For the case of an elastic semi-infinite substrate ( j = N+1),

[
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⎢
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,

{AN+1(λ)} =
[
λA(N+1) B(N+1)

]T
.

(12)



4082 K. Miura et al.

The continuity conditions in Eq. (7) lead to the following equations:
[{

S̄( j)
}

=
{
S̄( j+1)

}]

z=h j
, ( j = 1, 2, . . . , N ). (13)

Substituting Eq. (10) into Eq. (13) yields the following equation related to an arbitrary elastic layer:
{
A j (λ)

} = [
Vj (λ, h j )

] {
A j+1(λ)

}
, (14)

where [Vj (λ, h j )] = [L j (λ, h j )]−1 [L j+1(λ, h j )] is the transfer matrix, which gives the relationship between
an arbitrary elastic layer and the next layer.

According to Eq. (13), Eq. (14) can be applied iteratively until it reaches the semi-infinite substrate, and
thus,

{
A j (λ)

} =
[
V̂ j (λ, h j , . . . , hN )

]
{AN+1(λ)} , (15)

where [
V̂ j (λ, h j , . . . , hN )

]
= [

Vj (λ, h j )
] [
Vj+1(λ, h j+1)

]
. . . [VN (λ, hN )] . (16)

From the boundary condition (6), we can obtain the following equation:

λA(1)(λ) = (1 − 2ν1)C
(1)(λ). (17)

Applying Eq. (17) to the relationship between the top surface layer and the semi-infinite substrate obtained
from Eq. (15) yields the following equation:

{AN+1(λ)} =
{
[B]

[
V̂1(λ, h1, . . . , hN )

]}−1
[
1 − 2ν1

1

]

C (1)(λ), (18)

where

[B] =
[
1 0 0 0
0 0 1 0

]

. (19)

Equation (18) indicates that the unknown functions A( j)(λ), B( j)(λ), C ( j)(λ), D( j)(λ), A(N+1)(λ), and
B(N+1)(λ) can be reduced to the unknown function C ( j)(λ).

The normal stress of the top surface layer (σz)(1)z=0 can be written as the following equation related to
C (1)(λ) by substituting Eqs. (15) and (18) into ξ (1)z (λ, 0) in Eq. (10):

(σz)
(1)
z=0 =

∫ ∞

0
M(λ, h1, . . . , hN )C (1)(λ)λJ0(λr)dλ, (20)

where

M(λ, h1, . . . , hN ) = [B1] [L1(λ, 0)]
[
V̂1(λ, h1, . . . , hN )

] {
[B]

[
V̂1(λ, h1, . . . , hN )

]}−1
[
1 − 2ν1

1

]

,

(21)

[B1] = [
0 0 1 0

]
. (22)

Eventually, the normal displacement of the surface of the top layer (wz)
(1)z=0 and the contact stress (σz)(1)z=0 can

be written as the following equations, which contain only unknown function C ( j)(λ) and apply the boundary
conditions in Eqs. (4) and (5):

(wz)
(1)
z=0 = −1 − ν1

G1

∫ ∞

0
C (1)(λ)J0(λr)dλ = ε0 − f (r), (0 ≤ r < a), (23)

(σz)
(1)
z=0 =

∫ ∞

0
M(λ, h1, . . . , hN )C (1)(λ)λJ0(λr)dλ = 0, (a < r < ∞). (24)

The dual integral equations [Eqs. (23) and (24)] are the typical form of a mixed boundary-value contact
problem. In this study, the normal contact stress between the indenter and the layer surface is expressed as an
appropriate series function that contains Chebyshev polynomials Tn(x). The Hankel inversion is also applied
to reduce the problem to an infinite system of simultaneous equations [26].
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The normal contact stress is expressed using Chebyshev polynomials as

(σz)
(1)
z=0 = 2

πr(a2 − r2)1/2

∞∑

n=0

xnT2n+1(r/a), (0 ≤ r < a), (25)

where xn (n = 0, 1, 2, . . .) are unknown coefficients. Using the entity [29]

∫ ∞

0
λZn(λ)J0(λr) dλ =

{
0, (a < r < ∞),

2T2n+1(r/a)

πr(a2−r2)1/2
, (0 ≤ r < a),

(26)

where

Zn(λ) = Jn+1/2(
λa

2
)J−n−1/2(

λa

2
), (n = 0, 1, 2, . . .), (27)

the Hankel inversion is applied to Eqs. (24) and (25), and C ( j)(λ) can be rewritten as the following equation
by considering equalization of both equations:

C (1)(λ) = p(λ, h1, . . . , hN )

∞∑

n=0

xn(λ)Zn(λ), (28)

where
p(λ, h1, . . . , hN ) = 1/M(λ, h1, . . . , hN ). (29)

Substituting Eq. (28) into Eq. (23) and using Gegenbauer’s formula [30]

J0(λr) =
∞∑

m=0

(2 − δ0m)Xm(λ)cosmφ, (r = asin(φ/2)), (30)

we obtain
∞∑

n=0

xn

∫ ∞

0
p(λ, h1, . . . , hN )Zn(λ)

∞∑

m=0

(2 − δ0m)Xm(λ)cosmφ dλ = G1

1 − ν1
{−ε0 + f (r)} , (0 ≤ r ≤ a),

(31)
where δ0m is the Kronecker delta function and

Xm(λ) = J 2m(λa/2), (m = 0, 1, 2, . . .). (32)

The function f (r) depends on the shape of the indenter; therefore, the following equations were separated for
cylindrical and spherical indenters. For the cylindrical indenter, f (r) is simply zero. For a spherical indenter
of radius R, the shape of the spherical indenter f (r) to the first significant order of approximation is given by

f (r) ≈ r2/2R. (33)

The following infinite system of simultaneous equations is then obtained from Eq. (31) for a cylindrical
indenter: ∞∑

n=0

bn Amn = δ0m, (m = 0, 1, 2, . . .), (34)

where

bn = −1 − ν1

G1ε0
xn, (35)

Amn =
∫ ∞

0
p(λ, h1, . . . , hN )Xm(λ)Zn(λ)dλ. (36)

For a spherical indenter,

∞∑

n=0

(bn, cn)Amn = (δ0m, δ1m/2), (m = 0, 1, 2, . . .), (37)
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where

−ε0bn + a2

4R
cn = 1 − ν1

G1
xn . (38)

For a spherical indenter, the contact stress (σz)(1)z=0 approaches zero as r → a−0, and thus, we obtain

a2

4Rε0
=

∞∑

n=0

bn/
∞∑

n=0

cn = η. (39)

To calculate the infinite system of simultaneous equations in Eqs. (34) and (37), it is necessary to accurately
evaluate the integration of Amn . The details of this integration can be found in a previous study [26].

The numerical results for stress, displacement, and axial load can be obtained by calculating the coefficients
bn and cn for cylindrical and spherical indenters in Eqs. (34) and (37), respectively. The normal contact stress
(σz)

(1)
z=0 for a cylindrical indenter can be written in the form

(σz)
(1)
z=0 = − 2G1ε0

(1 − ν1)πr
√
a2 − r2

∞∑

n=0

bnT2n+1

( r

a

)
, (0 ≤ r < a), (40)

and that for a spherical indenter can be expressed as

(σz)
(1)
z=0 = − 2G1ε0

(1 − ν1)πr
√
a2 − r2

∞∑

n=0

(bn − ηcn) T2n+1

( r

a

)
, (0 ≤ r < a). (41)

The axial load P , obtained by integrating (σz)(1)z=0 over the contact area, for a cylindrical indenter is

P = −4G1ε0

1 − ν1

∞∑

n=0

(−1)n

2n + 1
bn, (42)

and that for a spherical indenter is

P = −4G1ε0

1 − ν1

∞∑

n=0

(−1)n

2n + 1
(bn − ηcn). (43)

The normal displacement (wz)
(1)z=0 for a cylindrical indenter and that for a spherical indenter can be repre-

sented, respectively, in the following forms:

(wz)
(1)
z=0

ε0
=

∞∑

n=0

bn

[∫ ∞

0
{p(λ, h1, . . . , hN ) − 1} Zn(λ)J0(λr)dλ

+
∫ ∞

0

{

Zn(λ) − 2

πλa
sinλa

}

J0(λr)dλ

+ 2

πa

{
H(a − r)

π

2
+ H(r − a)sin−1

(a

r

)}]

,

(44)

and
(wz)

(1)
z=0

ε0
=

∞∑

n=0

(bn − ηcn)

[∫ ∞

0
{p(λ, h1, . . . , hN ) − 1} Zn(λ)J0(λr)dλ

+
∫ ∞

0

{

Zn(λ) − 2

πλa
sinλa

}

J0(λr)dλ

+ 2

πa

{
H(a − r)

π

2
+ H(r − a)sin−1

(a

r

)}]

,

(45)
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where H(x) is the Heaviside unit step function. In this study, the stress singularity factor S is defined by
the following equation to estimate the magnitude of the normal contact stress singularity at the edge of the
cylindrical punch:

S = lim
r→a−0

√
2π(a − r)(σz)

(1)
z=0. (46)

Substituting Eq. (40) into Eq. (46) yields

S = − 2G1ε0

(1 − ν1)a
√

πa

∞∑

n=0

bn. (47)

3 Numerical results and discussion

Tables 1 and 2 show the convergence of coefficients bn and cn in an infinite system of simultaneous equations
(Eqs. (34) and (37)). The number of elastic layers N = 4. The following numerical results in this section
describe the mechanical properties of multiple elastic layers and a semi-infinite substrate under specific condi-
tions. The Poisson’s ratios ν j of the elastic layers and semi-infinite substrate are all fixed at 0.3. This was done
because the numerical results are not sensitive to the effect of Poisson’s ratio; the effect of the shear moduli of
the layer and substrate is dominant. Two systems are used for the shear moduli G j . In the hard-coating system,
the shear modulus increases linearly from the substrate to the surface layer, and in the soft-coating system, the
shear modulus decreases linearly from the substrate to the surface layer as shown in Fig. 3

The number of coefficients bn and cn in this study was set to ten, which converged sufficiently. As shown
in Tables 1 and 2, the convergence of coefficients decreased with decreasing aspect ratio h/a, which represents
the total thickness of an elastic layer per radius of contact area. The fluctuation of coefficient values was close
to zero when h/a = 0.5. However, the fluctuation is a trivial problem because it was near zero. The following
discussion in this section compares the present results of axial load P to those reported by Constantinescu et
al. [21]. The convergence of coefficients bn and cn is important for the accuracy of the numerical calculation
because the numerical results are based on these coefficients.

Figure 4 shows the radial distribution of the normalized normal contact stress at the surface layer (σ ∗
z )(1)z=0

below cylindrical and spherical indenters with respect to the normalized radial distance r/a for the hard-

Table 1 Convergence of bn coefficients for various values of total layer thickness ratio h/a for a cylindrical indenter

n h/a

0.5 1.0 1.5 2.0

Hard coating
0 2.959360E−01 3.489798E−01 3.914975E−01 4.304908E−01
1 1.173272E−01 1.049666E−01 8.045479E−02 6.089026E−02
2 4.301099E−02 1.185515E−02 2.874942E−03 6.982334E−05
3 5.857748E−03 −1.306166E−03 −1.876149E−03 −8.424862E−04
4 −3.231934E−04 −1.404621E−03 2.100388E−04 1.202193E−04
5 −1.224493E−03 3.983458E−04 −6.844856E−06 −9.428652E−06
6 −9.609879E−04 −3.601073E−05 −7.375190E−07 4.954441E−07
7 −7.393853E−05 −2.418956E−06 1.120215E−07 −1.893079E−08
8 4.466071E−04 1.073306E−06 −7.900570E−09 5.523234E−10
9 2.402032E−04 −1.694065E−07 3.904331E−10 −1.296039E−11
Soft coating
0 2.667502E+00 2.208116E+00 1.942199E+00 1.768211E+00
1 −6.479740E−01 −4.301118E−01 −2.861665E−01 −1.966114E−01
2 −1.457135E−01 −2.656089E−02 3.519780E−03 8.912433E−03
3 −1.158267E−02 1.103961E−02 5.779219E−03 1.910421E−03
4 1.050363E−02 3.303346E−03 −4.423139E−04 −3.707698E−04
5 6.984159E−03 −3.374915E−04 −9.323480E−05 3.391287E−05
6 1.789196E−03 −5.134618E−04 2.440585E−05 −2.047267E−06
7 −4.158606E−04 2.180246E−04 −2.864848E−06 9.042202E−08
8 −8.773915E−04 −4.741338E−05 2.219517E−07 −3.080570E−09
9 −5.172693E−04 7.790779E−06 −1.325451E−08 8.555513E−11

Number of layers N = 4
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Table 2 Convergence of bn/η − cn coefficients for various values of total layer thickness ratio h/a for a spherical indenter

n h/a

0.5 1.0 1.5 2.0

Hard coating
0 8.350263E−01 1.179486E+00 1.433610E+00 1.602688E+00
1 −7.047671E−01 −1.088298E+00 −1.375389E+00 −1.564545E+00
2 −1.108010E−01 −8.810067E−02 −5.895514E−02 −4.038186E−02
3 −1.794534E−02 −4.223892E−03 −1.051035E−04 2.269766E−03
4 −1.645076E−03 6.512338E−04 9.864696E−04 −2.539432E−05
5 −1.101596E−04 7.055252E−04 −1.612670E−04 −6.482247E−06
6 2.890478E−04 −2.638139E−04 1.511491E−05 5.840804E−07
7 4.378653E−04 4.924052E−05 −9.836909E−07 −2.839021E−08
8 −6.727601E−05 −6.146996E−06 4.794215E−08 9.556387E−10
9 −4.173236E−04 6.093229E−07 −1.882479E−09 −2.473511E−11
Soft coating
0 4.609345E+00 3.450469E+00 2.934960E+00 2.645922E+00
1 −5.164063E+00 −3.745472E+00 −3.109085E+00 −2.755628E+00
2 4.788556E−01 2.835842E−01 1.782514E−01 1.188943E−01
3 6.692432E−02 1.773388E−02 −7.049052E−04 −9.563807E−03
4 1.050958E−02 −3.949268E−03 −4.100776E−03 3.762585E−04
5 2.855177E−05 −3.636882E−03 7.510717E−04 −1.940117E−07
6 −2.552783E−03 1.550272E−03 −7.654282E−05 −8.131334E−07
7 −2.953194E−03 −3.176820E−04 5.352209E−06 5.026694E−08
8 8.140945E−04 4.303661E−05 −2.785933E−07 −1.830220E−09
9 3.091454E−03 −4.629800E−06 1.166613E−08 4.870771E−11

Number of layers N = 4

(a)

(b)

Fig. 3 Mechanical properties of elastic layers and semi-infinite substrate for a hard-coating system and b soft-coating system
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Fig. 4 Radial distribution of (σ ∗
z )

(1)
z=0 = (σz)

(1)
z=0 4a2/P1 in contact area 2a with respect to r/a below a flat-ended cylindrical

indenter and b spherical indenter (ν1 = · · · = νN+1 = 0.3, h/a = 1.0)

and soft-coating systems defined in Fig. 3. The aspect ratio h/a is fixed at 1.0 and the number of elastic
layers N = 1, 2, 3, and 4. (σ ∗

z )(1)z=0 is normalized with respect to P1/4a2, where P1 represents the axial load
required for the cylindrical indenter to penetrate a given depth ε0 into a homogeneous semi-infinite solid with
the mechanical properties of the surface elastic layer. As shown in Fig. 4, the normal contact stress (σ ∗

z )(1)z=0

below the cylindrical indenter is at its minimum value at r/a = 0, and then increases and tends to infinity as
r → a − 0 because the edge of the cylindrical punch causes a stress singularity. For the spherical indenter,
(σ ∗

z )
(1)
z=0 below the indenter is maximum at the tip of the indenter and then decays to 0 as r → a−0 because the

contact between the spherical indenter and the elastic layer smoothly ends at the edge of the contact area. The
magnitude of (σ ∗

z )
(1)
z=0 in the soft-coating system is higher than that in the hard-coating system because (σ ∗

z )
(1)
z=0

is normalized by the homogeneous result with the mechanical properties of the surface elastic layer, which is
the lowest in the soft-coating system and the highest in the hard-coating system. Furthermore, the magnitude
of (σ ∗

z )
(1)
z=0 in the soft-coating system increases with increasing number of elastic layers N , whereas that in

the hard-coating system decreases. This result implies that the hard-coating system reduces the magnitude of
stress by absorbing force with its soft internal structure.

Figure 5 shows the radial distribution of the normal displacement at the surface layer indented by cylindrical
and spherical indenters. (w∗

z )
(1)
z=0 is normalized by the penetration depth ε0 with respect to the normalized radial

distance r/a for the hard- and soft-coating systems. The aspect ratio h/a is fixed at 1.0 and the number of
elastic layers N = 1, 2, 3, and 4. The results of (w∗

z )
(1)
z=0 for the cylindrical indenter in Fig. 5a are plotted

in the range of 1 ≤ r/a because the normal displacement is equal to the penetration depth in the contact
area 0 ≤ r/a ≤ 1. Figure 5 indicates that the normal displacement (w∗

z )
(1)
z=0 is insensitive to the mechanical
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(1)
z=0/ε0 with respect to r/a below a flat-ended cylindrical indenter and b spherical

indenter (ν1 = · · · = νN+1 = 0.3, h/a = 1.0)

properties of the elastic layer and substrate and the number of layers. However, there is a slight difference in
(w∗

z )
(1)
z=0 caused by normalization with respect to penetration depth; the actual displacement is thus a function

of the mechanical properties and the number of layers. Therefore, the results of (w∗
z )

(1)
z=0 can be applied to

indentation tests of multi-layer materials for inverse analysis to determine the mechanical properties of such
materials.

Figure 6 shows the variation of the normalized stress singularity factor S∗ = −Sa3/2/P1 at the edge of the
cylindrical indenter with respect to the aspect ratio h/a for the hard- and soft-coating systems. The number
of elastic layers N = 1, 2, 3, and 4. The results of the stress singularity factor are expected to be sensitive to
the coefficients of the infinite system of simultaneous equations (34) and (37). Therefore, the present results
should be compared with the previously reported numerical results to establish their accuracy. As shown in
Fig. 6, S∗ with a large value of h/a approaches a constant value of S∗ = 1/2π−1/2, which represents the
solution for a homogeneous semi-infinite solid with the mechanical properties of the surface layer.

Figure 7 shows the relationships between the normalized axial load P∗ = P/P1 and the aspect ratio h/a
for the hard- and soft-coating systems indented by cylindrical and spherical indenters. P∗ represents the effect
of multi-layer system on the semi-infinite solid. Therefore, P∗ has a capability as an indentation scaling factor.
The number of layers N = 1, 2, 3, and 4. Constantinescu et al. [21] provided the numerical results of the
apparent contact modulus E∗, which represents a mechanical property of a multi-layer material regarded as
one homogeneous layer. They provided symbolic/numerical code for Mathematica (Wolfram Research). The
estimation of the apparent contact modulus E∗ is based on the calculation of axial load P , and thus, the present
results of the normalized axial load are compared with the numerical results obtained using Constantinescu et
al.’s Mathematica code, as shown in Fig. 7.
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Fig. 7 Relationship between P∗ = P/P1 and h/a below a flat-ended cylindrical indenter and b spherical indenter for various
numbers of elastic layers

The present results for the cylindrical and spherical indenters are in good agreement with the reported
results. It should be noted that the present results were normalized by contact radius a. Constantinescu et al.
[21] predetermined the radius of the indenter R for a spherical indenter and penetration depth d , which is equal
to ε0 in this paper. Contact radius a was determined using iterative calculation in their paper. Therefore, h/a
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Fig. 8 Comparison of P∗ = P/P1 between multiple layers and one layer bonded to an elastic substrate below a flat-ended
cylindrical indenter and b spherical indenter for various numbers of elastic layers

for a spherical indenter was not a predetermined value given by their symbolic/numerical code. A numerical
comparison between the present results and those of Constantinescu et al. [21] for various aspect ratios in the
range of h/a < 2 is given the Appendix.

Figure 8 shows a comparison of the axial load P∗ = P/P1 between multiple layers (N = 4) and one layer
(N = 1) with the same shear modulus ratio of the surface layer to the elastic substrate, G1/GN+1 = 0.2 and
5.0. The axial load for themultiple layers is higher than that for the one layerwhenG1/GN+1 = 0.2,which rep-
resents the soft-coating system, and lower than that for the one layer whenG1/GN+1 = 5.0, which represents
the hard-coating system as shown in Fig. 8. Therefore, the hard-coating multi-layer system effectively protects
materials. Furthermore, the effect of multi-layer system has few advantages when the layer thickness becomes
sufficiently thin or thick because of the dominant effect of the elastic substrate or surface layer on axial load.

4 Conclusions

The axisymmetric contact problem of a multi-layer coating perfectly bonded to an elastic substrate indented
by flat-ended cylindrical and spherical indenters was considered. An analytical solution for an infinite system
of simultaneous equations was obtained by using an analytical method that expresses the normal contact stress
as an appropriate series with Chebyshev orthogonal polynomials and applying the transfer matrix method,
which calculates the transfer matrices derived from the continuous interface condition of an adjacent elastic
layer and the substrate. The solution is exact because the analysis procedures did not use any approximation.
This paper provides not only the axial load of the rigid indenter but also the distribution of the normal contact
stress and displacement of the surface of a multi-layer coating and the stress singularity factor for assessing the
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magnitude of the normal contact stress at the edge of a flat-ended cylindrical punch. Numerical results were
presented for hard- and soft-coating systems, for which the mechanical properties of each elastic layer and the
substrate linearly increase and decrease from the substrate to the top surface layer, respectively. The Poisson’s
ratios of the elastic layers and substrate were fixed at 0.3 and the elastic layer thicknesses were assumed to be
uniform; however, it is possible to change this parameter. The numerical results of axial load for the flat-ended
cylindrical and spherical indenters are in good agreement with the results calculated using the Mathematica
code provided in a previous study. The numerical results of stress and displacement can serve as guidelines
for the design of appropriate mechanical properties of layered materials under indentation loading.
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Appendix

See Tables 3, 4, 5, 6, and 7.

Table 3 Comparison of normalized axial load P∗ = P/P1 for various h/a ratios in the range of h/a > 2.0 between the present
and previously reported results for a cylindrical indenter

h/a N = 1 N = 2 N = 3 N = 4

Constantinescu
et al.

Present
study

Constantinescu
et al.

Present
study

Constantinescu
et al.

Present
study

Constantinescu
et al.

Present
study

Hard coating
0.5 0.590 0.590 0.414 0.414 0.322 0.322 0.590 0.590
1 0.657 0.657 0.475 0.475 0.378 0.378 0.657 0.657
1.5 0.713 0.713 0.531 0.531 0.430 0.430 0.713 0.713
Soft coating
0.5 1.589 1.590 2.234 2.237 2.847 2.857 3.436 3.454
1 1.398 1.399 1.884 1.886 2.341 2.345 2.775 2.781
1.5 1.288 1.288 1.672 1.673 2.036 2.037 2.379 2.381

Table 4 Comparison of normalized axial load P∗ = P/P1 for various h/a ratios in the range of h/a < 2.0 between the present
and previously reported results for a spherical indenter (N = 1)

h/a N = 1

Constantinescu et al. Present study

Hard coating
0.49 0.409 0.410
1.00 0.471 0.472
1.49 0.513 0.513
Soft coating
0.51 0.998 0.997
1.01 0.862 0.864
1.49 0.801 0.802
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Table 5 Comparison of normalized axial load P∗ = P/P1 with various h/a ratios in the range of h/a < 2.0 between the present
and previously reported results for a spherical indenter (N = 2)

h/a N = 2

Constantinescu et al. Present study

Hard coating
0.51 0.292 0.292
1.00 0.349 0.349
1.48 0.394 0.395
Soft coating
0.49 1.395 1.400
1.01 1.130 1.134
1.51 0.997 0.999

Table 6 Comparison of normalized axial load P∗ = P/P1 with various h/a ratios in the range of h/a < 2.0 between the present
and previously reported results for a spherical indenter (N = 3)

h/a N = 3

Constantinescu et al. Present study

Hard coating
0.52 0.230 0.230
0.98 0.280 0.280
1.49 0.327 0.327
Soft coating
0.48 1.773 1.785
0.99 1.397 1.401
1.51 1.192 1.195

Table 7 Comparison of normalized axial load P∗ = P/P1 with various h/a ratios in the range of h/a < 2.0 between the present
and previously reported results for a spherical indenter (N = 4)

h/a N = 4

Constantinescu et al. Present study

Hard coating
0.47 0.185 0.185
1.01 0.240 0.240
1.48 0.282 0.282
Soft coating
0.48 2.137 2.146
1.02 1.624 1.628
1.49 1.387 1.389
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