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Abstract A plane problem is analysed for an electrically permeable crack in a bi-material composed of
two semi-infinite 1D piezoelectric quasicrystals bonded together. The polarization direction coincides with the
quasiperiodic direction of thematerials and is orthogonal to the interface. Uniformly distributed phonon normal
and shear in-plane stresses and also phason stress and electric displacement are applied at infinity. The matrix–
vector representations for the phonon and phason stresses, the electrical displacement and for the derivatives
of the phonon and phason displacements and electrical potentials jumps via the sectional-holomorphic vector-
function are derived. Using these relations and satisfying the conditions at the crack faces, the problems of
linear relationship are formulated and solved exactly. All required phonon and phason characteristics are
given in the form of simple analytical expressions. A numerical analysis is carried out for two different 1D
piezoelectric quasicrystals bonded together. The obtained results are presented in graph and table forms.

1 Introduction

Quasicrystals (QCs) differ from ordinary crystals and non-crystals by their high strength, high wear resistance,
low heat-transfer, etc. These materials, found by Shechtman et al. [1] are nowadays extensively used in various
areas of technology and engineering.

Because of the quasiperiodic symmetry of QCs, concepts of the high-dimensional space have been intro-
duced instead of the classical crystallographic theory. The phonon field represents the lattice vibrations in
QCs, and the phason field defines the quasiperiodic rearrangement of atoms. Both these fields are used to
describe the elastic properties of QCs. One-dimensional (1D) QCs exhibit just one quasiperiodic axis, while
the perpendicular plane reveals classical crystalline properties. Generalized elasticity theory of QCs and the
state of the art is given in e.g. [2–4].

The crack problems in homogeneous QCs got due attention in the literature. Using the mathematical theory
of elasticity of QCs , Fan et al. [5] and Li et al. [6] studied the moving screw dislocation and straight dislocation
in one-dimensional (1D) hexagonal QCs. Enrico et al. [7] studied the linear crack problem in ten symmetric
two-dimensional quasicrystals by using the Stroh method. Gao et al. [8] considered the problem of cubic
quasicrystal media with an elliptic hole or a crack. Interaction between a semi-infinite crack and a straight
dislocation in a decagonal quasicrystal has been analyzed in [9]. Liu et al. [10] studied the interaction of
dislocations with cracks in one dimensional hexagonal QCs based on the analytic function theory. Li et al.
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[11] investigated the interaction of a screw dislocation with an elliptical hole in icosahedral quasicrystals. A
one-dimensional hexagonal quasicrystal with a planar crack in an infinite medium was studied in [12]. Path-
independent integrals for crack problems in quasicrystals with nonstationary conditions were derived in [13],
and the method of crack path prediction under mixed-mode loading in 1D quasicrystals was developed in [14].
An effect of plasticity for a half-infinite Dugdale crack embedded in an infinite space of a one-dimensional
hexagonal quasicrystal was studied in [15]. 3D exact analysis of the elastic field in an infinite medium for a
two-dimensional hexagonal quasicrystal with a planar crack was performed in [16].

A thermo-elastic field in an infinite space of a two-dimensional hexagonal quasicrystal with a penny-shaped
plane crack was studied in [17]. The thermo-elastic field in an infinite one-dimensional hexagonal quasicrystal
spacewith a penny-shaped crackunder anti-symmetric uniformheat fluxeswas considered in [18]. Fundamental
solutions of penny-shaped and half-infinite plane cracks in an infinite space of a one-dimensional hexagonal
quasicrystal under thermal loading has been obtained in [19], and thermo-elastic Green’s functions for an
infinite bi-material composed of one-dimensional hexagonal quasicrystals were found in [20]. Fundamental
solutions for three-dimensional cracks in one-dimensional hexagonal piezoelectric quasicrystals were found
in [21]. The problem of crack opening and closing in a soft-matter pentagonal and decagonal quasicrystal was
considered in [22]. Shear cracks moving in one-dimensional hexagonal quasicrystalline materials were studied
in [23].

Piezoelectricity is an important physical property of QCs. The piezoelectric QCs were investigated in
papers [24–27]. Green’s functions of a one-dimensional quasicrystal bi-material with piezoelectric effect were
investigated in [28]. A set of 3Dgeneral solutions to static problems of 1Dhexagonal piezoelectric quasicrystals
is obtained in [29]with use of displacement functions. Three-dimensional cracks in one-dimensional hexagonal
piezoelectric quasicrystals were studied in [30], and a penny-shaped dielectric crack in the quasicrystal plate
of the same structure was considered in [31]. Two collinear electrically permeable anti-plane cracks of equal
length lying at the mid-plane of a one-dimensional hexagonal piezoelectric quasicrystal strip were investigated
in [32]. Two asymmetrical limited permeable cracks emanating from an elliptical hole in one-dimensional
hexagonal piezoelectric quasicrystals were considered in [33]. An anti-plane crack in a half-space of a one-
dimensional piezoelectric quasicrystal was investigated in [34].

However, interface cracks in bi-material and multi-material components between different QC materials
have not been sufficiently studied till now. As far as we know on this subject, an arbitrarily shaped electrically
impermeable interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material
was investigated in [35,36] by an analytical-numericalmethod, and a crack between dissimilar one-dimensional
hexagonal quasicrystals with piezoelectric effect under anti-plane shear and in-plane electric loadings was
recently studied in [37].

The present paper is devoted to developing an exact analytical solution for an electrically permeable
interface crack situated in the interface between two bonded one-dimensional hexagonal QCs with point group
6 mm [23]. Phonon and phason stress components, their intensity factors, and also crack displacement jumps
are presented in a simple analytical form and illustrated graphically. The importance of the obtained solution
is justified by the absence of sufficient analytical results on interface cracks in QCs and by the possibility of
using the obtained equations and results for verifying of numerical solutions for similar problems in finite
sized domains.

2 Formulation of the basic relations

For the linear elastic theory of QCs, the constitutive relations, equilibrium equations, and geometric equations
of a 1D piezoelectric hexagonal QC with point group 6 mm without body forces and free charges can be
expressed in the following form:

σi j = ci jksεks − esi j Es + Ri j3sW3s, (1)

Di = eiksεks + ξis Es + ẽi3sW3s, (2)

H3i = Rks3iεks − ẽs3i Es + K3i3sW3s, (3)

σi j, j = 0, Di,i = 0, H3i,i = 0, (4)

εi j = 1
2 (ui, j + u j,i ), Ei = −φ,i ,W3i = W3,i (5)

where i, j, k, s = 1, 2, 3, and the denotation “,” represents the derivative operation for the space variables;
ui ,W3, and ϕ are the phonon displacements, phason displacement, and electric potential, respectively, and the
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atom arrangement is periodic in the x1–x2 plane and quasiperiodic in the x3-axis; σi j and εks are the phonon
stresses and strains, respectively; H3i and W3i are the phason stresses and strains, respectively; Di and Ei are
the electric displacements and electric fields, respectively, and the polarization direction is along the x3-axis;
ci jks and K3 j3s are the elastic constants in the phonon and phason fields, respectively; Ri j3k represent the
phonon–phason coupling elastic constants; e jks and ẽ jks are the piezoelectric constants in the phonon and
phason fields, respectively; ξis are the permittivity constants.

From (1)–(5) one gets the following governing equations:
⎧
⎨

⎩

(
ci jksuk + esi jϕ + Ri j3sW3

)

,si = 0,
(eiksuk − ξisϕ + ẽi3sW3),si = 0,

(Rik3suk + ẽi3sϕ + K3i3sW3),si = 0.
(6)

Next we introduce the following vectors:

V = {u1, u2, u3, ϕ, W3
}T

, t = {σ31, σ32, σ33, D3, H33
}T

, (7)

where the superscript T stands for the transposed matrix.
Performing the analysis presented in “Appendixes 1 and 2”, one arrives at the following representations:

〈V′(x1)〉 = ω+(x1) − ω−(x1), (8)

t(1)(x1, 0) = Gω+(x1) − Ḡω−(x1) (9)

where the 5× 5 matrixG is defined in “Appendix 2” and ω(z) is a vector-function analytic in the whole plane
cut along −b < x1 < b, x3 = 0.

Consider further the plane problem in the x1–x3 plane assuming all fields are independent on the coordinate
x2. We’ll use the contracted notation, whereby a pair of indices is changed into a single index according to the
rule: 11 → 1, 22 → 2, 33 → 3, 23 or 32 → 4, 13 or 31 → 5, 12 or 21 → 6. The constitutive relations for
1D hexagonal piezoelectric QCs, referred to the Cartesian coordinate (x1, x2, x3) with (x1, 0, x2) coincident
with the periodic plane and x3-axis identical to the quasiperiodic direction attain the form

⎧
⎨

⎩

σ11
σ33
σ13

⎫
⎬

⎭
=
⎡

⎣
c11 c13 0
c13 c33 0
0 0 2c44

⎤

⎦

⎧
⎨

⎩

ε11
ε33
ε13

⎫
⎬

⎭
−
⎡

⎣
0 e31
0 e33
e15 0

⎤

⎦

{
E1
E3

}

+
⎡

⎣
0 R1
0 R2
R3 0

⎤

⎦

{
W31
W33

}

, (10.1)

{
D1
D3

}

=
[

0 0 2e15
e31 e33 0

]
⎧
⎨

⎩

ε11
ε33
ε13

⎫
⎬

⎭
+
[

ξ11 0
0 ξ33

]{
E1
E3

}

+
[
ẽ15 0
0 ẽ33

]{
W31
W33

}

, (10.2)

{
H31
H33

}

=
[

0 0 2R3
R1 R2 0

]
⎧
⎨

⎩

ε11
ε33
ε13

⎫
⎬

⎭
+
[
K2 0
0 K1

]{
W31
W33

}

−
[
ẽ15 0
0 ẽ33

]{
E1
E3

}

. (10.3)

The equilibrium and geometric equations in this case follow from (4) and (5), respectively.
The matrix G from Eq. (7) without the second row and column has in this case the following structure:

G =
⎡

⎢
⎣

ig11 g13 g14 g15
g31 ig33 ig34 ig35
g41 ig43 ig44 ig45
g51 ig53 ig54 ig55

⎤

⎥
⎦ , (11)

where all gi j are real and g31 = −g13, g41 = −g14, g51 = −g15, g53 = g35, g43 = g34, g45 = g54 holds true.
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Fig. 1 A crack between two 1D piezoelectric QCs

3 A single electrically permeable interface crack between two different 1D hexagonal piezoelectric QCs

Consider a crack−b ≤ x1 ≤ b, x3 = 0 in the interface between two semi-infinite 1D piezoelectric hexagonal
quasicrystalline spaces with point group 6 mm (Fig. 1). It is assumed that uniform phonon (σ∞, τ∞) and
phason H∞ stresses as well as electrical displacement D∞ are prescribed at infinity. It is assumed also that
the crack is electrically permeable and all fields are independent on the coordinate x2.

In this case relations (8), (9) are valid with the matrix G defined by Eq. (9). The interface conditions have
the following form:

σ±
13 = 0, σ±

33 = 0, H±
33 = 0, 〈ϕ〉 = 0, 〈D3〉 = 0 for − b < x1 < b, (12)

〈σ13〉 = 0, 〈σ33〉 = 0, 〈H33〉 = 0, 〈u1〉 = 0, 〈u3〉 = 0,

〈W3〉 = 0, 〈ϕ〉 = 0, 〈D3〉 = 0 for x1 /∈ (−b, b) (13)

where 〈 f 〉 means the jump of the function f over the material interface.
Because of the two last equations in (12) and (13) together with Eq. (8), one has

〈
ϕ′〉 = 〈V ′

4 (x1)
〉 = ω+

4 (x1) − ω−
4 (x1) = 0 for x1 ∈ (−∞; ∞) .

It means that the function ω4(z) is analytic in the whole plane and

ω4(z) = ω0
4 = const

holds true.
Because of x1 /∈ (−b, b) one has ω+(x1) = ω−(x1) = ω(x1); then it follows from Eq. (3) that

t(1)(x1, 0) = (G − Ḡ)ω(x1) for x1 /∈ (−b, b) (14)

and

t∞ = t(1) (x1, 0)

∣
∣
∣
∣
x1→∞

= (G − Ḡ
)
ω(z)

∣
∣
∣
∣
z→∞

, (15)

where t∞ = {τ∞, σ∞, D∞, H∞}T .
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It follows from Eq. (15)

ω (z)

∣
∣
∣
∣
z→∞

= (G − Ḡ
)−1

t∞ (16)

and, therefore,

ω0
4 =

{(
G − Ḡ

)−1
t∞
}

4

is the forth component of the vector (16).
By introducing the following vectors:

Q =
⎧
⎨

⎩

σ31
σ33
H33

⎫
⎬

⎭
, e =

⎧
⎨

⎩

e1
e3
e5

⎫
⎬

⎭
, � =

⎧
⎨

⎩

	1
	3
	5

⎫
⎬

⎭
, and the matrix ρ =

⎡

⎣
ρ11 ρ13 ρ15
ρ31 ρ33 ρ35
ρ51 ρ53 ρ55

⎤

⎦ (17)

with the components e1 = 0, e3 = 2G34ω40, e5 = 2G54ω40, 	i = ωi , ρi j = Gi j (i, j = 1,3,5), the
representation (9) without the second and forth equations can be written in the form

Q(1)(x1, 0) = R�+(x1) − R̄�−(x1). (18)

Further, the transformation of Eq. (18) will be performed similarly to the case of an electromechanical
loading (Herrmann et al. [38]). Introducing a one line matrix S = [S1, S3, S5] and considering a product
SQ(1)(x1, 0), the following relations can be obtained by use of Eqs. (9) and (18):

σ
(1)
33 (x1, 0) + m j5H

(1)
33 (x1, 0) + im j1σ

(1)
13 (x1, 0) = �+

j (x1) + γ j�
−
j (x1) + η j , (19)

n j1
〈
u′
1(x1)

〉+ in j3
〈
u′
3(x1)

〉+ in j5
〈
W ′

3(x1)
〉 = �+

j (x1) − �−
j (x1), (20)

where

� j (z) = n j1	1(z) + i{n j3	3(z) + n j5	5(z)}, (21)

η j = S je = 2(G34 + m j3G54)W40, m j5 = S j5, m j1 = −i S j1, n j1 = Y j1, n j3 = −iY j3, n j5 = −iY j5, and
m jl , n jl (l = 1, 3, 5) are real,Y j = S jρ.Moreover, γ j andSTj = [S j1, S j3, S j5] ( j = 1, 3, 5) are, respectively,

the eigenvalues and eigenvectors of the matrix (γ ρT + ρ̄T ). The roots of the equation det(γ ρT + ρ̄T ) = 0
can be presented in the form

γ1 = 1 + δ

1 − δ
, γ3 = γ −1

1 , γ5 = 1, (22)

where

δ2 = g215g33 + g213g55 − 2g15g13g35
g11(g33g55 − g235)

. (23)

It appears to be that δ2 > 0 holds true for 1D piezoelectric QC bimaterials considered in this paper. In this
case the properties of the coefficients m jl , n jl reported above are valid.

Taking into account that for x1 /∈ (−b, b) the relationships �+
j (x1) = �−

j (x1) = � j (x1) hold true, one
has

(1 + γ j )� j (x1) = S jQ(1)(x1, 0) for x1 → ∞. (24)

But taking into account that the functions � j (z) are analytic in the whole plane cut along −b < x1 < b,
x2 = 0, and by using that Q(1)(x1, 0) = [τ∞, σ∞, H∞]T for x1 → ∞, one has

� j (z) = (1 + γ j )
−1(im j1τ

∞ + σ∞ + m j5H
∞ − η j ) for z → ∞. (25)

By introducing new functions
� j (z) = � j (z) + (1 + γ j )

−1η j , (26)
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Eqs. (19), (20), and (25) are written in the form

σ
(1)
33 (x1, 0) + m j5H

(1)
33 (x1, 0) + im j1σ

(1)
13 (x1, 0) = �+

j (x1) + γ j�
−
j (x1), (27)

n j1
〈
u′
1(x1)

〉+ in j3
〈
u′
3(x1)

〉+ in j5
〈
W ′

3(x1)
〉 = �+

j (x1) − �−
j (x1), (28)

� j (z)|z→∞ = (1 + γ j )
−1(im j1τ

∞ + σ∞ + m j5H
∞). (29)

Satisfying the interface conditions (12) by using Eq. (27), one arrives at the following Riemann boundary
value problem:

�+
j (x1) + γ j �

−
j (x1) = 0 for x1 ∈ (−b, b) , (30)

with the conditions at infinity (29).
According to [37], the solution of this problem has the following form:

� j (z) = X j (z)(σ
∗
j − iτ ∗

j )(z − 2ibε j ), (31)

where X j (z) = (z + b)−1/2+iε j (z − b)−1/2+iε j , σ ∗
j = 1

r j
(σ∞ +m j5H∞), τ ∗

j = −m j1τ
∞/r j , r j = (1+ γ j ),

ε j = lnγ j
2π , j = 1, 3, 5.

4 Determination of phonon and phason displacement jumps and stresses

Substituting (31) into Eq. (28), one gets

n j1
〈
u′
1(x1, 0)

〉+ i
{
n j3
〈
u′
3(x1, 0)

〉+ n j4
〈
W ′

3(x1, 0)
〉}

= γ j + 1

γ j
(σ ∗

j − iτ ∗
j )(x1 + b)−1/2+iε j (x1 − b)−1/2+iε j (x1 − 2ibε j ) ( j = 1, 3, 5). (32)

By integrating this equation, one arrives at the formula

n j1 〈u1(x1, 0)〉 + i
{
n j3 〈u3(x1, 0)〉 + n j4 〈W3(x1, 0)〉

}

= γ j + 1

γ j
(σ ∗

j − iτ ∗
j )

(
x1 + b

x1 − b

)iε j √

x21 − b2 for x1 ∈ (−b, b), j = 1, 3, 5. (33)

The analysis shows that for the considered class of QCs the relations n51 = 0, ε5 = 0, γ5 = 1 are valid.
Because of this, the equations

n13 〈u3(x1, 0)〉 + n15 〈W3(x1, 0)〉 = Im

{
γ1 + 1

γ1
(σ ∗

1 − iτ ∗
1 )

(
x1 + b

x1 − b

)iε1√

x21 − b2

}

, (34)

n53 〈u3(x1, 0)〉 + n55 〈W3(x1, 0)〉 = −2i(σ ∗
5 − iτ ∗

5 )

√

x21 − b2 (35)

can be derived from (33) for x1 ∈ (−b, b).
These relations are a system of linear algebraic equations for 〈u3(x1, 0)〉 and 〈W3(x1, 0)〉 leading to the

solution

〈u3(x1, 0)〉 = �−1 {n55H1(x1) − n15H2(x1)} ,

〈W3(x1, 0)〉 = �−1 {−n53H1(x1) + n13H2(x1)} , (36)

where H1(x1) = { γ1+1
γ1

(σ ∗
1 cosα + τ ∗

1 sin α)

√

x21 − b2, H2(x1) = 2 σ ∗
5

√

b2 − x21 , α = ε1ln(
b+x1
b−x1

), � =
n13n55 − n53n15.

By means of relations (27) and (31) and in view of the properties of the matrix m the phonon and phason
stresses for x1 > b can be written in the form

σ
(1)
33 (x1, 0) + m15H

(1)
33 (x1, 0) + im11σ

(1)
13 (x1, 0)
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= (1 + γ1)
(
σ ∗
1 − iτ ∗

1

)
(x1 − 2ibε1) (x1 + b)−1/2+iε1(x1 − b)−1/2−iε1 + m15H

∞, (37)

σ
(1)
33 (x1, 0) + m55H

(1)
33 (x1, 0) = 2σ ∗

5 x1√

x21 − b2
+ m55H

∞. (38)

The shear stressσ
(1)
13 (x1, 0) can be found directly from (37)whilst (38) and the real part of (37) composes the

system of two linear algebraic equations with respect to σ
(1)
33 (x1, 0), H (1)

33 (x1, 0), from which these functions
can be easily found.

The intensity factors (IFs) at the point b are defined as [38]:

K1 + m15K5 + im11K2 = lim
x1→b+0

√
2π(x1 − b)(x1 − b)iε1

×[σ (1)
33 (x1, 0) + m15H

(1)
33 (x1, 0) + im11σ

(1)
13 (x1, 0)], (39)

K1 + m55K5 = lim
x1→b+0

√
2π (x1 − b)

[
σ

(1)
33 (x1, 0) + m55H

(1)
33 (x1, 0)

]
. (40)

Using (37), (38), one gets for x1 → b + 0

K1 + m15K5 − im11K2 =
√
lπ

2
(1 − 2iε1) [σ∞ + m15H

∞ − im11τ
∞]eiψ, (41)

K1 + m55K5 =
√
lπ

2

(
σ∞ + m55H

∞) , (42)

where ψ = εlnl, α = (γ1+1)2

4γ1
, and l = 2b is the crack length. From the formulae (41), (42) the analytical

expressions for K1, K2, and K5 can be easily derived.
In some cases, the distribution of phonon and phason components over the whole bimaterial region is

important to know. By considering the achievement of this purpose, Eqs. (A.11) and (A.20) we can write

t(m)(x1, x3) = 2Re
{
B(m) �ω(z)

}
, (m = 1, 2) (43)

where � =
{
D−1 for x3 > 0
−D̄−1 for x3 < 0

.

Using further (17) and (21), one gets

ωi (z) =
∑

j=1,3,5

κi j� j (z)(i = 1, 3, 5), (44)

where κ = n−1
0 , n0 =

⎛

⎝
n11 in13 in15
n31 in33 in35
n51 in53 in55

⎞

⎠.

Taking into account also that ω4(z) = ω0
4, Eq. (43) in the expanded form is written as

t (m)
i (x1, x3) = 2Re

⎧
⎨

⎩

∑

l=1,3,5

[
�

(m)
il �l(z

(m)
l )
]

+ ω0
4

∑

j=1,3,4,5

(
� j4B

(m)
i j

)
⎫
⎬

⎭
(i = 1, 3, 5), (45)

where �
(m)
il =∑ j=1,3,4,5 B

(m)
i j

∑
k=1,3,5 � jkκkl .

The required phonon and phason stresses can be calculated with the formula (45) at any part of the upper
(m = 1) and lover (m = 2) half planes.
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Table 1 The values of the SIFs K1, K2, and K5 for different variants of external loading

K1 [Pa/m3/2] K2 [Pa/m3/2] K5 [Pa/m3/2]

σ∞ = 10MPa, τ∞ = 0 1.77112 × 106 32,760.8 − 520.313
σ∞ = 0, τ∞ = 10MPa − 160,010 1.69521 × 106 − 62,910.1
σ∞ = 0.90344MPa, τ∞ = 10MPa ≈ 0 1.69817 × 106 − 62,436.8
σ∞ = 10MPa, τ∞ = −0.19325MPa 1.77421 × 106 ≈ 0 685.37
σ∞ = 10MPa, τ∞ = −0.08270MPa 1.77244 × 106 18,740 ≈ 0

Fig. 2 The variations of the phonon normal displacement jump 〈u3(x1, 0)〉 along the crack region for σ∞ = 10MPa and different
values of H∞

5 Numerical results and discussion

Consider as upper and lower materials the piezoelectric QCs given in “Appendix 3”.
In Table 1, the values of the SIFs obtained from Eqs. (41), (42) for different variants of external phonon

loading, H∞ = 0 and b = 10mm are presented. It can be seen from the second and third lines of this Table
that, unlike a crack in a homogeneous QC, each separate nonzero external component produces nonzero values
of all SIFs.

Because of linearity of the considered problem, the SIFs for other values of σ∞, τ∞ can be obtained by
simple linear combinations of the obtained results. Some particular cases of such combinations leading to zero
intensity factors of certain field components are shown in lines 4–6 of Table 1. It is seen from the presented
results that the shear stress has more essential influence on the intensity factor of phason stress than the normal
one.

In Fig. 2, the variations of the phonon normal displacement jump 〈u3(x1, 0)〉 along the crack region for
σ∞ = 10MPa and b = 10mm are presented. Lines I, II, and III correspond to H∞ equal to 0MPa, 1MPa,
and 2MPa, respectively. It is seen from this Figure that positive external phason normal stress increases the
phonon crack opening.

Similar results for the phason displacement jump 〈W3(x1, 0)〉 for the same loading and the crack length as
in Fig. 2 are given in Fig. 3. Lines I, II, and III also correspond to the same values of H∞ as in Fig. 2. It is
seen from this Figure that pure positive phonon normal stress induces a negative phason displacement jump
(line I), and additional positive phason normal stress H∞ corrects this displacement jump to positive values.

The phason displacement jumps 〈W3(x1, 0)〉 for σ∞ = 10MPa, b = 10mm and different values of shear
stress τ∞ are given in Fig. 4. Lines I, II, and III correspond to τ∞ equal to 0MPa, 5MPa, and 10MPa,
respectively. It is seen from this Figure that the phason displacement jump is symmetrical for τ∞ = 0 (line I),
but application of nonzero shear stress of the same order as σ∞ moderately influences this displacement jump
leading to its symmetry losing (lines II and III).

It is seen from the formulas (33)–(35) that the displacement jumps include oscillating terms. This means
that some zones of crack faces interpenetration exist at the crack tips. For τ∞ = 0 these zones are extremely
small, and they are invisible in Fig. 2. However, with increasing absolute values of τ∞, one of these zones
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Fig. 3 The phason displacement jump 〈W3(x1, 0)〉 for the same crack and loadings as in Fig. 2

Fig. 4 Phason displacement jump 〈W3(x1, 0)〉 for the mixed mode phonon loading

grows and another one decreases. Such situation with the longer interpenetrations zone of the phonon normal
displacement is demonstrated in Fig. 5. This Figure is obtained for b = 0.1m, σ∞ = 1MPa, and τ∞ equals to
0 (line I),−40MPa (II),−70MPa (III), and−100MPa (IY). It can be seen that visible zones of the crack faces
interpenetrations appear only for a rather large phonon shear field. Therefore, in most cases the considered
model, even if it does not account for the contact zones at the crack faces, can be used in the sense suggested
in Ref. [40].

In Fig. 6, the variation of the phonon shear stress σ
(1)
13 (x1, 0) on the crack continuation for σ∞ = 10MPa,

b = 10mm, and different τ∞ are presented. Lines I, II, and III correspond to τ∞ equal to 0, 0.01MPa, and
0.02MPa, respectively. This Figure shows that the relatively small values of τ∞ with respect to σ∞ have rather
significant influence upon the near tip shear stress.

In Fig. 7, the distributions of the phason stress H (1)
33 (x1, x2) at the upper vicinity of the right crack tip

(x1 = 0.01, x2 = 0) are presented for the illustration of using the formula (45). The combination of materials
was the same as earlier, and the normal phonon stress σ∞ = 10MPa was applied at infinity. The curves with
markers represent the level lines of H (1)

33 (x1, x2), which demonstrate its variation in the mentioned region.
Similar fields can be drawn with use of (45) for other phonon and phason stress components at any subdomain
of the medium.

To confirm the correctness of the obtained solution, let us compare its particular case of identical lower and
upper materials with the solution for an electrically permeable crack in the homogeneous 1D QC. Let us take
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Fig. 5 Phonon displacement jump 〈u3(x1, 0)〉 at the right crack tip for a relatively large phonon shear field

Fig. 6 Variation of the phonon shear stress σ
(1)
13 (x1, 0) on the right crack continuation for σ∞ = 10MPa, b = 10mm and different

τ∞

the upper material of “Appendix 3” and σ∞ = 10MPa, τ∞ = 0, H∞ = 0, b = 10mm as both the upper and
lower material. The values of 〈u3(0, 0)〉, 〈W3(0, 0)〉 appear to be equal 4.248 × 10−6 m and 1.241 × 10−5 m,
respectively, by the presented approach, and 4.243 × 10−6 m and 1.280 × 10−5 m, respectively, by direct
consideration of the crack in the homogeneous 1D QC. The stresses σ

(1)
33 (x1, 0) on the crack continuation

corresponding to these two cases completely agree with each other.

6 Conclusions

A plane problem for a tunnel electrically permeable crack −b ≤ x1 ≤ b, x3 = 0 along the interface between
two bonded semi-infinite 1D piezoelectric quasicrystalline spaces is considered. It is assumed that the atom
arrangement is periodic in the x1–x2 plane and quasiperiodic in the x3-direction, and the last axis represents the
direction of polarization. Uniformly distributed phonon normal and shear in-plane stresses and, also, phason
stress and electric displacement can be prescribed at infinity.

Thematrix vector representations (8), (9) for the phonon and phason stresses and the electrical displacement
and also for the derivatives of the phonon and phason displacements and electrical potentials jumps via the
vector function, holomorphic in the whole complex plane except the crack region, are derived. Excluding from
these relations the out of plane components and taking into account the electric permeability along the whole
interface these representations are simplified and presented in the form (19), (20) and later as (27), (28). Using
these relations and satisfying the conditions at the crack faces, a Riemann problem of linear relationship (30) is
formulated. The exact solution of this problem is obtained. Simple analytical expressions for the phonon and
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Fig. 7 Variation of the phason stress H (1)
33 (x1, x2) at the vicinity 0.0095m ≤ x1 ≤ 0.011m, 0 ≤ x2 ≤ 0.0005m of the right

crack tip

phason displacement jumps along the crack region and also the phonon and phason stresses along the bonded
parts of the material interface as well as their stress intensity factors are given.

A numerical analysis is carried out for the combination of different QCs from Ref. [26]. The obtained
results for the phonon and phason components along the interface are presented in table and graph forms,
and moreover their behaviour outside of the interface is analytically derived and graphically illustrated. The
following valuable conclusions are drawn from these data:

– Unlike a crack in a homogeneous QC each separate nonzero external phonon component produces nonzero
values of all stress intensity factors for a bimaterial case;

– Each component of phonon stress causes phason stress and displacement jump, and the influence of the
phonon shear stress on the intensity factor of phason stress is more sensitive than the influence of the
normal one.

Note that even though an oscillating singularity appears in the considered interface crack model, the zone
of the crack faces interpenetration is extremely small for most loads. These zones became more visible only
for a very large phonon shear field.

Finally, the results for a particular case of identical lower and upper materials of the QC bi-material are
calculated and compared with those obtained for the corresponding homogeneous QC. A very good agreement
of these results is revealed.
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Appendix 1: General solution of Eq. (6)

Assuming that all fields are independent on the coordinate x2, the solution of Eq. (6) according to the method
suggested in [41] can be presented in the form:

V = a f(z), (A.1)
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where z = x1 + p x3, and the vector a = [a1, a2, a3, a4]T can be found from the relation
[
Q + p(E + ET ) + p2T

]
a = 0. (A.2)

The elements of the 5 × 5 matrices Q, E, and T are defined as

Q =
⎡

⎣
c1 jk1 e1 j1 R1 j31
e1k1 −ξ11 ẽ131
Rk131 ẽ131 −K3131

⎤

⎦ ,E =
⎡

⎣
c1 jk2 e21 j1 R j132
e1k2 −ξ12 ẽ132
Rk231 ẽ132 K3132

⎤

⎦ ,T =
⎡

⎣
c2 jk2 e2 j2 R j232
e2k2 −ξ22 ẽ232
Rk232 ẽ232 K3232

⎤

⎦ .

A nontrivial solution of Eq. (A.2) exists if p is a root of the equation

det
[
Q + p(E + ET ) + p2T

]
= 0. (A.3)

Since Eq. (A.3) has no real roots [42] we denote the roots of Eq. (A.3) with positive imaginary parts as pα and
the associated eigenvectors of (A.2) as aα (subscript α here and afterwards takes the numbers 1–5). The most
general real solution of Eq. (6) can be presented as [42]

V = A f(z) + Ā f̄(z̄), (A.4)

where A = [a1, a2, a3, a4, a5] is a matrix composed of eigenvectors, f(z) = [ f1(z1), f2(z2), f3(z3), f4(z4),
f5(z5)]T is an arbitrary vector function, zα = x1 + pα x3, and the overbar stands for the complex conjugate.
Using Eqs. (1)–(3) the vector t introduced by Eq. (7) can be represented in the form

t = B f ′(z) + B̄ f̄ ′(z̄), (A.5)

where the 5 × 5 matrix B is defined as

B = [b1,b2,b3,b4,b5]
with

bα = (RT + pαT)aα (not summed over index α) (A.6)

and

f ′(z) =
[
d f1(z1)

dz1
,
d f2(z2)

dz2
,
d f3(z3)

dz3
,
d f4(z4)

dz4
,
d f5(z5)

dz5

]T

. (A.7)

Appendix 2: Solution for a composite of two 1D hexagonal piezoelectric QCs with mixed boundary
conditions at the interface

Abimaterial composed of twodifferent semi-infinite 1Dhexagonal piezoelectric quasicrystalline spaces x3 > 0
and x3 < 0, with properties defined by Eqs. (1)–(3) for each material, is considered (a cross-section orthogonal
to the axis x2 is shown in Fig. 1).We assume that the vector t is continuous across the whole bimaterial interface
and the part L = {(−∞,−b)∪ (b,∞)} of the interface− ∝< x1 <∝, x3 = 0 is mechanically and electrically
bounded, i.e. the boundary conditions at the interface x3 = 0 are the following ones:

t(1)(x1, 0) = t(2)(x1, 0) f or x1 ∈ (−∞,∞), (A.8)

V(1)(x1, 0) = V(2)(x1, 0) f or x1 ∈ L . (A.9)

In this case according to Eqs. (A.4), (A.5), the solution of Eqs. (6) can be written for each subdomain in the
form

V( j)(x1, x3) = A( j) f ( j)(z) + Ā( j) f̄ ( j)(z̄), (A.10)

t( j)(x1, x3) = B( j) f ′( j)(z) + B̄( j) f̄ ′( j)(z̄), (A.11)

where j = 1 for x3 > 0 and j = 2 for x3 < 0; the vector functions f (1)(z) and f (2)(z) are analytic in the upper
(x3 > 0) and the lower (x3 < 0) domains, respectively.
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Equation (A.11) and the boundary condition (A.8) give

B(1) f ′(1)(x1) − B̄(2) f̄ ′(2)(x1) = B(2) f ′(2)(x1) − B̄(1) f̄ ′(1)(x1) for − ∞ < x1 < ∞. (A.12)

The left-hand side of Eq. (A.12) is the boundary value of a function analytic in the domain x3 > 0 and
the right-hand side of Eq. (A.12) is a boundary value of another function analytic in the domain x3 < 0.
Equation (A.12) means that both functions can be analytically continued into the entire plane, i.e. they are
equal for x3 > 0 and x3 < 0, respectively, to a function M(z) analytic in the whole plane. Taking into
account that the phonon and phason stresses and the electric displacement are bounded at infinity one gets
from Eq. (A.11) that M(z)|z→∝ = M(0) = const. But it means that M(z) = M(0) holds true in the whole
plane. Thus from Eq. (A.12) it follows

B(1)f ′(1) (z) − B̄(2)f̄ ′(2) (z̄) = M(0) for x3 > 0, (A.13)

B(2)f ′(2) (z) − B̄(1)f̄ ′(1) (z̄) = M(0) for x3 < 0, (A.14)

whereM(0) is an arbitrary constant vector. Assuming that the eigenvalues are distinct and taking into account
that the matrices in Eqs. (A.13), (A.14) are non-singular [40], one obtains

f̄ ′(2) (z̄) = (B̄(2))−1B(1)f ′(1) (z) − (B̄(2))−1M(0) for x3 > 0,

f̄ ′(1) (z̄) = (B̄(1))−1B(2)f ′(2) (z) − (B̄(1))−1M(0) for x3 < 0. (A.15)

Since f ′(1) (z) and f ′(2) (z) are arbitrary functions, one can set M(0) = 0, and Eq. (A.15) gets the form

f̄ ′(2) (z̄) = (B̄(2))−1B(1)f ′(1) (z) for x3 > 0,

f̄ ′(1) (z̄) = (B̄(1))−1B(2)f ′(2) (z) for x3 < 0. (A.16)

Consider further the vector
〈
V′(x1)

〉 = V′(1)(x1, 0) − V′(2)(x1, 0) (A.17)

of the derivatives of the jumps of phonon and phason displacements and electric potential across the material
interface. By using Eqs. (A.10) and (A.16), it can be written as

〈V′(x1)〉 = Df ′(1)(x1) + D̄ f̄ ′(1)(x1), (A.18)

with the definition D = A(1) − Ā(2)(B̄(2))−1B(1).
From Eq. (A.11), the vector t(1) on the material interface can be written as

t(1)(x1, 0) = B(1) f ′(1)(x1) + B̄(1) f̄ ′(1)(x1). (A.19)

Introducing the vector function ω(z) by the formula

ω(z) =
{
DN(z) for x3 > 0
−D̄ N̄(z) for x3 < 0

, (A.20)

with N(z) = [ f ′(1)
1 (z), f ′(1)

2 (z), f ′(1)
3 (z), f ′(1)

4 (z), f ′(1)
5 (z)]T , leads to the following expressions:

〈V′(x1)〉 = ω+(x1) − ω−(x1), (A.21)

t(1)(x1, 0) = Gω+(x1) − Ḡω−(x1) (A.22)

where G = B(1)D−1 and ω+(x1) = ω(x1 + i0),ω−(x1) = ω(x1 − i0).
Equations (A.21) and (A.22) can be used for the analysis of compositions of different semi-infinite 1D

hexagonal piezoelectric quasicrystals with cracks at their interface.
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Appendix 3: Constants of 1D piezoelectric QCs poling in the x3-direction [28]

Upper material Lower material

Phonon elastic c11 = 150, c12 = 100, c13 = 90 c11 = 234.33, c12 = 57.41, c13 = 66.63
constants (GPa) c33 = 130, c44 = 50 c33 = 232.22, c44 = 70.19
Phason elastic constants (GPa) K1 = 0.18, K2 = 0.3 K1 = 122, K2 = 24
Coupling constants (GPa) R1 = −1.50, R2 = 1.20, R3 = 1.20 R1 = R2 = R3 = 0.8846
Piezoelectric constants e31 = ẽ15 = −0.160, e33 = 0.347, e31 = −4.4, e33 = 18.6, e15 = 11.6
(Cm−2) e15 = −0.138, ẽ33 = 0.350 ẽ15 = 1.16, ẽ33 = 1.86
Dielectric constants (10−9 C2 N−1 m−2) ξ11 = 0.0826, ξ33 = 0.0903 ξ11 = 5, ξ33 = 10
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