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Abstract The paper deals with Rayleigh wave propagation in a nonlocal thermoelastic layer, and the layer
is lying over a nonlocal thermoelastic half-space. The problem is treated in the context of Eringen’s nonlocal
thermoelasticity and Green—Naghdi model type III of hyperbolic thermoelasticity. The frequency equation of
Rayleigh waves is derived, and different cases are also discussed. The effect of the nonlocal parameter on
phase velocity, attenuation coefficient, specific loss, and penetration depth is presented graphically.

1 Introduction

The theory of nonlocal elasticity has attracted the attention of many authors because of its early success in
solving an old problem in fracture mechanics. The nonlocal elasticity solution of Eringen [1,2] showed that
the stress at the tip of a crack is finite; it rises to a maximum and then diminishes with the distance from the
crack tip. Eringen [3,4] found the nonlocal solution of the discrete dislocation problem. Nonlocal field theories
contain very interesting physics, in fact, all physics, excluding quantum effects and elementary particle physics.
This can be extended further to include the nonlocal mixture theory, diffusion, and other allied phenomena.

Some nonclassical thermoelasticity theories have been developed depending on the strategies to incorporate
additional atomistic features based on Eringen’s nonlocal elasticity theory [5] which is now well established. In
the local elasticity model, Eringen [5] assumed that the stress field at a particular point in an elastic continuum
not only depends on the strain field but also on strains at all other points of the body. Altan [6] studied the
uniqueness in the linear theory of nonlocal elasticity. The nonlocal elasticity models characterized by the
presence of nonlocality residuals of fields have been proposed by Eringen and Edelen [7]. Eringen extended
the concept of nonlocality to various other fields in his works cited in [8—10].

Nonlocal elasticity theories are now well established and are being applied to the problems of wave
propagation in elastic and thermoelastic solids. Pramanik and Biswas [11] investigated the propagation of
Rayleigh surface waves in nonlocal thermoelastic solids. Biswas [12] considered the propagation of Rayleigh
surface waves in a porous nonlocal thermoelastic orthotropic medium. Khurana and Tomar [13] studied wave
propagation in a nonlocal microstretch solid. Jun et al. [14] discussed nonlocal thermoelasticity based on
nonlocal heat conduction and nonlocal elasticity. Khurana and Tomar [15] investigated Rayleigh-type waves
in a nonlocal micropolar solid half-space.

The generalized thermoelasticity theories have been developed with the aim of removing the paradox of
infinite speed of heat propagation inherent in the classical coupled dynamical thermoelasticity theory (Biot
[16]). Many new theories have been proposed to take care of this physical absurdity. Lord and Shulman
[17] first modified Fourier’s law by introducing the term representing the thermal relaxation time. The heat
equation associated with this theory is a hyperbolic type and hence eliminates the paradox of infinite speed of
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thermal propagation. Then, Green and Lindsay [18] developed a more general theory of thermoelasticity in
which Fourier’s law of heat conduction is unchanged, whereas the classical energy equation and Duhamel—
Neumann'’s relations are modified by introducing two constitutive constants having the dimensions of time.
Later, Green and Naghdi [19-21] developed three models for generalized thermoelasticity of homogeneous
isotropic materials, which are labelled as models I, II, and III. Green—-Naghdi model type II is known as
thermoelasticity without energy dissipation, and Green—Naghdi type III model is known as thermoelasticity
with energy dissipation. Detailed information regarding these theories can be found in [22,23].

Dwan and Chakraborty [24] proposed Rayleigh waves in the context of Green-Lindsay’s model of gen-
eralized thermoelasticity theory, and Rossikin and Shitikova [25] discussed nonstationary Rayleigh waves in
the thermally insulated surfaces of some thermoelastic bodies of revolution. Singh et al. [26] considered prop-
agation of the Rayleigh wave in an initially stressed transversely isotropic magneto-thermoelastic half-space
with dual-phase-lag model. Biswas et al. [27] investigated Rayleigh surface wave propagation in orthotropic
thermoelastic solids under three-phase-lag model. Biswas and Abo-Dahab [28] considered the effect of phase
lags on Rayleigh waves in an initially stressed magneto-thermoelastic orthotropic medium. Abd-Alla and Al-
Dawy [29] considered the effect of thermal relaxation times on Rayleigh waves in a generalized thermoelastic
medium. Wojnar [30] examined Rayleigh waves in a thermoelastic medium with relaxation times. Biswas [31]
reported Stroh analysis of Rayleigh waves in an anisotropic thermoelastic medium with three-phase-lag model.
Biswas and Mukhopadhyay [32] employed the eigenfunction expansion method to characterize Rayleigh wave
propagation in an orthotropic medium with three-phase-lag model.

In this article, Rayleigh wave propagation in an isotropic thermoelastic layer lying over an isotropic
thermoelastic half-space is investigated. The problem is treated in the context of Green—Naghdi model type III
based on Eringen’s nonlocal thermoelasticity. Different frequency equations are derived as special cases which
agree with the existing literature. In order to illustrate the theoretical developments, the computer simulated
results with respect to phase velocity, attenuation coefficient, specific loss, and penetration depth are presented
graphically.

2 Derivation of the model

We shall first establish the constitutive relations and field equations for a nonlocal thermoelastic medium with
Green—Naghdi model type III of generalized thermoelasticity.

Consider a thermoelastic body having volume V, bounded by the surface S and occupying region B in
R3 at time ¢. Let the position of a typical point of B in the unbounded state be X; and the position of the
corresponding point in the deformed state be x;. The displacement components u; of the particle are given by
up = x; — X;.

Let us denote the strain tensor by ¢;;. In the linear theory, the Lagrangian strain tensor reduces to

eij = 5 (i +uji).

Suppose 6 = T — Ty, where Ty is the temperature of the material in its natural state assumed to be such that
’%‘ << 1 and T is the absolute temperature of the material.

Within the context of linear theory and assuming that the initial body is free from stresses, we take the set
of basic variables at two neighbouring points x and x’, respectively, as

M= {e;j (x),0 x)}
and IT" = {e;; (x'), 60 (x)}. (1)
The strain energy function W for nonlocal thermoelastic materials can be written as
2W = Cijueij (x) et (X') — Bij [eij ) 0 (X') +eij (x) 6 )] — ab (x) 6 (x') (2)

where the constitutive coefficients Cjjx, a, Bij are prescribed functions of x and x'. Cjjx are the elastic
constants, f;; are the thermal moduli, e;; are the strain components, and a = pTC(;”.
We adopt the following symmetries in the constitutive coefficients as

Cijur (x.X') = Cuij (x.X') = Cjira (%, X') . Bij (x. X') = Bji (x, %)
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Following Eringen [1], the constitutive relations are obtained from

r=| [% T <§¥>}dv () 3

where the superscript ‘s’ represents the symmetry of that quantity with respect to interchange of x and x’. The
set " = {t,:,-, —n} is an ordered set with the set IT.
Thus, the force stress tensor 7;; and the specific entropy 7 are obtained from relations (2) and (3) as

iy = [ T (xx) ear () = iy (%) 6 (x)]aV (x). @
o = / [ (x.X) eij (x) + a6 (x)]aV (x). 5)

For a centro-symmetric isotropic material, the constitutive coefficients reduce to
Cijir = h (%, X') 88 + 2 (x, X') 8581, Bij = B (x.X)

where the material coefficients A, i, 8 are functions of |X - X’|.
Hence, the constitutive relations (4)—(5) become

6 = [ D (x =X D dyews () + 20 (x = x ) e (<) = B (x =X Do ()Jav (). ©
pn= [ [8(x=x]) e () +a(jx = x])0 (<)]aV (x).. g

For most of the materials, the cohesive zone is very small, and within that zone the intermolecular forces
decrease rapidly with distance from the reference point. Hence, we consider that all constitutive coefficients
attenuate with distance, e.g.

(|X—£(i’1\1)l—>oo}\ (]x—x'|) = 0.

We also /consider that all the constitutive coefficients attenuate the same degree and they attain their maxima
“ XTTle);e;fore, we can take the following relations between nonlocal and local coefficients:

Mx=x]) _p(x=x]) _B(x=x1]) _a(x=x])

— = = = G (|X - X/
Ao o Bo ap

); @®)

here, the quantities in the denominator are Lamé constants coefficients. Ag, o are well-known Lame’s con-
stants, Bo = (3Ao + 20) o, @ is the coefficient of linear thermal expansion, a is thermal constant, §;; is the
Kronecker delta function, and the function G (|x —x |) is a nonlocal kernel representing the effect of distant
interactions of material points between x and x’.

Also, the integral of the nonlocal kernel G (|x — X’|) over the domain of integration is unity, i.e.

/Gﬂx—ﬂﬁV:L

Vv

Hence, the kernel function G behaves as a Dirac delta function over the domain of influence. The function G
attains its peak at |X —x | = 0 and generally decays with increasing |x —x |
Eringen [5] has already shown that the function G satisfies the relation

(1-e?V?) G (x—x|) =68 (x—x]) 9)
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where ¢ = epa,; is the elastic nonlocal parameter [1,5], a.; being the internal characteristic length, and e is
a material constant. The internal characteristic length a,; is the interatomic distance, e.g. length of C—C bond
(0.142 nm in Carbon nanotube).

Applying the operator (1 — 82V2) on the constitutive relations (6), (7), owing to the relation (8) and the
property (9), we obtain (after suppressing the subscript ‘0’ from the constitutive coefficients)

(1-e*V?) 5 =t} = {2ueij (%) + [Lew () — BO (0185} . (10)
(1 —e2V?) pn = (o) = [Berk (X) +ab ()], (11)

wherein the formula
/f(x)rS(x—a)dx:f(a) (12)

has been employed. The quantities 1'5, and (pn)* correspond to the local thermoelastic solid.
The fourier law for the GN-III model in nonlocal thermoelasticity becomes:

(1-¢e*V?) g =4¢F = — (K6 + K*0,) (13)

where ¢; are the components of the heat flux vector, K is the thermal conductivity, and K* is the material
constant characteristic of the theory.

3 Basic equations

The constitutive equations for isotropic thermoelastic material become:
(a) The energy equation for the linear theory of a thermoelastic material:

— pTon = qii; (14)
(b) The equations of motion (in the absence of body force):
S (15)
where p is the mass density.
From the constitutive relations (10) and (11), Fourier’s law (13), the energy equation (14), and the equation

of motion (15), we obtain the field equations in terms of the displacement and temperature for a homogeneous
isotropic nonlocal thermoelastic material in the absence of body forces as

Ot wyujij + pui jj — B = (1 — 2V?) piiy, (16)
KV?0 + K*V?0 = pC,T + BToé (17)

where aTy = pC,, C, is the specific heat at constant strain.
From Eq. (10), we get the stress components as

(1—&*V?) 1ij = 1y = hewdij + 2pueij — BOS;;. (18)

4 Formulation of the problem in a nonlocal thermoelastic layer

Letus consider a medium which consists of a nonlocal, homogeneous and isotropic layer of a constant thickness
H lying over a nonlocal, homogeneous, and isotropic thermoelastic half space (Fig. 1).

Let us consider a plane harmonic surface wave which propagates along the x-axis and which is polarised
in the (x, z) plane.

We take 1 = (uy, 0, w;) as the displacement vector in the layer, A, 1 are Lamé constants in the layer,
B is the thermal modulus in the layer, p; is the mass density of the thermoelastic layer, 0; is the temperature
above reference temperature of the layer, K is the thermal conductivity of thermoelastic layer, K| is the
material constant characteristic of the theory for the layer, C,, is the specific heat at constant strain, and (r,- j)
are the stress components in the layer.

1
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The basic governing equations of a nonlocal thermoelastic layer with Green—Naghdi type III model are
obtained as

9%u,; 82 2wy 0601 ..
(1 +200) S5+ L 1+Ml)__.3__(1—82V2),01Mh (19)
3w 2wy 82u1 36, ey
(A1 +2p1) a2 TR +(M+M1)a —/31— (1 —&°V7) privn, (20)
K{V?01 + K1V20, = p1Cofiy + B1Toé. 1)
We define the dimensionless quantities as follows:
(.2, ¢) = w—T(x z,6), (u), wi) = w—*(m wy), 6 pin ! =oit, (uj), = (i),
) ) ) ) Ly ) 1 1 c ) 1= plc%’ 1% ) IB] TO )
"1 A+ B Tow’ Ko} Al
= ’ m2 = ) m3 = x m4 = x mS R
A+ 20 A+ 201 p1K; K] A2
where o] = L lg';c‘ and c; = /W;# are the characteristic frequency and longitudinal wave velocity in the

layer, respectlvely
Using nondimensional quantities in Egs. (19), (20), and (21) and dropping primes, we get

0%u, 0%u; w96, 292

_ (1= 2y iy, 22
2 T g T o = (me V)i 2)
92w d%wy u; 36, 202

91— e2v2) gy, 23
o2 Mg tmayo == (1= eV i )
V291 + m4V2é1 = él + m3é. (24)

5 Formulation of the problem in a nonlocal thermoelastic half-space

We take iy = (u2, 0, wy) as the displacement vector in the half-space, Az, o are Lamé constants in the half-
space , 3> is the thermal modulus for the thermoelastic half-space, p; is the mass density of the thermoelastic
half-space, 0, is the temperature above reference temperature of the half-space, K> is the thermal conductivity
of the thermoelastic half-space, K is the material constant characteristic of the theory for the half-space, C,
is the specific heat at constant strain, and (‘L’i J')z are the stress components in the half-space.

The basic governing equations of a nonlocal thermoelastic half-space with Green—Naghdi type III model
are obtained as

8%un 32 32wy 30, .
(2 +202) 55 + 2 + O +m) .~ P = (1=62%) paia, (25)
92 2 8%wn Zuz 00, .
(2 +2p2) = + M2 2t (ko +p2) g = prgm = (1 — £°V?) paiia, (26)
K3V20; + sz by = p2Clfr + B2 Toé. (27)

We define the dimensionless quantities as follows:

ES %

ror w ’ ’ w ’ :3202 ’ * ! (ti]')2
x,7,8)=—(x,2z,8), (Uy, wr) = — (U2, wa), 6, = , P =w't, (tii), = ,
( ) e ( 2 2) ¢ 2 — ,02(3% ( 11)2 ﬂZTO
2 Ao+ 2 B3 Tow* Kyw* A2
= 9 r2 = 9 r3 = E3 b r4 = 3 9 r5 =
Ao+ 2u0 A2+ 2u2 P2 K3 K; A+ 2u2

c . oo o
where w* = % and ¢, =,/ % are the characteristic frequency and longitudinal wave velocity in the
2
half-space, respectively.
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Using nondimensional quantities in Eqgs. (25), (26), and (27), and dropping primes, we get

9%ur 0%uy 3wy 36y 202

9% 22y, 28
a2 V%2 Y e — e V)i %)
32wy 32wy Pury 36, 202

%% (1 2v2) iy, 29
P + 71 p¥) +r axo: oz ( £7V?) iy (29)
V292 + r4V2é2 = éz + r3eé. (30)

6 Boundary conditions

Now we add boundary conditions which determine the properties of the wave field at the boundaries.

(a) Surface of the layer z =0 :
We assume the surface of the layer to be traction free and temperature free:

(i) (txz); =0

which gives (txz)lL =0, (3D
(i) (tz2); =0,
which gives (t,;)F =0, (32)
(iii)
6; = 0. (33)

(b) Interface between the layer and the half-space z = H :
We require all displacement and stress components to be continuous across this interface:

(iv)

up = uy, (34)
v)
w) = wa, (35)
(vi)
(txz2)1 = (Txz)2
(1- 82V2) () = (1— 82V2) (txz)2 -
We have
(T = (T22)7 s (36)
(vii)
(Tz2)1 = (Tz2)2
(1=6*V?) () = (1 = €2V?) (z20)s
We have
(T = (%27 (37)
(viii)
01 = 6s. (38)

(c) Infinite depth z — oo :
We require the displacements and temperature to diminish to zero at large depths,

up — 0, wp — 0, 6 — 0.

This condition guarantees that the wave under consideration will have the character of a surface wave.



Rayleigh waves in a nonlocal thermoelastic layer lying over a nonlocal thermoelastic half-space 4135

7 Solution of the problem in a nonlocal thermoelastic layer

For Rayleigh wave propagation in the layer along the x —direction, we take

(w1, wy, 01) (x, z,t) = (f1, g1, M) (2) exp [i (kx — wi)] (39

where w = kc is the angular frequency of Rayleigh waves, c is the phase velocity, and & is the wave number.
Using Eq. (39) in Egs. (22), (23), and (24), we get

(my — e%w®) D* fi + [(1 + e*k?) * — k] f1 + ikma Dgy — ikhy = 0, (40)
(1 —e*0?) D?g1 + [(1 + e%k*) 0* — m1k*] g1 + ikmy Dfy — Dhy =0, 1)
(1 —iwms) D*hy + [0? — (1 — iwma) K*] hy + ikm3w?® fi +m3w®Dgy =0 (42)

where D = %.
Eliminating f; and & from Egs. (40), (41), and (42), we get
(AD® + BD* + CD*+ E) g1 (z) = 0.
In a similar way, we can write
(AD®+ BD*+ CD*+ E) (f1(2). 81 (2),h1 (2)) =0 (43)
in which
A = nsng (n3 — n4ns) ,
B = (n3 — n4ns) (nsny + neng + ny1) — n4ansneng,
C = neng (n3 — n4ns) — n4ng (nsng + neng +nii),
E = —n4n%n9,
where ny = (my — e20?) ,ny = [(1 + &2k?) 0 — k?], n3 = ikma, ny = ik, ns = (1 — 20?),
ne = [(1 + 82k2) w? — m1k2] ,n7 =ikmy,ng = (1 —iwmy),ng = [a)2 — (1 —iwmy) k2] ,
nio =ikms,ny = m3w2.

From Eq. (43), we get

(D* +n1) (D* +m) (D* +m3) L/ (). 81 () . b1 ()] = 0. (44)
Now we obtain
3 3
f1(@) =) Aycosmz+ ) Bysinmyz, (45)
n=I n=1
3 3
g1(2) =) Cpcosnuz+ »  Dysinn,z, (46)
n=1 n=1
3 3
hy (2) = ZEn COS Mz + ZF,, $in npz. (47)
n=1 n=1
Now the displacements and temperature are obtained as
3 3
up (x,z,1) = [Z Apcosmuz+ Y Bysin nnzj| exp[i (kx — wr)], (48)
n=1 n=1
3 3
wi (x,z,1) = |:Z Cpcosn,z + Z D,, sin n”z:| expli (kx — wt)], 49)
n=1 n=1

3 3
0 (x,z,1) = |:Z E,cosn,z + Z F, sin nnz:| exp[i (kx — wt)] (50)

n=1 n=1
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where we take C, = ¢, A, D, = d, By, E, = ey Ay, Fy = f1By.
The stresses are obtained as follows:
duq ow

(Txx)lL = 3x +m53_z — 01

3
= |:Z (ikAy + msn,d, B, — ey Ay) cOS N2
n=1
3
+ Z (ik By — msnucy Ay — fuBy) sin TInZ:| exp [i (kx — wt)],
n=1
Juq Jwi
0z ox
3 3
= Z (M By + ikc, Ay) cosn,z + Z (—nn A, + ikd, B,) sin r)nz:| expli (kx — wt)],

Ln=1 n=1

(sz)lL =

Jwq duq
+ms— — 0

L _ -
(w1 = 57 ax

r 3 3
= Z (imsAy, — ey An + dynnBy) cosnyz + Z (ikmsB, — nucn Ay — fuBy)sin n,,zi|
Ln=1

n=1

xexpli (kx — wt)].

8 Solution of the problem in the nonlocal thermoelastic half-space

For Rayleigh wave propagation in the half-space along x-direction, we take

(uz, wa, 02) (x,z,1) = (f2, 82, h2) (2) exp i (kx — wi)]. (51)
Using Eq.(51) in Egs. (28), (29), and (30), we get
(r1 — %) D> fo + [(1 + £%k?) &* — k?] fo + ikraDga — ikhy = 0, (52)
(1 —&%0?) D*gr + [(1 + k%) 0 — r1k*] g2 + ikryDfs — Dhy = 0, (53)
(1 — iwry) D*hy + [w? — (1 — iwrg) k*| ho + ikr3o? f> + r30*Dgy = 0 (54)

where D = %.
Eliminating f> and h; from Egs. (52), (53), and (54), we get

(A'D®+ B'D* + C'D*+ E') g2 (2) = 0.

In a similar way, we can write

(AD°+B'D*+C'D*+ E') (f2(2).82(2) , h2 (2)) =0 (55)
in which
A" = 5558 (53 — 5455) ,
B’ = (53 — 5455) (5559 + S658 + S11) — 54555658,
C' = 5659 (53 — 5455) — 5456 (5559 + 5658 + 11)
E = —S4S§S9,
where

s1=(r1 — szwz) o =[(1+ szkz) w® — kz] .53 = ikry, 54 =ik, ss = (1 — szwz) ,
S6 = [(1 + €2k2) w? — r2k2] ,57 =ikry,ss = (1 —iwry), s9 = [w2 — (1 —iwry) k2] ,

s10 = tkrs, s11 = r3a)2.
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From Eq. (55), we get
(D —k7) (D* —3) (D* = I3) [ /2 (2), 82 (2) , h2 ()] = O,

3 3
£ @ =" Xpexp(—kn2) + Y Luexp (ky2) .,

n=1 n=1

3 3
2(2) =Y Ypexp(—kn2) + Y Myexp (k).

n=1 n=1
3 3
hy () =Y Znexp(—kn2) + Y Nyexp (kn2) . (56)
n=1 n=1
For bounded solution at z — oo, we take L,, = M,, = N,, = 0.
So, we get
3
fr(2) =) Xpexp(—kn2), (57)
n=1
3
22(2) =Y Ypexp(—kn2), (58)
n=1
3
hy (2) =) Zuexp (—kn2). (59)

n=1
Using Eqgs. (57)—(59) in Egs. (52)—(54), we get
Yo =ynXn, Zn=z2Xy
where
= ky [Slk,zl + (52 — S4S7)]’
[(s3 — s455) k2 — s456]

 sisuky + (s2511 — $3510)
5356k3 + (5359 + s4511)

Now replacing z by (z — H), we get displacements, temperature, and stresses as follows:

3
uy =) Xuexpl—kn (z— H)lexpli (kx — wr)], (60)
n=1
3
wy = Y yuXnexpl—ky (z — H)lexpli (kx — o], (1)
n=1
3
6= anXnexpl—kn (c — H)lexpli (kx — wn)],
n=1
d ad
(txx)é = % +r58lzz — 6

3
= Z (ik — rsynkn — zn) Xn exp [—ky (z — H)]exp [i (kx — w1)],
n=1

dupy  Jdwa

(te0)% = a7 T o
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3

Z (iky, —kp)Xpexp[—k, (z— H)]expli (kx — wt)],

n=1

Jw 8u2
(Tzz)z = SW — 0

8
3
Z (ikrs — knyn — 2n) Xn exp[—kn (z — H)]expli (kx — w0)].

9 Derivation of the frequency equation

Using the boundary conditions (31), (32), and (33), we get

3
> By + ikey Ay) =0,
n=1

3

Z [(ikms — e,) Ay, + du1y Ba] = 0,

n=1
3

ZenAn =0.

n=1

From Eq. (63), we get

in which 8, = — &

T
From Eq. (65), we get

Using Eq. (66) and Egs. (45)—(47) in Egs. (40)—(42), we get

ne + (n7 — fu) Nudn (n7Mn — entn —
Cp = N d}’l =

nedy)

nsn3 nsnidn
(naniy +n3nig) — niniini
(n4niy — n3ng) + n3ngn3

en = fn=

Using the boundary conditions (34)—(38), we get
a1Ap +opAr — X1 — Xo — X3 =0,

V1AL + Ay — X1 — X0 — 3X3 =
AL+ DAy — 13X — 14 X2 —I5X3 =0,

’

P1A1 + p2Ar — p3 X1 — paXo — psX3 =0,

Q1AL+ @Ay — 21X —202X0 —3X3 =

(62)

(63)

(64)

(65)

(66)

(67)

(68)
(69)
(70)
(71)
(72)

We have five homogeneous equations in terms of five unknowns. The system of equations has a nontrivial

solution if

o ar —1 —1 —1
i Y2 =Yt —Y2 —)3
LW L -3 =l —Is|=0.
Pt p2 —p3 —ps —Pps
91 492 —21 —22 —ZI3
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Expanding the determinant, we get
oa1Pir—oyP, — P3s+ Py — P; =0 (73)

in which P, (n =1, 2, ..., 5) are mentioned in the Appendix.
Equation (73) is the frequency equation of Rayleigh waves in a nonlocal thermoelastic layer lying over a
nonlocal thermoelastic half-space.

10 Discussion of the frequency equation

Considering various particular values of the parameters, we can obtain the following different results in an
isotropic medium:

(a) The frequency equation reduces to the case of the theory of classical coupled thermoelasticity (C T) when
weput Ki = K5 =0.

(b) The frequency equation reduces to the case of GN model type II when we put K1 = K> = 0.

(c) The frequency equation reduces to the case of local thermoelasticity if we put ¢ = 0.

(d) In the absence of a temperature field, the frequency equation of Rayleigh waves in a local elastic thermoe-
lastic layer agrees with that of Singhal and Sahu [33].

11 Solution of the frequency equation
In general, wavenumber (k) and hence phase velocity (c) are complex quantities. If we take
c'=vlyioo, (74)

the wavenumber can be expressed as k = R+i Q where R = {7 in which V and Q are real. V is the propagation
speed, and Q is the attenuation coefficient of Rayleigh waves.

12 Specific loss

The specific loss (SL) is the ratio of energy (A W) dissipated in taking specimen through cycle, to elastic energy
(W) stored in a specimen when the strain is at maximum. The specific loss is the most direct way of defining
internal friction for a material (Puri and Cowin [34]). For a sinusoidal surface wave of small amplitude, Kolsky
[35] shows that the specific loss % equals 47 times the absolute value of the ratio of imaginary part of k to
the real part of &, that is ,

AW
SL=—=471‘

Im(k) ‘VQ
=47 |—]|.
w w

Re(k)|

13 Special cases

In the absence of a layer, i.e., if we take H = 0 then the frequency of Rayleigh waves reduces to the frequency
equation of Rayleigh waves in case of a thermoelastic half-space. We discuss some special cases of the
frequency equation in a local thermoelastic half-space as follows:

Case (1) The frequency equation of surface waves in an isotropic half-space with classical coupled ther-
moelasticity is obtained as follows:

c? 2 k*c?
2-=5) +r)—4ninrnt+tl-——||=0 (75)
(& C

3 2
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Fig. 1 Geometry of the problem
2 2
Equation (75) is similar to the result obtained in Nowinski [36], where y12 =1- %’ y22 =1- i—zz, y32 =
2 2.2 . . .
1— Ii—z, 2= %, and 512 and 522 are the roots of the biquadratic equation
k%c? ikcprC! ik3c3prC
ol A — L |+ — =0 (76)
c3 K> Ksc;
: : _ _ToB3 2 M2u 2 o
in which k = 30 and ¢5 = =

The results of the paper for an isotropic half-space with classical coupled thermoelasticity agree with
Abd-Alla and Al-Dawy [29] and Wojnar [30].

Case (2) If we take K5 = 0 and if we add a thermal relaxation time, then the paper agrees with the results
of Abd-Alla and Al-Dawy [29], Nayfeh and Nemat-Nasser [37] and Agrawal [38] in case of the Lord—Shulman
model.

Case (3) If we take K3 = 0 and if we add two thermal relaxation times, then the paper agrees with the
results of Abd-Alla and Al-Dawy [29], Wojnar [30], and Agarwal [38] in case of Green—Lindsay model.

Case (4) Neglecting thermal parameters, i.e. when there is no coupling between temperature and strain
field, the frequency equation of Rayleigh waves in an isotropic elastic half-space is obtained as

C2 ? C2 % C2 %
2-2) =4(1-5) (1-5 77
e p p 77
2 A+2u2

where 5 = =2 ,c%:%.

14 Numerical discussion

For numerical computation, we take the data values of copper material as follows (Biswas [39]):

A =X =776x 1010 Kgm*1 572, u1 = u2 = 3.86 x IOIOKgnf1 572,

Bi =B =178 x 105K, py = pr=8954Kgm 2K, = K» =386 Wm K1,
Kf=kK};=124Wm 'K 's~! 7y = 293K,

C,=C, =383.1JKg ' K"L,H = 2m, ¢y = 0.39, a,y = 0.5 x 10~°m.

In Fig. 2, the variation of phase velocity with respect to frequency is presented. It is observed that the phase
velocity increases with the increase in frequency. The phase velocity for local thermoelastic medium is larger
than the phase velocity for a nonlocal thermoelastic medium.

In Fig. 3, the variation of the attenuation coefficient with respect to frequency is presented. It is observed
that the attenuation coefficient decreases with the increase in frequency. The attenuation coefficient for a local
thermoelastic medium is larger than the attenuation coefficient for a nonlocal thermoelastic medium.
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In Fig. 4, the variation of penetration depth with respect to frequency is presented. It is observed that the
penetration depth increases with the increase in frequency. The penetration depth for nonlocal thermoelastic
medium is larger than the penetration depth for a local thermoelastic medium.

In Fig. 5, the variation of specific loss with respect to frequency is presented. It is observed that the specific
loss decreases with the increase in frequency. The specific loss for a nonlocal thermoelastic medium is larger

than the specific loss for a local thermoelastic medium.

15 Conclusions

In this article, Rayleigh wave propagation in a nonlocal thermoelastic layer lying over a nonlocal thermoelastic
half-space is investigated with the Green—Naghdi model type III based on Eringen’s nonlocal thermoelasticity
theory. The frequency equation of a Rayleigh wave is derived, and different cases are discussed. Different
characteristics of wave propagation are computed numerically and presented graphically.
From the theoretical and numerical discussion, we can conclude the following remarks:
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Fig. 5 Variation of specific loss with respect to frequency

(a) Phase velocity and penetration depth of Rayleigh waves increase with the increase in frequency.

(b) Attenuation coefficient and specific loss of Rayleigh waves decrease with the increase in frequency.

(c) Phase velocity and attenuation coefficient for a local thermoelastic medium are larger than phase velocity
and attenuation coefficient for a nonlocal thermoelastic medium.

(d) Penetration depth and specific loss for a nonlocal thermoelastic medium are larger than penetration depth
and specific loss for a local thermoelastic medium.
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Appendix

e
o) =68 sinnH 4+ cosn H — a (83sinn3H + cosnsH) ,
€3

e
ay =& sinmpH 4+ cosnpH — 2 (83sinn3H + cosnzH) ,
€3

e
y1 =cjcosn H +diésinnH — b (czcosnyH + dzd3sinnzH) ,
e3

e
y» = cpcosnoH + dyr sinnp H — 2 (czcosn3H + d3d3sinnzH) ,
(%]

Iy = (ikcy + 81m) cosni H + (ikd161 — 1) sinm H

13

ly
ls

P1

P2

e .
—e—l [(ikc3 + 8313) cos 3 H + (ikd3ds — n3) sinn3 H] ,
3
(ikco 4+ 6amp) cos o H + (ikdady — m2) sinnp H
e .
—e—z [(ikes + 8313) cos 3 H + (ikd383 — n3) sinn3 H] ,
3

=ikyy — ki,
ikys — k3,

= (ikms — ey +dim81) cosni H + (—ciny + ikms8y — f161) sinn H

p3 =

P4
Ps

q1

q2
P

P

P3

Py

€1 | (ikms — e3 — d3é3nz) cosmz H
ey | +(=can3 +ikmsés — f383) sinnzH |’

(ikms — ey + danady) cosnaH + (—canp + ikmsdy — f282) sinnp H
€2 | (ikms — ez — dzd3n3) cosnzH

_Z |:+ (—c3n3 4+ ikmsds — f383) sin 773Hi| ’

ikrs —kiyr — z1,

ikrs — kay, — 20,

ikrs — k3zys — z3,

e
ercosn H + fidsinm H — = (e3cos 3 H + f383 sinns H) ,
e3

e
ercosmH + fr8 sinmaH — = (e3cos 3 H + f383 sinn3 H)
e

V2 (=13 (paz3 — 22p5) +1a (p323 — 21p5) + 15 (p322 — 21 p4)}
+y1{l (z3ps — 22p5) + s (—p2z3 + q2ps) — Is (—paz2 + paqa)}
—y2{l (z3p3 — z1ps) + 13 (—p223 + psq2) — Is (—p221 + q2p3)}
+y3{l2 (p3z2 — paz1) + 13 (—paza + paqa) — la (—p2z21 + p3q2)},
Yi{—13(paz3 — z2ps) + la (p3z3 — z1ps) +Is (p3z2 — 21 pa)}
+y1{l1 (z3pa — z2p5) + s (—p123 + q1p5) — Is (—p1z2 + paq1)}
—y2{l1 (z3p3 — z1p5) + 13 (=p123 + ps5q1) — Is (—p1z1 + q1p3))}
+y3 {l1 (p3z2 — paz1) + 13 (—p1z2 + paq1) — la (—p1z1 + p3q1)},
v1{l (paz3 — zaps) +1a (—p2z3 + q2ps) — Is (—paza + qapa)}
—» {1 (z3ps — 22p5) + 14 (—p123 + q1p5) — Is (—p1z2 + paq1)}
=2 {li (z3p2 + q2ps) — L (—p123 + psq1) — s (p1g2 — q1p2)}
+y3{li (=p2z2 + paq2) — I (—p122 + paq1) — la (P12 — p2q1)},
vi{l (p3z3 — 21ps) + 13 (—p2z3 + q2ps) — Is (—paz1 + q2p3)}
-y {li (z3p3 — z1ps5) + 3 (—p123 + q1ps) — Is (—p121 + p3q1))
—yi{li (=z3p2 + q2ps) — b (=p1z3 + p5q1) — 5 (p1g2 — q1p2)}
+y3{li (—p2z1 + p3q2) — Lo (—p1z1 + p3q1) — 13 (p1g2 — p2g1)} s
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Ps = y1{la (p3z — paz1) + 13 (=p222 + q2p4) — la (—p221 + q2p3)}
—y {1 (z3p2 — paz1) + 3 (—p1z22 + q1p4) — la (—p1z1 + p3q1)}
—yi{li (=z2p2 + q2pa) — b (—pi122 + paq1) — la (p1g2 — q1p2)}
+y2{li (=p2z1 + p3q2) — L2 (—p1z1 + p3q1) — 13 (p1g2 — p2g1)} .
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