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Abstract The paper deals with Rayleigh wave propagation in a nonlocal thermoelastic layer, and the layer
is lying over a nonlocal thermoelastic half-space. The problem is treated in the context of Eringen’s nonlocal
thermoelasticity and Green–Naghdi model type III of hyperbolic thermoelasticity. The frequency equation of
Rayleigh waves is derived, and different cases are also discussed. The effect of the nonlocal parameter on
phase velocity, attenuation coefficient, specific loss, and penetration depth is presented graphically.

1 Introduction

The theory of nonlocal elasticity has attracted the attention of many authors because of its early success in
solving an old problem in fracture mechanics. The nonlocal elasticity solution of Eringen [1,2] showed that
the stress at the tip of a crack is finite; it rises to a maximum and then diminishes with the distance from the
crack tip. Eringen [3,4] found the nonlocal solution of the discrete dislocation problem. Nonlocal field theories
contain very interesting physics, in fact, all physics, excluding quantum effects and elementary particle physics.
This can be extended further to include the nonlocal mixture theory, diffusion, and other allied phenomena.

Some nonclassical thermoelasticity theories have been developed depending on the strategies to incorporate
additional atomistic features based on Eringen’s nonlocal elasticity theory [5] which is nowwell established. In
the local elasticity model, Eringen [5] assumed that the stress field at a particular point in an elastic continuum
not only depends on the strain field but also on strains at all other points of the body. Altan [6] studied the
uniqueness in the linear theory of nonlocal elasticity. The nonlocal elasticity models characterized by the
presence of nonlocality residuals of fields have been proposed by Eringen and Edelen [7]. Eringen extended
the concept of nonlocality to various other fields in his works cited in [8–10].

Nonlocal elasticity theories are now well established and are being applied to the problems of wave
propagation in elastic and thermoelastic solids. Pramanik and Biswas [11] investigated the propagation of
Rayleigh surface waves in nonlocal thermoelastic solids. Biswas [12] considered the propagation of Rayleigh
surface waves in a porous nonlocal thermoelastic orthotropic medium. Khurana and Tomar [13] studied wave
propagation in a nonlocal microstretch solid. Jun et al. [14] discussed nonlocal thermoelasticity based on
nonlocal heat conduction and nonlocal elasticity. Khurana and Tomar [15] investigated Rayleigh-type waves
in a nonlocal micropolar solid half-space.

The generalized thermoelasticity theories have been developed with the aim of removing the paradox of
infinite speed of heat propagation inherent in the classical coupled dynamical thermoelasticity theory (Biot
[16]). Many new theories have been proposed to take care of this physical absurdity. Lord and Shulman
[17] first modified Fourier’s law by introducing the term representing the thermal relaxation time. The heat
equation associated with this theory is a hyperbolic type and hence eliminates the paradox of infinite speed of
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thermal propagation. Then, Green and Lindsay [18] developed a more general theory of thermoelasticity in
which Fourier’s law of heat conduction is unchanged, whereas the classical energy equation and Duhamel–
Neumann’s relations are modified by introducing two constitutive constants having the dimensions of time.
Later, Green and Naghdi [19–21] developed three models for generalized thermoelasticity of homogeneous
isotropic materials, which are labelled as models I, II, and III. Green–Naghdi model type II is known as
thermoelasticity without energy dissipation, and Green–Naghdi type III model is known as thermoelasticity
with energy dissipation. Detailed information regarding these theories can be found in [22,23].

Dwan and Chakraborty [24] proposed Rayleigh waves in the context of Green-Lindsay’s model of gen-
eralized thermoelasticity theory, and Rossikin and Shitikova [25] discussed nonstationary Rayleigh waves in
the thermally insulated surfaces of some thermoelastic bodies of revolution. Singh et al. [26] considered prop-
agation of the Rayleigh wave in an initially stressed transversely isotropic magneto-thermoelastic half-space
with dual-phase-lag model. Biswas et al. [27] investigated Rayleigh surface wave propagation in orthotropic
thermoelastic solids under three-phase-lag model. Biswas and Abo-Dahab [28] considered the effect of phase
lags on Rayleigh waves in an initially stressed magneto-thermoelastic orthotropic medium. Abd-Alla and Al-
Dawy [29] considered the effect of thermal relaxation times on Rayleigh waves in a generalized thermoelastic
medium.Wojnar [30] examined Rayleigh waves in a thermoelastic medium with relaxation times. Biswas [31]
reported Stroh analysis of Rayleigh waves in an anisotropic thermoelastic mediumwith three-phase-lagmodel.
Biswas andMukhopadhyay [32] employed the eigenfunction expansion method to characterize Rayleigh wave
propagation in an orthotropic medium with three-phase-lag model.

In this article, Rayleigh wave propagation in an isotropic thermoelastic layer lying over an isotropic
thermoelastic half-space is investigated. The problem is treated in the context of Green–Naghdi model type III
based on Eringen’s nonlocal thermoelasticity. Different frequency equations are derived as special cases which
agree with the existing literature. In order to illustrate the theoretical developments, the computer simulated
results with respect to phase velocity, attenuation coefficient, specific loss, and penetration depth are presented
graphically.

2 Derivation of the model

We shall first establish the constitutive relations and field equations for a nonlocal thermoelastic medium with
Green–Naghdi model type III of generalized thermoelasticity.

Consider a thermoelastic body having volume V , bounded by the surface S and occupying region B in
R3 at time t . Let the position of a typical point of B in the unbounded state be Xi and the position of the
corresponding point in the deformed state be xi . The displacement components ui of the particle are given by
ui = xi − Xi .

Let us denote the strain tensor by ei j . In the linear theory, the Lagrangian strain tensor reduces to

ei j = 1

2

(
ui, j + u j,i

)
.

Suppose θ = T − T0, where T0 is the temperature of the material in its natural state assumed to be such that∣∣
∣ θ
T0

∣∣
∣ << 1 and T is the absolute temperature of the material.

Within the context of linear theory and assuming that the initial body is free from stresses, we take the set
of basic variables at two neighbouring points x and x′, respectively, as

� = {
ei j (x) , θ (x)

}

and �′ = {
ei j

(
x′) , θ

(
x′)} . (1)

The strain energy function W for nonlocal thermoelastic materials can be written as

2W = Ci jklei j (x) ekl
(
x′) − βi j

[
ei j (x) θ

(
x′) + ei j

(
x′) θ (x)

] − aθ (x) θ
(
x′) (2)

where the constitutive coefficients Ci jkl , a, βi j are prescribed functions of x and x′. Ci jkl are the elastic
constants, βi j are the thermal moduli, ei j are the strain components, and a = ρCv

T0
.

We adopt the following symmetries in the constitutive coefficients as

Ci jkl
(
x, x′) = Ckli j

(
x, x′) = C jikl

(
x, x′) , βi j

(
x, x′) = β j i

(
x, x′) .
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Following Eringen [1], the constitutive relations are obtained from

� =
∫

V

[
∂W

∂�
+

(
∂W

∂�′

)s]
dV

(
x′) (3)

where the superscript ‘s’ represents the symmetry of that quantity with respect to interchange of x and x′. The
set � = {

τi j , −η
}
is an ordered set with the set �.

Thus, the force stress tensor τi j and the specific entropy η are obtained from relations (2) and (3) as

τi j =
∫

V

[
Ci jkl

(
x, x′) ekl

(
x′) − βi j

(
x, x′) θ

(
x′)]dV

(
x′) , (4)

ρη =
∫

V

[
βi j

(
x, x′) ei j

(
x′) + aθ

(
x′)]dV

(
x′) . (5)

For a centro-symmetric isotropic material, the constitutive coefficients reduce to

Ci jkl = λ
(
x, x′) δi jδkl + 2μ

(
x, x′) δikδ jl , βi j = β

(
x, x′)

where the material coefficients λ,μ, β are functions of
∣∣x − x′∣∣.

Hence, the constitutive relations (4)–(5) become

τi j =
∫

V

[
λ

(∣∣x − x′∣∣) δi j ekk
(
x′) + 2μ

(∣∣x − x′∣∣) ei j
(
x′) − β

(∣∣x − x′∣∣) θ
(
x′)]dV

(
x′) , (6)

ρη =
∫

V

[
β

(∣∣x − x′∣∣) ei j
(
x′) + a

(∣∣x − x′∣∣) θ
(
x′)]dV

(
x′) . (7)

For most of the materials, the cohesive zone is very small, and within that zone the intermolecular forces
decrease rapidly with distance from the reference point. Hence, we consider that all constitutive coefficients
attenuate with distance, e.g.

lim
(|x−x′|)→∞

λ
(∣∣x − x′∣∣) → 0.

We also consider that all the constitutive coefficients attenuate the same degree and they attain their maxima
at x = x′.

Therefore, we can take the following relations between nonlocal and local coefficients:

λ
(∣∣x − x′∣∣)

λ0
= μ

(∣∣x − x′∣∣)

μ0
= β

(∣∣x − x′∣∣)

β0
= a

(∣∣x − x′∣∣)

a0
= G

(∣∣x − x′∣∣) ; (8)

here, the quantities in the denominator are Lamé constants coefficients. λ0, μ0 are well-known Lame’s con-
stants, β0 = (3λ0 + 2μ0) αt , αt is the coefficient of linear thermal expansion, a is thermal constant, δi j is the
Kronecker delta function, and the function G

(∣∣x − x′∣∣) is a nonlocal kernel representing the effect of distant
interactions of material points between x and x′.

Also, the integral of the nonlocal kernel G
(∣∣x − x′∣∣) over the domain of integration is unity, i.e.

∫

V

G
(∣∣x − x′∣∣)dV = 1.

Hence, the kernel function G behaves as a Dirac delta function over the domain of influence. The function G
attains its peak at

∣∣x − x′∣∣ = 0 and generally decays with increasing
∣∣x − x′∣∣.

Eringen [5] has already shown that the function G satisfies the relation
(
1 − ε2∇2)G

(∣∣x − x′∣∣) = δ
(∣∣x − x′∣∣) (9)
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where ε = e0acl is the elastic nonlocal parameter [1,5], acl being the internal characteristic length, and e0 is
a material constant. The internal characteristic length acl is the interatomic distance, e.g. length of C–C bond
(0.142 nm in Carbon nanotube).

Applying the operator
(
1 − ε2∇2

)
on the constitutive relations (6), (7), owing to the relation (8) and the

property (9), we obtain (after suppressing the subscript ‘0’ from the constitutive coefficients)
(
1 − ε2∇2) τi j = τ L

i j = {
2μei j (x) + [λekk (x) − βθ (x)] δi j

}
, (10)

(
1 − ε2∇2) ρη = (ρη)L = [βekk (x) + aθ (x)] , (11)

wherein the formula
∫

f (x)δ (x − a) dx = f (a) (12)

has been employed. The quantities τ L
i j , and (ρη)L correspond to the local thermoelastic solid.

The fourier law for the GN-III model in nonlocal thermoelasticity becomes:
(
1 − ε2∇2) q̇i = q̇ L

i = − (
K θ̇,i + K ∗θ,i

)
(13)

where qi are the components of the heat flux vector, K is the thermal conductivity, and K ∗ is the material
constant characteristic of the theory.

3 Basic equations

The constitutive equations for isotropic thermoelastic material become:
(a) The energy equation for the linear theory of a thermoelastic material:

− ρT0η̇ = qi,i ; (14)

(b) The equations of motion (in the absence of body force):

τi j, j = ρüi (15)

where ρ is the mass density.
From the constitutive relations (10) and (11), Fourier’s law (13), the energy equation (14), and the equation

of motion (15), we obtain the field equations in terms of the displacement and temperature for a homogeneous
isotropic nonlocal thermoelastic material in the absence of body forces as

(λ + μ) u j,i j + μui, j j − βθ,i = (
1 − ε2∇2) ρüi , (16)

K∇2θ̇ + K ∗∇2θ = ρCv T̈ + βT0ë (17)

where aT0 = ρCv,Cv is the specific heat at constant strain.
From Eq. (10), we get the stress components as

(
1 − ε2∇2) τi j = τ L

i j = λekkδi j + 2μei j − βθδi j . (18)

4 Formulation of the problem in a nonlocal thermoelastic layer

Let us consider amediumwhich consists of a nonlocal, homogeneous and isotropic layer of a constant thickness
H lying over a nonlocal, homogeneous, and isotropic thermoelastic half space (Fig. 1).

Let us consider a plane harmonic surface wave which propagates along the x-axis and which is polarised
in the (x, z) plane.

We take �u1 = (u1, 0, w1) as the displacement vector in the layer, λ1, μ1 are Lamé constants in the layer,
β1 is the thermal modulus in the layer, ρ1 is the mass density of the thermoelastic layer, θ1 is the temperature
above reference temperature of the layer, K1 is the thermal conductivity of thermoelastic layer, K ∗

1 is the
material constant characteristic of the theory for the layer, Cv is the specific heat at constant strain, and

(
τi j

)
1

are the stress components in the layer.
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The basic governing equations of a nonlocal thermoelastic layer with Green–Naghdi type III model are
obtained as

(λ1 + 2μ1)
∂2u1
∂x2

+ μ1
∂2u1
∂z2

+ (λ1 + μ1)
∂2w1

∂x∂z
− β1

∂θ1

∂x
= (

1 − ε2∇2) ρ1ü1, (19)

(λ1 + 2μ1)
∂2w1

∂x2
+ μ1

∂2w1

∂z2
+ (λ1 + μ1)

∂2u1
∂x∂z

− β1
∂θ1

∂z
= (

1 − ε2∇2) ρ1ẅ1, (20)

K ∗
1∇2θ1 + K1∇2θ̇1 = ρ1Cvθ̈1 + β1T0ë. (21)

We define the dimensionless quantities as follows:

(
x ′, z′, ε′) = ω∗

1

c1
(x, z, ε) ,

(
u′
1, w

′
1

) = ω∗
1

c1
(u1, w1) , θ ′

1 = β1θ1

ρ1c21
, t ′ = ω∗

1 t,
(
τi j

)′
1 =

(
τi j

)
1

β1T0
,

m1 = μ1

λ1 + 2μ1
, m2 = λ1 + μ1

λ1 + 2μ1
, m3 = β2

1T0ω
∗
1

ρ1K ∗
1

, m4 = K1ω
∗
1

K ∗
1

, m5 = λ1

λ1 + 2μ1

where ω∗
1 = ρ1Cvc21

K ∗
1

and c1 =
√

λ1+2μ1
ρ1

are the characteristic frequency and longitudinal wave velocity in the

layer, respectively.
Using nondimensional quantities in Eqs. (19), (20), and (21) and dropping primes, we get

∂2u1
∂x2

+ m1
∂2u1
∂z2

+ m2
∂2w1

∂x∂z
− ∂θ1

∂x
= (

1 − ε2∇2) ü1, (22)

∂2w1

∂x2
+ m1

∂2w1

∂z2
+ m2

∂2u1
∂x∂z

− ∂θ1

∂z
= (

1 − ε2∇2) ẅ1, (23)

∇2θ1 + m4∇2θ̇1 = θ̈1 + m3ë. (24)

5 Formulation of the problem in a nonlocal thermoelastic half-space

We take �u2 = (u2, 0, w2) as the displacement vector in the half-space, λ2, μ2 are Lamé constants in the half-
space , β2 is the thermal modulus for the thermoelastic half-space, ρ2 is the mass density of the thermoelastic
half-space, θ2 is the temperature above reference temperature of the half-space, K2 is the thermal conductivity
of the thermoelastic half-space, K ∗

2 is the material constant characteristic of the theory for the half-space, C ′
v

is the specific heat at constant strain, and
(
τi j

)
2 are the stress components in the half-space.

The basic governing equations of a nonlocal thermoelastic half-space with Green–Naghdi type III model
are obtained as

(λ2 + 2μ2)
∂2u2
∂x2

+ μ2
∂2u2
∂z2

+ (λ2 + μ2)
∂2w2

∂x∂z
− β2

∂θ2

∂x
= (

1 − ε2∇2) ρ2ü2, (25)

(λ2 + 2μ2)
∂2w2

∂x2
+ μ2

∂2w2

∂z2
+ (λ2 + μ2)

∂2u2
∂x∂z

− β2
∂θ2

∂z
= (

1 − ε2∇2) ρ2ẅ2, (26)

K ∗
2∇2θ2 + K2∇2θ̇2 = ρ2C

′
vθ̈2 + β2T0ë. (27)

We define the dimensionless quantities as follows:

(
x ′, z′, ε′) = ω∗

c2
(x, z, ε) ,

(
u′
2, w

′
2

) = ω∗

c2
(u2, w2) , θ ′

2 = β2θ2

ρ2c22
, t ′ = ω∗t,

(
τi j

)′
2 =

(
τi j

)
2

β2T0
,

r1 = μ2

λ2 + 2μ2
, r2 = λ2 + μ2

λ2 + 2μ2
, r3 = β2

2T0ω
∗

ρ2K ∗
2

, r4 = K2ω
∗

K ∗
2

, r5 = λ2

λ2 + 2μ2

where ω∗ = ρ2C ′
vc

2
2

K ∗
2

and c2 =
√

λ2+2μ2
ρ2

are the characteristic frequency and longitudinal wave velocity in the

half-space, respectively.
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Using nondimensional quantities in Eqs. (25), (26), and (27), and dropping primes, we get

∂2u2
∂x2

+ r1
∂2u2
∂z2

+ r2
∂2w2

∂x∂z
− ∂θ2

∂x
= (

1 − ε2∇2) ü2, (28)

∂2w2

∂x2
+ r1

∂2w2

∂z2
+ r2

∂2u2
∂x∂z

− ∂θ2

∂z
= (

1 − ε2∇2) ẅ2, (29)

∇2θ2 + r4∇2θ̇2 = θ̈2 + r3ë. (30)

6 Boundary conditions

Now we add boundary conditions which determine the properties of the wave field at the boundaries.

(a) Surface of the layer z = 0 :
We assume the surface of the layer to be traction free and temperature free:
(i) (τxz)1 = 0

which gives (τxz)
L
1 = 0, (31)

(ii) (τzz)1 = 0,

which gives (τzz)
L
1 = 0, (32)

(iii)

θ1 = 0. (33)

(b) Interface between the layer and the half-space z = H :
We require all displacement and stress components to be continuous across this interface:
(iv)

u1 = u2, (34)

(v)

w1 = w2, (35)

(vi)

(τxz)1 = (τxz)2 ,
(
1 − ε2∇2) (τxz)1 = (

1 − ε2∇2) (τxz)2 .

We have

(τxz)
L
1 = (τxz)

L
2 , (36)

(vii)

(τzz)1 = (τzz)2 ,
(
1 − ε2∇2) (τzz)1 = (

1 − ε2∇2) (τzz)2 ,

We have

(τzz)
L
1 = (τzz)

L
2 , (37)

(viii)

θ1 = θ2. (38)

(c) Infinite depth z → ∞ :
We require the displacements and temperature to diminish to zero at large depths,

u2 → 0, w2 → 0, θ2 → 0.

This condition guarantees that the wave under consideration will have the character of a surface wave.
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7 Solution of the problem in a nonlocal thermoelastic layer

For Rayleigh wave propagation in the layer along the x−direction, we take

(u1, w1, θ1) (x, z, t) = ( f1, g1, h1) (z) exp [i (kx − ωt)] (39)

where ω = kc is the angular frequency of Rayleigh waves, c is the phase velocity, and k is the wave number.
Using Eq. (39) in Eqs. (22), (23), and (24), we get

(
m1 − ε2ω2) D2 f1 + [(

1 + ε2k2
)
ω2 − k2

]
f1 + ikm2Dg1 − ikh1 = 0, (40)

(
1 − ε2ω2) D2g1 + [(

1 + ε2k2
)
ω2 − m1k

2] g1 + ikm2Df1 − Dh1 = 0, (41)

(1 − iωm4) D
2h1 + [

ω2 − (1 − iωm4) k
2] h1 + ikm3ω

2 f1 + m3ω
2Dg1 = 0 (42)

where D ≡ d
dz .

Eliminating f1 and h1 from Eqs. (40), (41), and (42), we get
(
AD6 + BD4 + CD2 + E

)
g1 (z) = 0.

In a similar way, we can write
(
AD6 + BD4 + CD2 + E

)
( f1 (z) , g1 (z) , h1 (z)) = 0 (43)

in which

A = n5n8 (n3 − n4n5) ,

B = (n3 − n4n5) (n5n9 + n6n8 + n11) − n4n5n6n8,

C = n6n9 (n3 − n4n5) − n4n6 (n5n9 + n6n8 + n11) ,

E = −n4n
2
6n9,

where n1 = (
m1 − ε2ω2

)
, n2 = [(

1 + ε2k2
)
ω2 − k2

]
, n3 = ikm2, n4 = ik, n5 = (

1 − ε2ω2
)
,

n6 = [(
1 + ε2k2

)
ω2 − m1k

2] , n7 = ikm2, n8 = (1 − iωm4) , n9 = [
ω2 − (1 − iωm4) k

2] ,

n10 = ikm3, n11 = m3ω
2.

From Eq. (43), we get
(
D2 + η21

) (
D2 + η22

) (
D2 + η23

)
[ f1 (z) , g1 (z) , h1 (z)] = 0. (44)

Now we obtain

f1 (z) =
3∑

n=1

An cos ηnz +
3∑

n=1

Bn sin ηnz, (45)

g1 (z) =
3∑

n=1

Cn cos ηnz +
3∑

n=1

Dn sin ηnz, (46)

h1 (z) =
3∑

n=1

En cos ηnz +
3∑

n=1

Fn sin ηnz. (47)

Now the displacements and temperature are obtained as

u1 (x, z, t) =
[

3∑

n=1

An cos ηnz +
3∑

n=1

Bn sin ηnz

]

exp [i (kx − ωt)] , (48)

w1 (x, z, t) =
[

3∑

n=1

Cn cos ηnz +
3∑

n=1

Dn sin ηnz

]

exp [i (kx − ωt)] , (49)

θ1 (x, z, t) =
[

3∑

n=1

En cos ηnz +
3∑

n=1

Fn sin ηnz

]

exp [i (kx − ωt)] (50)
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where we take Cn = cn An, Dn = dn Bn, En = en An, Fn = fn Bn .
The stresses are obtained as follows:

(τxx )
L
1 = ∂u1

∂x
+ m5

∂w1

∂z
− θ1

=
[

3∑

n=1

(ik An + m5ηndn Bn − en An) cos ηnz

+
3∑

n=1

(ikBn − m5ηncn An − fn Bn) sin ηnz

]

exp [i (kx − ωt)] ,

(τxz)
L
1 = ∂u1

∂z
+ ∂w1

∂x

=
[

3∑

n=1

(ηn Bn + ikcn An) cos ηnz +
3∑

n=1

(−ηn An + ikdn Bn) sin ηnz

]

exp [i (kx − ωt)] ,

(τzz)
L
1 = ∂w1

∂z
+ m5

∂u1
∂x

− θ1

=
[

3∑

n=1

(im5An − en An + dnηn Bn) cos ηnz +
3∑

n=1

(ikm5Bn − ηncn An − fn Bn) sin ηnz

]

× exp [i (kx − ωt)] .

8 Solution of the problem in the nonlocal thermoelastic half-space

For Rayleigh wave propagation in the half-space along x-direction, we take

(u2, w2, θ2) (x, z, t) = ( f2, g2, h2) (z) exp [i (kx − ωt)] . (51)

Using Eq. (51) in Eqs. (28), (29), and (30), we get
(
r1 − ε2ω2) D2 f2 + [(

1 + ε2k2
)
ω2 − k2

]
f2 + ikr2Dg2 − ikh2 = 0, (52)

(
1 − ε2ω2) D2g2 + [(

1 + ε2k2
)
ω2 − r1k

2] g2 + ikr2Df2 − Dh2 = 0, (53)

(1 − iωr4) D
2h2 + [

ω2 − (1 − iωr4) k
2] h2 + ikr3ω

2 f2 + r3ω
2Dg2 = 0 (54)

where D ≡ d
dz .

Eliminating f2 and h2 from Eqs. (52), (53), and (54), we get
(
A′D6 + B ′D4 + C ′D2 + E ′) g2 (z) = 0.

In a similar way, we can write
(
A′D6 + B ′D4 + C ′D2 + E ′) ( f2 (z) , g2 (z) , h2 (z)) = 0 (55)

in which

A′ = s5s8 (s3 − s4s5) ,

B ′ = (s3 − s4s5) (s5s9 + s6s8 + s11) − s4s5s6s8,

C ′ = s6s9 (s3 − s4s5) − s4s6 (s5s9 + s6s8 + s11) ,

E ′ = −s4s
2
6s9,

where

s1 = (
r1 − ε2ω2) , s2 = [(

1 + ε2k2
)
ω2 − k2

]
, s3 = ikr2, s4 = ik, s5 = (

1 − ε2ω2) ,

s6 = [(
1 + ε2k2

)
ω2 − r2k

2] , s7 = ikr2, s8 = (1 − iωr4) , s9 = [
ω2 − (1 − iωr4) k

2] ,

s10 = ikr3, s11 = r3ω
2.
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From Eq. (55), we get
(
D2 − k21

) (
D2 − k22

) (
D2 − k23

)
[ f2 (z) , g2 (z) , h2 (z)] = 0,

f2 (z) =
3∑

n=1

Xn exp (−knz) +
3∑

n=1

Ln exp (knz) ,

g2 (z) =
3∑

n=1

Yn exp (−knz) +
3∑

n=1

Mn exp (knz) ,

h2 (z) =
3∑

n=1

Zn exp (−knz) +
3∑

n=1

Nn exp (knz) . (56)

For bounded solution at z → ∞, we take Ln = Mn = Nn = 0.
So, we get

f2 (z) =
3∑

n=1

Xn exp (−knz), (57)

g2 (z) =
3∑

n=1

Yn exp (−knz), (58)

h2 (z) =
3∑

n=1

Zn exp (−knz). (59)

Using Eqs. (57)–(59) in Eqs. (52)–(54), we get

Yn = yn Xn, Zn = zn Xn

where

yn = kn
[
s1k2n + (s2 − s4s7)

]

[
(s3 − s4s5) k2n − s4s6

] ,

zn = s1s11k2n + (s2s11 − s3s10)

s3s6k2n + (s3s9 + s4s11)
.

Now replacing z by (z − H), we get displacements, temperature, and stresses as follows:

u2 =
3∑

n=1

Xn exp [−kn (z − H)] exp [i (kx − ωt)] , (60)

w2 =
3∑

n=1

yn Xn exp [−kn (z − H)] exp [i (kx − ωt)] , (61)

θ2 =
3∑

n=1

zn Xn exp [−kn (z − H)] exp [i (kx − ωt)] ,

(τxx )
L
2 = ∂u2

∂x
+ r5

∂w2

∂z
− θ2

=
3∑

n=1

(ik − r5ynkn − zn)Xn exp [−kn (z − H)] exp [i (kx − ωt)] ,

(τxz)
L
2 = ∂u2

∂z
+ ∂w2

∂x
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=
3∑

n=1

(ikyn − kn)Xn exp [−kn (z − H)] exp [i (kx − ωt)] ,

(τzz)
L
2 = ∂w2

∂z
+ r5

∂u2
∂x

− θ2

=
3∑

n=1

(ikr5 − kn yn − zn)Xn exp [−kn (z − H)] exp [i (kx − ωt)] . (62)

9 Derivation of the frequency equation

Using the boundary conditions (31), (32), and (33), we get

3∑

n=1

(ηn Bn + ikcn An) = 0, (63)

3∑

n=1

[(ikm5 − en) An + dnηn Bn] = 0, (64)

3∑

n=1

en An = 0. (65)

From Eq. (63), we get

Bn = δn An (66)

in which δn = − ikcn
ηn

.
From Eq. (65), we get

A3 = −e1
e3

A1 − e2
e3

A2. (67)

Using Eq. (66) and Eqs. (45)–(47) in Eqs. (40)–(42), we get

cn = n6 + (n7 − fn) ηnδn

n5η2n
, dn = (n7ηn − enηn − n6δn)

n5η2nδn
,

en = fn = (n2n11 + n3n10) − n1n11η2n
(n4n11 − n3n9) + n3n8η2n

,

Using the boundary conditions (34)–(38), we get

α1A1 + α2A2 − X1 − X2 − X3 = 0, (68)

γ1A1 + γ2A2 − y1X1 − y2X2 − y3X3 = 0, (69)

l1A1 + l2A2 − l3X1 − l4X2 − l5X3 = 0, (70)

p1A1 + p2A2 − p3X1 − p4X2 − p5X3 = 0, (71)

q1A1 + q2A2 − z1X1 − z2X2 − z3X3 = 0. (72)

We have five homogeneous equations in terms of five unknowns. The system of equations has a nontrivial
solution if

∣∣
∣∣
∣∣∣
∣∣

α1 α2 −1 −1 −1
γ1 γ2 −y1 −y2 −y3
l1 l2 −l3 −l4 −l5
p1 p2 −p3 −p4 −p5
q1 q2 −z1 −z2 −z3

∣∣
∣∣
∣∣∣
∣∣

= 0.
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Expanding the determinant, we get

α1P1 − α2P2 − P3 + P4 − P5 = 0 (73)

in which Pn (n = 1, 2, . . . , 5) are mentioned in the Appendix.
Equation (73) is the frequency equation of Rayleigh waves in a nonlocal thermoelastic layer lying over a

nonlocal thermoelastic half-space.

10 Discussion of the frequency equation

Considering various particular values of the parameters, we can obtain the following different results in an
isotropic medium:

(a) The frequency equation reduces to the case of the theory of classical coupled thermoelasticity (C T) when
we put K ∗

1 = K ∗
2 = 0.

(b) The frequency equation reduces to the case of GN model type II when we put K1 = K2 = 0.
(c) The frequency equation reduces to the case of local thermoelasticity if we put ε = 0.
(d) In the absence of a temperature field, the frequency equation of Rayleigh waves in a local elastic thermoe-

lastic layer agrees with that of Singhal and Sahu [33].

11 Solution of the frequency equation

In general, wavenumber (k) and hence phase velocity (c) are complex quantities. If we take

c−1 = V−1 + iω−1Q, (74)

the wavenumber can be expressed as k = R+i Q where R = ω
V in which V and Q are real. V is the propagation

speed, and Q is the attenuation coefficient of Rayleigh waves.

12 Specific loss

The specific loss (SL) is the ratio of energy (�W ) dissipated in taking specimen through cycle, to elastic energy
(W ) stored in a specimen when the strain is at maximum. The specific loss is the most direct way of defining
internal friction for a material (Puri and Cowin [34]). For a sinusoidal surface wave of small amplitude, Kolsky
[35] shows that the specific loss �W

W equals 4π times the absolute value of the ratio of imaginary part of k to
the real part of k, that is ,

SL = �W

W
= 4π

∣
∣∣
∣
Im(k)

Re(k)

∣
∣∣
∣ = 4π

∣
∣∣
∣
V Q

ω

∣
∣∣
∣ .

13 Special cases

In the absence of a layer, i.e., if we take H = 0 then the frequency of Rayleigh waves reduces to the frequency
equation of Rayleigh waves in case of a thermoelastic half-space. We discuss some special cases of the
frequency equation in a local thermoelastic half-space as follows:

Case (1) The frequency equation of surface waves in an isotropic half-space with classical coupled ther-
moelasticity is obtained as follows:

⎡

⎣
(

2 − c2

c23

)2

(γ1 + γ2) − 4γ3

(

γ1γ2 + 1 − k2c2

c22

)⎤

⎦ = 0 (75)
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O x

H λ1, μ1, ρ1, β1

λ2, μ2, ρ2, β2

z
Fig. 1 Geometry of the problem

Equation (75) is similar to the result obtained in Nowinski [36], where γ 2
1 = 1 − ξ21

k2
, γ 2

2 = 1 − ξ22
k2

, γ 2
3 =

1 − ζ 2

k2
, ζ 2 = k2c2

c23
, and ξ21 and ξ22 are the roots of the biquadratic equation

ξ4 −
[
k2c2

c23
+ (1 + κ)

ikcρ2C ′
v

K2

]

ξ2 + ik3c3ρ2C ′
v

K2c22
= 0 (76)

in which κ = T0β2
2

ρ2
2c

2
2C

′
v

and c22 = λ2+2μ2
ρ2

, c23 = μ2
ρ2
.

The results of the paper for an isotropic half-space with classical coupled thermoelasticity agree with
Abd-Alla and Al-Dawy [29] and Wojnar [30].

Case (2) If we take K ∗
2 = 0 and if we add a thermal relaxation time, then the paper agrees with the results

of Abd-Alla and Al-Dawy [29], Nayfeh and Nemat-Nasser [37] and Agrawal [38] in case of the Lord–Shulman
model.

Case (3) If we take K ∗
2 = 0 and if we add two thermal relaxation times, then the paper agrees with the

results of Abd-Alla and Al-Dawy [29], Wojnar [30], and Agarwal [38] in case of Green–Lindsay model.
Case (4) Neglecting thermal parameters, i.e. when there is no coupling between temperature and strain

field, the frequency equation of Rayleigh waves in an isotropic elastic half-space is obtained as

(

2 − c2

c23

)2

= 4

(

1 − c2

c22

) 1
2
(

1 − c2

c23

) 1
2

(77)

where c22 = λ2+2μ2
ρ2

, c23 = μ2
ρ2
.

14 Numerical discussion

For numerical computation, we take the data values of copper material as follows (Biswas [39]):

λ1 = λ2 = 7.76 × 1010 Kgm−1 s−2, μ1 = μ2 = 3.86 × 1010Kgm−1 s−2,

β1 = β2 = 1.78 × 10−5 K−1, ρ1 = ρ2 = 8954Kgm−3,K1 = K2 = 386Wm−1 K−1,

K ∗
1 = K ∗

2 = 124Wm−1 K−1 s−1, T0 = 293K,

Cv = C ′
v = 383.1JKg−1 K−1,H = 2m, e0 = 0.39, acl = 0.5 × 10−9m.

In Fig. 2, the variation of phase velocity with respect to frequency is presented. It is observed that the phase
velocity increases with the increase in frequency. The phase velocity for local thermoelastic medium is larger
than the phase velocity for a nonlocal thermoelastic medium.

In Fig. 3, the variation of the attenuation coefficient with respect to frequency is presented. It is observed
that the attenuation coefficient decreases with the increase in frequency. The attenuation coefficient for a local
thermoelastic medium is larger than the attenuation coefficient for a nonlocal thermoelastic medium.
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Fig. 2 Variation of phase velocity with respect to frequency

Fig. 3 Variation of attenuation coefficient with respect to frequency

In Fig. 4, the variation of penetration depth with respect to frequency is presented. It is observed that the
penetration depth increases with the increase in frequency. The penetration depth for nonlocal thermoelastic
medium is larger than the penetration depth for a local thermoelastic medium.

In Fig. 5, the variation of specific loss with respect to frequency is presented. It is observed that the specific
loss decreases with the increase in frequency. The specific loss for a nonlocal thermoelastic medium is larger
than the specific loss for a local thermoelastic medium.

15 Conclusions

In this article, Rayleigh wave propagation in a nonlocal thermoelastic layer lying over a nonlocal thermoelastic
half-space is investigated with the Green–Naghdi model type III based on Eringen’s nonlocal thermoelasticity
theory. The frequency equation of a Rayleigh wave is derived, and different cases are discussed. Different
characteristics of wave propagation are computed numerically and presented graphically.

From the theoretical and numerical discussion, we can conclude the following remarks:
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Fig. 4 Variation of penetration depth with respect to frequency

Fig. 5 Variation of specific loss with respect to frequency

(a) Phase velocity and penetration depth of Rayleigh waves increase with the increase in frequency.
(b) Attenuation coefficient and specific loss of Rayleigh waves decrease with the increase in frequency.
(c) Phase velocity and attenuation coefficient for a local thermoelastic medium are larger than phase velocity

and attenuation coefficient for a nonlocal thermoelastic medium.
(d) Penetration depth and specific loss for a nonlocal thermoelastic medium are larger than penetration depth

and specific loss for a local thermoelastic medium.
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Appendix

α1 = δ1 sin η1H + cos η1H − e1
e3

(δ3 sin η3H + cos η3H) ,

α2 = δ2 sin η2H + cos η2H − e2
e3

(δ3 sin η3H + cos η3H) ,

γ1 = c1 cos η1H + d1δ1 sin η1H − e1
e3

(c3 cos η3H + d3δ3 sin η3H) ,

γ2 = c2 cos η2H + d2δ2 sin η2H − e2
e3

(c3 cos η3H + d3δ3 sin η3H) ,

l1 = (ikc1 + δ1η1) cos η1H + (ikd1δ1 − η1) sin η1H

−e1
e3

[(ikc3 + δ3η3) cos η3H + (ikd3δ3 − η3) sin η3H ] ,

l2 = (ikc2 + δ2η2) cos η2H + (ikd2δ2 − η2) sin η2H

−e2
e3

[(ikc3 + δ3η3) cos η3H + (ikd3δ3 − η3) sin η3H ] ,

l3 = iky1 − k1,

l4 = iky2 − k2,

l5 = iky3 − k3,

p1 = (ikm5 − e1 + d1η1δ1) cos η1H + (−c1η1 + ikm5δ1 − f1δ1) sin η1H

−e1
e3

[
(ikm5 − e3 − d3δ3η3) cos η3H
+ (−c3η3 + ikm5δ3 − f3δ3) sin η3H

]
,

p2 = (ikm5 − e2 + d2η2δ2) cos η2H + (−c2η2 + ikm5δ2 − f2δ2) sin η2H

−e2
e3

[
(ikm5 − e3 − d3δ3η3) cos η3H
+ (−c3η3 + ikm5δ3 − f3δ3) sin η3H

]
,

p3 = ikr5 − k1y1 − z1,

p4 = ikr5 − k2y2 − z2,

p5 = ikr5 − k3y3 − z3,

q1 = e1 cos η1H + f1δ1 sin η1H − e1
e3

(e3 cos η3H + f3δ3 sin η3H) ,

q2 = e2 cos η2H + f2δ2 sin η2H − e2
e3

(e3 cos η3H + f3δ3 sin η3H) ,

P1 = γ2 {−l3 (p4z3 − z2 p5) + l4 (p3z3 − z1 p5) + l5 (p3z2 − z1 p4)}
+y1 {l2 (z3 p4 − z2 p5) + l4 (−p2z3 + q2 p5) − l5 (−p2z2 + p4q2)}
−y2 {l2 (z3 p3 − z1 p5) + l3 (−p2z3 + p5q2) − l5 (−p2z1 + q2 p3)}
+y3 {l2 (p3z2 − p4z1) + l3 (−p2z2 + p4q2) − l4 (−p2z1 + p3q2)} ,

P2 = γ1 {−l3 (p4z3 − z2 p5) + l4 (p3z3 − z1 p5) + l5 (p3z2 − z1 p4)}
+y1 {l1 (z3 p4 − z2 p5) + l4 (−p1z3 + q1 p5) − l5 (−p1z2 + p4q1)}
−y2 {l1 (z3 p3 − z1 p5) + l3 (−p1z3 + p5q1) − l5 (−p1z1 + q1 p3)}
+y3 {l1 (p3z2 − p4z1) + l3 (−p1z2 + p4q1) − l4 (−p1z1 + p3q1)} ,

P3 = γ1 {l2 (p4z3 − z2 p5) + l4 (−p2z3 + q2 p5) − l5 (−p2z2 + q2 p4)}
−γ2 {l1 (z3 p4 − z2 p5) + l4 (−p1z3 + q1 p5) − l5 (−p1z2 + p4q1)}
−y2 {l1 (z3 p2 + q2 p5) − l2 (−p1z3 + p5q1) − l5 (p1q2 − q1 p2)}
+y3 {l1 (−p2z2 + p4q2) − l2 (−p1z2 + p4q1) − l4 (p1q2 − p2q1)} ,

P4 = γ1 {l2 (p3z3 − z1 p5) + l3 (−p2z3 + q2 p5) − l5 (−p2z1 + q2 p3)}
−γ2 {l1 (z3 p3 − z1 p5) + l3 (−p1z3 + q1 p5) − l5 (−p1z1 + p3q1)}
−y1 {l1 (−z3 p2 + q2 p5) − l2 (−p1z3 + p5q1) − l5 (p1q2 − q1 p2)}
+y3 {l1 (−p2z1 + p3q2) − l2 (−p1z1 + p3q1) − l3 (p1q2 − p2q1)} ,
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P5 = γ1 {l2 (p3z − p4z1) + l3 (−p2z2 + q2 p4) − l4 (−p2z1 + q2 p3)}
−γ2 {l1 (z3 p2 − p4z1) + l3 (−p1z2 + q1 p4) − l4 (−p1z1 + p3q1)}
−y1 {l1 (−z2 p2 + q2 p4) − l2 (−p1z2 + p4q1) − l4 (p1q2 − q1 p2)}
+y2 {l1 (−p2z1 + p3q2) − l2 (−p1z1 + p3q1) − l3 (p1q2 − p2q1)} .
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