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Abstract Nanoindentation is employed to characterize the mechanical properties at the nanoscale. This paper
considers the mechanical response of a nanoscale elastic layer on an elastic substrate that is indented by an
adhesively bonded flat-ended rigid cylindrical punch. The complete Gurtin–Murdoch continuum model is
employed to capture the size effects. The contact problem is analyzed by relating displacements of the contact
region to contact stresses by a flexibility equation system, which is developed by discretizing the contact region
into annular elements. The flexibility equation involves displacement influence functions corresponding to
axisymmetric normal and radial surface ring loads applied on the layer-substrate system. The displacement
influence functions are derived by using the Hankel integral transforms. Convergence and accuracy of the
proposed solution scheme are verified by comparingwith limiting cases such as the classical elasticity solution.
Selected numerical results indicate that the substrate becomes stiffer and the elastic field is size-dependent due
to the surface energy effects.

1 Introduction

An interesting class of problems in continuummechanics is concernedwith stress analysis of an elasticmedium
subjected to a rigid punch on its surface due to its close relevance to indentation techniques that have been
performed to obtain mechanical properties such as elastic modulus and hardness. For example, mechanical
properties of thin films were obtained by Doerner and Nix [1] and Oliver and Pharr [2] from depth-sensing
indentation experiments, in which the elastic modulus is obtained from the unloading curve and hardness
is obtained from the load-deformation data. Several researchers obtained analytical solutions for indentation
problems based on continuummechanics models in the past. A classical solution was presented by Boussinesq
[3] who studied axisymmetric indentation on a semi-infinite medium. Sneddon [4] then adopted Boussinesq’s
solution to obtain analytical solutions for an indenter of arbitrary profile with the aid of Hankel integral
transform techniques. Numerous solutions of smooth and adhesive contact problems based on the classical
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elasticity have appeared in the literature over the past five decades. It is not the intention of the present paper
to review these solutions. Interested readers are referred to review articles by Galin and Gladwell [5] and
Borodich [6].

Nowadays, nanoindentation is employed to examinemechanical properties of various material systems and
devices such as nanocoatings, nanograined materials, and nanobeam resonators. For nanoscale systems, the
effects from the excess energy associated with the surface/interface atoms become important due to their high
ratio of surface-to-volume, and the mechanical behavior is then size-dependent [7]. Thus, the surface energy
effects, which are normally disregarded in classical problems, must be taken into account in the analysis of
nanoscale problems. Several continuum-based models have been proposed to incorporate the surface energy
and the size-dependent material behavior such as the couple stress theory [8,9], the strain gradient elasticity
theory [10,11], and the surface elasticity theory [12,13]. The theory of surface elasticity byGurtin andMurdoch
[12,13] has been widely adopted by many researchers to study various continuum mechanics problems where
the effects of surface energy are important. These include elastic media under surface loading [14–17]; contact
problems [18–20]; ultra-thin films [21–23]; and nano-sized cracks [24,25]. The extensive uses of G-M surface
elasticity theory in simulating the surface energy effects of nanoscale/nanostructured objects stem directly from
its simplicity and efficiency in themodelingwhile still yielding sufficient accuracy and similar trend of predicted
response in comparisonwith those from comprehensive discrete-based simulations such asmolecular dynamics
[26–29]. Results obtained from these simplified models should at least shed some light or offer preliminary
insight on nanoscale-related phenomena when the dimensions of the systems considered are larger than several
layers of atoms.

In the context of nanoindentation problems, Zhao [30] presented analytical solutions for a homogeneous
elastic half-space under frictionless rigid indentation of various profiles, i.e., conical, cylindrical, and spherical.
The numerical results presented in his work show size-dependent behavior, i.e., when the contact area is
smaller, the medium becomes stiffer, even though an incomplete Gurtin–Murdoch model was employed in
his formulation (no out-of-plane term). Pinyochotiwong et al. [31] then generalized Zhao’s work [30] and
included the out-of-plane term to present the axisymmetric response of an elastic half-space under rigid smooth
indentation. Recently, Intarit et al. [32] extended the work of Pinyochotiwong et al. [31] for the analysis of
an elastic layer bonded to a rigid base under axisymmetric smooth indentation. To the best of the authors’
knowledge, the analysis of indentation problems with the existence of surface energy effects and adhesive
contact has not been reported in the literature. Consideration of adhesive contact is important at the nanoscale
as the contact is generally not smooth due to inter-atomic interactions and associated surface forces.

The objective of this paper is therefore to investigate the practically useful problem of a nanoscale elastic
layer on an elastic substrate that is indented by a cylindrical flat-ended punch under adhesive contact condi-
tion. A complete version of the Gurtin–Murdoch’s theory of surface elasticity is used in the analysis of the
adhesive indentation problem. In this paper, a mixed boundary-value problem is formulated for the problem
under consideration with the displacement boundary conditions in the vertical and radial directions being
enforced at the contact region by discretizing it into a series of annular rings. The unknown contact tractions
under the punch are then obtained by solving a flexibility equation system constituted from the displacement
boundary conditions and a set of displacement influence functions that are derived analytically by applying
the Hankel integral transforms. The accuracy of the present solution is confirmed by verifying with simplified
cases available in the literature. Numerical results for the elastic field are presented to illustrate the size-
dependent response of the nanolayer-substrate system, effects of adhesive contact, and elastic properties of the
system.

2 Basic equations

A nanoscale elastic layer h is fully bonded to a semi-infinite elastic substrate of different properties with
a cylindrical coordinate system (r, θ, z) defined as shown in Fig. 1. The layer thickness is denoted by h,
and it is indented by a rigid cylindrical flat-ended punch in full adhesive contact. In the absence of body
forces, the field equations of the elastic substrate are the same as those in the classical theory of elasticity for
axisymmetric deformations [33]. The thickness of the layer is assumed to be less than 100nm such that the
influence of surface/interface energy is important but more than several layers of atoms such that a continuum
model is feasible. On the top surface of the nanolayer and the layer-substrate interface, the Young–Laplace
equation [34], the stress–strain and the strain–displacement relationships should be considered to account for
the surface/interface energies and resulting size-dependent behavior, and they are expressed respectively under
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Fig. 1 Indentation of a nanolayer bonded to an elastic substrate by a rigid flat-ended punch of radius a

axisymmetric response as [12,13]
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In the above equations, the superscript “s” represents the parameters associated with the surface (or interface);
τ s is the residual surface stress, which is assumed to be constant; λs and μs are the Lamé constants of the
surface; and t0r and t0z , respectively, denote the prescribed vertical and radial tractions on the surface. Note that
according to Gurtin-Murdoch [12,13], the surface (or interface) is a zero-thickness layer fully bonded to the
corresponding bulk material(s) such that displacement continuity exists at the surface (or interface).

3 Indentation on a nanolayer-substrate system with adhesive contact

Consider the axisymmetric indentation problem shown in Fig. 1 where the indenter is subjected to a vertical
force P . At the nanoscale, the inter-atomic interactions and surface forces make the contact area under the
indenter adhesive. On the top surface, normal and shear stresses on the domain outside the contact region
(r >a) are zero. The surface inside the contact region (r ≤ a) has prescribed displacements with the normal
displacement equal to the indentation depth, which is represented by � and the radial displacement equal to
zero. The quantities with the subscript “1” are associated with the nanolayer and the top surface, whereas
those with the subscript “2” correspond to the substrate and the layer-substrate interface. The mixed boundary
conditions can be expressed at the top surface as

uz1 (r, 0) = �; r ≤ a, (4)
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= 0; r > a, (5)
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ur1 (r, 0) = 0; r ≤ a, (6)
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1
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The continuity conditions at the layer-substrate interface can be expressed as

uz1 (r, h) − uz2 (r, h) = 0; r > 0, (8)

ur1 (r, h) − ur2 (r, h) = 0; r > 0, (9)
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where {σzz, σzr} and {ur , uz} represent the stress and displacement components of the bulk; and κs
i = 2μs

i +λsi
(i = 1, 2).

From the superposition method, the vertical and radial surface displacements under the punch can be
expressed in terms of the normal contact traction Tz and the shear contact traction Tr by an integral equation
system as shown below,
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in which G j
i (r; r ′) is defined as Green’s functions, which are radial (i = r) or vertical (i = z) displacement

at a distance r due to a unit ring load applied vertically ( j = Z) or radially ( j = R) with a radius r ′ on the top
surface of the nanolayer.

The above Green’s functions are determined from the general solutions to the governing equations derived
by applying the Hankel integral transforms and solving the corresponding two-domain boundary value prob-
lems. The details are omitted here for brevity, and the final solutions are given below:
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where r̄ = r /
1; r̄ ′ = r ′/
1; λ̄1 = λ1/μ1; 
1 = (κs
1/2μ1) [(λ1 + 2μ1)/(λ1 + μ1)] is a characteristic length

of the nanolayer-substrate system; ζ is the Hankel transform parameter; and Ak , Bk , Ck , and Dk are a set of
arbitrary functions corresponding to the surface ring loading with the subscript “k” being used to identify a
vertical (k = Z) or radial (k = R) ring load. The expressions of the arbitrary functions Ak , Bk , Ck , and Dk ,
for this particular case, are presented explicitly in the “Appendix”.

Equations (12) and (13) are a set of singular integral equations, and their analytical solution does not even
exist for the classical elastic case due to the complexity of the associated Green’s functions. Their solution
can be tackled by dividing the contact surface in to Ne ring elements of equal or varying thickness, and the
normalized normal traction T̄z = Tz /μ1 and the normalized shear traction T̄r = Tr /μ1 on the i th annular
element occupying the region ri + �ri/2 ≤ r ≤ ri − �ri/2 (i = 1, 2, . . . , Ne) are approximated by

T̄z(r) = T̄z(i), T̄r (r) = (r̄/r̄i )T̄r(i) (16)

where r̄i = ri /
1 and �r̄i = �ri /
1 are the normalized radial coordinate at the center and the normalized
thickness of the i th annular element, respectively, and T̄z(i) and T̄r(i) represent the values of the unknown
normalized normal and shear tractions at the center of the element, respectively. In addition, the existence
of the residual surface stress and the jump in the displacement gradient can also induce the concentrated
vertical ring load Tza and radial ring load Tra along the edge of a flat-ended punch (r = a). To establish a
set of conditions sufficient for determining the unknowns T̄z(i), T̄r(i) for i = 1, 2, . . . , Ne, T̄za = Tza /μ1, and
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T̄ra = Tra /μ1, the approximations given by Eq. (16) are utilized together with collocating the pair of integral
Eqs. (12)–(13) at the center of all annular elements and the edge of the punch. The final system of linear
algebraic equations takes the following form:
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}
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}
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where Tz = { T̄z(1) T̄z(2) · · · T̄z(Ne) T̄za }T , Tr = { T̄r(1) T̄r(2) · · · T̄r(Ne) T̄ra }T , 0 is a null
vector, � = { �̄ �̄ · · · �̄ �̄ }T with �̄ = �/
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with Ḡk
m(r̂; r̄i ) for r̂ ∈ {r̄1, r̄2, . . . , r̄Ne , ā} being defined by
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It is worth noting that Ḡ Z
m(r̂; r̄i ) represents the radial (m = r) or vertical (m = z) displacement at a distance

r̂ due to a unit uniformly distributed normal load on the i th annular element, whereas Ḡ R
m(r̂; r̄i ) represents the

radial (m = r) or vertical (m = z) displacement at a distance r̂ due to a linearly distributed radial load r̄ /r̄i on
the i th annular element. This physical meaning allows Ḡk

m(r̂; r̄i ) to be evaluated without the direct integration
of (19). In addition, Ḡk

m(r̂; r̄i ) can be computed using the formulas given by Eqs. (14)–(15) with a different
set of arbitrary functions Ak , Bk , Ck , and Dk shown in the Appendix. When a frictionless contact between the
nanolayer and the indenter is considered, the shear traction becomes zero, and the following reduced form of
Eq. (16) is then obtained:

GZ
z · Tz = �. (20)

Once the solution for traction vectors is obtained by solving Eq. (17) or (20), the elastic field of the layered
system is obtained from the following relationship:

E(r̄ , z̄) =
Ne∑

i=1

Ē Z (r̄; r̄i , z̄) · T̄z(i) +
Ne∑

i=1

Ē R(r̄; r̄i , z̄) · T̄r(i) + EZ (r̄; ā, z̄) · T̄za + ER(r̄; ā, z̄) · T̄ra (21)

where E(r̄ , z̄) denotes a component of the elastic field (displacement or stress) at an arbitrary point (r̄ , z̄) in the
nanolayer-substrate system; Ēk(r̄; r̄i , z̄) for k = Z , R are the influence functions of the chosen components of
the elastic field at (r̄ , z̄) due to the unit uniformly distributed normal load (k = Z) and the linearly distributed
radial load r̄ /r̄i (k = R) on the i th annular element; Ek(r̄; ā, z̄) for k = Z , R are the influence functions of the
chosen components of the elastic field at (r̄ , z̄) due to the unit normal ring load (k = Z) and the unit radial ring
load (k = R) acting at the edge of the indenter. The required influence functions Ēk(r̄; r̄i , z̄) and Ek(r̄; ā, z̄)
for k = Z , R can be directly derived from the same set of constants Ak , Bk , Ck , and Dk used for Ḡk

m(r̂; r̄i )
and Gk

m(r̄; ā) following the basic relationships in elasticity [33].

4 Numerical results and discussion

A solution procedure based on the proposed discretization technique is implemented into a computer program
to study the adhesive nanoindentation problem shown in Fig. 1. The required influence function, Ḡk

m(r̂; r̄i ), is
defined as a semi-infinite integral with respect to ζ , and the integrand contains products of Bessel functions.
To accurately evaluate these integrals, an adaptive numerical quadrature scheme is employed. This scheme
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Fig. 2 Comparison of the elastic field of a half-space subjected to an adhesively bonded indenter without the surface energy
effects: a normalized contact pressure, and b normalized surface displacements

adopts a 21-point Gauss–Kronrod rule to estimate the integral over each subdivided region. The convergence
and accuracy of current results are then validated against existing solutions. Consider a classical problem of a
homogeneous elastic half-space subjected to a flat-ended punch of radius a with an adhesive contact. Figure 2
shows comparisons between the current solutions with different numbers of annular elements (Ne) and no
surface energy influence and the classical solution provided by Spence [35]. The Lamé constants are equal
in both layer and substrate, and they are given as follows: λ = 58.17GPa; μ = 26.13 GPa. Note that the
material properties of the surface are set to very small values to obtain the classical solution (τ s1 = τ s2 ≈ 0 and
κs
1 = κs

2 ≈ 0). It is found that radial profiles for both contact tractions and displacements from the present
solution agree very closely with the existing solutions [35]. The number of discretized elements of the contact
surface affects the accuracy of current solution, and converged results are obtained for Ne ≥ 50. All numerical
results presented hereafter correspond to the case where Ne = 50.

The comparison of a homogeneous half-space under axisymmetric frictionless flat-ended punch in the
presence of surface stresses with the solution obtained by Pinyochotiwong et al. [31] is shown in Fig. 3. In
the present solution, the material parameters at the top surface are: τ s1 = 1 N/m and κs

1 = 6.0991 N/m; and
τ s2 = κs

2 ≈ 0 at the interface between the layer and the substrate, and the bulk properties of the nanolayer
and the substrate are also the same to simulate the case of an elastic half-space considered by Pinyochotiwong
et al. [31]. Comparisons of radial variations of contact pressure and vertical displacement at the top surface
shown in Fig. 3 indicate very good agreement between the two solutions.

The indentation of the nanolayer-substrate system is investigated next. The dimensionless quantities
employed in the numerical study are given as follows: z̄ = z/
1, h̄ = h/
1 and ā = a/
1 together
with Ne = 50. Two types of materials, namely aluminum (Al [1 1 1]) and silicon (Si [1 0 0]), are selected
for the top layer, whereas iron is chosen for the substrate. The material properties of the surface and the bulk
of the layer-substrate system under consideration are obtained from Miller and Shenoy [26] and Shenoy [27],
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Fig. 3 Comparison of the elastic field of a half-space under smooth indentation with surface energy effects: a normalized contact
pressure, and b normalized surface displacements

and they are defined as: λ = 58.17 GPa, μ = 26.13 GPa, τ s = 1 N/m, κs = 6.0991 N/m for Al [1 1 1];
and λ = 78.08 GPa, μ = 40.23 GPa, τ s = 0.6056 N/m, κs = 10.0497 N/m for Si [1 0 0]. In addition,
λ = 80 GPa, μ = 70 GPa for iron [13].

Radial profiles of normalized contact pressure are presented in Fig. 4a with ā = 5, h̄ = 5, and 
1 =
0.15288 nm (i.e. Al [1 1 1]). In addition, Fig. 4b shows radial variations of normalized surface displacements. In
Figs. 4, 5, and 6, the dash lines correspond to the classical elasticity solutions without surface energy influence
and size effects (i.e. τ s = κs ≈ 0). Numerical results presented in Fig. 4 show similar trends in radial profiles
of both contact tractions and displacements from the current and the classical solutions, and the tractions (both
normal and shear) from both solutions show singular behavior in the vicinity of the punch edge. As shown in the
previous Section, the vertical and radial ring loads are applied along the indenter edge at r = a in the present
solution due to the existence of the residual surface stress. The applied load P is actually supported by both
normal traction under the punch and the vertical ring loading As a result, normalized vertical displacements
beyond the contact zone from the current scheme are larger than their classical counterparts as larger vertical
load is needed to reach the same level of penetration as shown in Fig. 4b.

Figure 5adisplays radial profiles of normalizeddisplacements of the layer-substrate system,while variations
of normalized stresses in the radial direction are shown in Fig. 5b. Numerical results in both figures are shown
at various depths for a cylindrical punch with normalized radius ā = 5 and a nanolayer with normalized
thickness h̄ = 5. Note that Al [1 1 1] is chosen as the nanolayer material for the numerical solutions in
Fig. 5. The solutions for elastic fields obtained from the current study and the classical elasticity shown in
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Fig. 4 Radial variation of the elastic field for the nanolayers of Al [1 1 1] and Si [1 0 0] with h̄ = ā = 5: a normalized contact
pressure, and b normalized surface displacements

Fig. 5 display similar trends. Figure 5a reveals that larger normalized displacements (both vertical and radial) at
various depths in the layer-substrate system are observed in the current study when compared to those obtained
from the classical elasticity solutions. Numerical solutions shown in Fig. 5b for normalized shear and vertical
stresses at various depths indicate a reduction in stresses within the contact zone due to the existence of surface
stresses, whereas an increase in stresses is noted outside the contact area. It is also observed that the surface
energy has a stronger influence on the elastic field at locations closer to the indenter, and its influence becomes
trivial for r/a >2.5.

Normalized indentation force, denoted by P/Pc, applied on the layer-substrate system is plotted against the
normalized layer thickness h̄ of Al [1 1 1] in Fig. 6 for different normalized contact radii ā to illustrate the size-
dependent behavior of the nanolayer-substrate system due to the existence of surface energy effects. Note that
Pc denotes the classical solution for a rigid punch under adhesive contact on a homogeneous half-spacewith the
properties of Al [1 1 1] (i.e., λ = 58.17 GPa, μ = 26.13 GPa, and τ s = κs ≈ 0). In Fig. 6, the dash lines once
again represent the corresponding classical elasticity solutions with adhesive contact (τ s = κs ≈ 0), whereas
the dash double-dotted lines denote normalized indentation forces under smooth (frictionless) contact with
surface energy. Numerical results shown in Fig. 6 reveal that under both frictionless and adhesive contacts
normalized indentation forces with the presence of surface energy significantly depend on the nanolayer
thickness and the radius of the punch. For the same radius of the cylindrical punch, the indentation force under
the adhesive interface is higher than the frictionless indentation force. It is also noted from Fig. 6 that the force
increases when the nanolayer thickness (h̄) is reduced. This is due to the fact that the nanolayer (aluminum)
is softer than the substrate (iron), and the layer-substrate system then becomes stiffer with a reduction in h̄. It
is clearly seen that the contribution from the surface energy decreases when the normalized contact radius ā
increases, and the current solution approaches the classical counterpart. Thus, the size-dependent behavior of
the nanolayer-substrate system is clearly demonstrated in Fig. 6.
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Fig. 5 Radial variation of the elastic field at various depths of the layer-substrate system with h̄ = ā = 5: a normalized
displacements, and b normalized stresses

Fig. 6 Variation of the normalized indentation forces with layer thickness h̄ for different radii of punch ā

5 Conclusions

Axisymmetric indentation of a nanolayer fully bonded to an elastic substrate by a flat-ended rigid cylindrical
indenter under adhesive contact is examined based on the Gurtin-Murdoch continuum theory and establishing
a flexibility equation for the unknown contact tractions. It is shown that the current solution algorithm is
numerically efficient and accurate. Numerical results indicate that the surface energy effects associated with
the nanolayer make the layered system stiffer, and the elastic field is size-dependent. The size-dependent
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behavior under the surface stress effects diminishes with an increase in the radius of the cylindrical punch, and
the current result ultimately approaches the classical one.

Acknowledgements The authors gratefully acknowledge the support provided by the Thailand Research Fund (Grant Numbers
PHD/0096/2554 and BRG 5880017).

Appendix

The arbitrary functions Ak , Bk , Ck , and Dk (with k = Z , R) for arbitrarily distributed, normal load p = p(r)
and radial load q = q(r) on the top surface are given by
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c21 (c33c42 − c32c43) + c22 (c31c43 − c33c41) + c23 (c32c41 − c31c42)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (A.1)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ζ AR

BR

ζCR

DR

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= − Q̄(ζ )

2ζ 2|ci j |

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c12 (c34c43 − c33c44) + c13 (c32c44 − c34c42) + c14 (c33c42 − c32c43)

c11 (c33c44 − c34c43) + c13 (c34c41 − c31c44) + c14 (c31c43 − c33c41)

c11 (c34c42 − c32c44) + c12 (c31c44 − c34c41) + c14 (c32c41 − c31c42)

c11 (c32c43 − c33c42) + c12 (c33c41 − c31c43) + c13 (c31c42 − c32c41)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(A.2)

where P̄(ζ ), Q̄(ζ ), |ci j |, and ci j , i, j ∈ {1, 2, 3, 4} are defined by

P̄(ζ ) =
∞∫

0

p̄(r̄)J0(ζ r̄)r̄dr̄ , (A.3)

Q̄(ζ ) =
∞∫

0

q̄(r̄)J1(ζ r̄)r̄dr̄ , (A.4)

∣
∣ci j

∣
∣ =

∣
∣∣
∣∣
∣∣
∣∣

c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44

∣
∣∣
∣∣
∣∣
∣∣

, (A.5)

c11 = λ′
1

2

(
2 + ζ̄ τ̄ s1

) ; c12 = 1 + ζ̄ τ̄ s1 ; c13 = λ′
1

2

(
ζ̄ τ̄ s1 − 2

) ; c14 = 1 − ζ̄ τ̄ s1 , (A.6)

c21 = λ′
1

2

(
2 + ζ̄ κ̄s

1

) ; c22 = 1 − c21; c23 = λ′
1

2

(
2 − ζ̄ κ̄s

1

) ; c24 = c23 − 1, (A.7)

c31 = e−2ζ̄ h̄λ′
1

2

(
2 − 2μ̄2 + ζ̄ τ̄ s2

)
, (A.8)

c32 = e−2ζ̄ h̄

2

{
μ̄2
2

(
2λ′

1 + 4

λ′
2 + 2μ̄2

)
+ [(

λ′
1ζ̄ h̄ + 2

) (
ζ̄ τ̄ s2 − 2μ̄2

) + (
2λ′

1ζ̄ h̄ + 2
)]}

, (A.9)

c33 = −λ′
1

2

(
2 + 2λ′

2μ̄2

λ′
2 + 2μ̄2

− ζ̄ τ̄ s2

)
, (A.10)

c34 = (
1 − λ′

1ζ̄ h̄
) + ζ̄ τ̄ s2

2

(
λ′
1ζ̄ h̄ − 2

) + μ̄2

[
(
2 − λ′

1ζ̄ h̄
) + μ̄2

(
λ′
1

(
1 + 2ζ̄ h̄

) − 2

λ′
2 + 2μ̄2

)]

, (A.11)

c41 = e−2h̄ζ̄ λ′
1

2

(
2 − 2μ̄2 + ζ̄ κ̄s

2

)
, (A.12)
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c42 = e−2h̄ξ̄

2

{[
2 + λ′

1

(
2 − 2μ̄2 + ζ̄ κ̄s

2

) (
ζ̄ h̄ − 1

)] − μ̄2
2
2λ′

1 + 4

λ′
2 + 2μ̄2

}
, (A.13)

c43 = λ′
1

2

(
2 − ζ̄ κ̄s

2 + 2λ′
2μ̄2

λ′
2 + 2μ̄2

)
, (A.14)

c44 = λ′
1

2

(
2 + 2μ̄2 − ζ̄ κ̄s

2

) (
1 + ζ̄ h̄

) + μ̄2
2

(
2 − λ′

1

(
1 + 2ζ̄ h̄

)

λ′
2 + 2μ̄2

)

− 1 (A.15)

with p̄ = p/μ1; q̄ = q/μ1; λ′
1 = λ̄1 + 1; λ′

2 = λ̄2 + μ̄2; λ̄2 = λ2/μ1; μ̄2 = μ2/μ1; τ̄ si = τ si /μ1
1; and
κ̄s
i = κs

i /μ1
1 (for i = 1, 2).
For a unit normalized normal ring load p̄(r̄) = δ(r̄−r̄ ′) and a unit normalized radial ring load q̄(r̄) = δ(r̄−r̄ ′),
P̄(ζ ), Q̄(ζ ) become

P̄(ζ ) = r̄ ′ J0(ζ r̄ ′), (A.16)

Q̄(ζ ) = r̄ ′ J1(ζ r̄ ′). (A.17)

For a unit uniformly distributed, normalized normal load p̄(r̄) = 1 acting on the i th annular element r̄ ∈
[r̄i − �r̄i/2, r̄i + �r̄i/2], P̄(ζ ) becomes

P̄ (ζ ) = r̄ J1 (ζ r̄)

ζ

∣∣∣
∣
r̄=r̄i+�r̄i/2

− r̄ J1 (ζ r̄)

ζ

∣∣∣
∣
r̄=r̄i−�r̄i/2

(A.18)

where r̄i = ri /
1 and �r̄i are the normalized radial coordinate at the center and normalized thickness of the
annular element, respectively. For a linearly distributed, normalized radial load q(r̄) = r̄/r̄i on the i th annular
element r̄ ∈ [r̄i − �r̄i/2, r̄i + �r̄i/2], Q̄(ζ ) then becomes

Q̄ (ζ ) =
(

2r̄

ζ 2r̄i
J1 (ζ r̄) − r̄2

ζ r̄i
J0 (ζ r̄)

)∣
∣∣
∣
r̄=r̄i+�r̄i /2

−
(

2r̄

ζ 2r̄i
J1 (ζ r̄) − r̄2

ζ r̄i
J0 (ζ r̄)

)∣
∣∣
∣
r̄=r̄i−�r̄i /2

. (A.19)

References

1. Doerner, M.F., Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1,
601–609 (1986)

2. Oliver,W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement
sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

3. Boussinesq, J.: Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques: principalement
au calcul des déformations et des pressions que produisent, dans ces solides, des efforts quelconques exercés sur une petite
partie de leur surface ou de leur intérieur: mémoire suivi de notes étendues sur divers points de physique, mathematique et
d’analyse. Gauthier-Villars (1885)

4. Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary
profile. Int. J. Eng. Sci. 3, 47–57 (1965)

5. Galin, L.A., Gladwell, G.M.L.: Contact Problems: The Legacy of L.A. Galin. Springer, New York (2008)
6. Borodich, F.M.: The Hertz-type and adhesive contact problems for depth-sensing indentation. Adv. Appl. Mech. 47, 225–366

(2014)
7. Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nan-

otubes. Science 277, 1971–1975 (1997)
8. Mindlin, R., Tiersten, H.: Effects of couple-stresses in linear elasticity. Arch. Rat. Mech. Anal. 11, 415–448 (1962)
9. Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Rat. Mech. Anal. 17, 85–112 (1964)

10. Gao, X.-L., Zhou, S.-S.: Strain gradient solutions of half-space and half-plane contact problems. Z. Angew. Math. Phys. 64,
1363–1386 (2013)

11. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Rat. Mech. Anal. 16, 51–78 (1964)
12. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Rat. Mech. Anal. 57, 291–323 (1975)
13. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)
14. Zhao, X., Rajapakse, R.K.N.D.: Analytical solutions for a surface-loaded isotropic elastic layer with surface energy effects.

Int. J. Eng. Sci. 47, 1433–1444 (2009)
15. Zhao, X., Rajapakse, R.K.N.D.: Elastic field of a nano-film subjected to tangential surface load: asymmetric problem. Eur.

J. Mech.-A (Solids) 39, 69–75 (2013)
16. Rungamornrat, J., Tuttipongsawat, P., Senjuntichai, T.: Elastic layer under axisymmetric surface loads and influence of

surface stresses. Appl. Math. Model. 40, 1532–1553 (2016)
17. Tirapat, S., Senjuntichai, T., Rungamornrat, J.: Influence of surface energy effects on elastic fields of a layered elastic medium

under surface loading. Adv. Mater. Sci. Eng. (2017). https://doi.org/10.1155/2017/7530936

https://doi.org/10.1155/2017/7530936


3246 S. Tirapat et al.

18. Gao, X., Hao, F., Fang, D., Huang, Z.: Boussinesq problem with the surface effect and its application to contact mechanics
at the nanoscale. Int. J. Solids Struct. 50, 2620–2630 (2013)

19. Gao, X., Hao, F., Huang, Z., Fang, D.: Mechanics of adhesive contact at the nanoscale: the effect of surface stress. Int. J.
Solids Struct. 51, 566–574 (2014)

20. Zhou, S., Gao, X.-L.: Solutions of half-space and half-plane contact problems based on surface elasticity. Z. Angew. Math.
Phys. 64, 145–166 (2013)

21. He, L., Lim, C.W., Wu, B.S.: A continuum model for size-dependent deformation of elastic films of nano-scale thickness.
Int. J. Solids Struct. 41, 847–857 (2004)

22. Lim, C.W., He, L.: Size-dependent nonlinear response of thin elastic films with nano-scale thickness. Int. J. Mech. Sci. 46,
1715–1726 (2004)

23. Lu, C.F., Lim, C.W., Chen, W.Q.: Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined
theory. Int. J. Solids Struct. 46, 1176–1185 (2009)

24. Nguyen, B.T., Rungamornrat, J., Senjuntichai, T.: Analysis of planar cracks in 3D elastic media with consideration of surface
elasticity. Int. J. Fract. 202, 51–77 (2016)

25. Intarit, P., Senjuntichai, T., Rungamornrat, J., Rajapakse, R.: Penny-shaped crack in elastic medium with surface energy
effects. Acta Mech. 228, 617–630 (2017)

26. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147
(2000)

27. Shenoy, V.B.: Atomistic calculations of elastic properties of metallic FCC crystal surfaces. Phy. Rev. B 71, 094104 (2005)
28. Dingreville, R., Qu, J., Mohammed, C.: Surface free energy and its effect on the elastic behavior of nano-sized particles,

wires and films. J. Mech. Phys. Solids 53(8), 1827–1854 (2005)
29. Wang, J.S., Feng, X.O., Wang, G.F., Yu, S.W.: Twisting of nanowires induced by anisotropic surface stresses. Appl. Phys.

Lett. 92, 191901 (2008)
30. Zhao, X.: Surface Loading and Rigid Indentation of an Elastic Layer with Surface Energy Effects. Master thesis, University

of British Columbia, Vancouver (2009)
31. Pinyochotiwong, Y., Rungamornrat, J., Senjuntichai, T.: Rigid frictionless indentation on elastic half space with influence of

surface stresses. Int. J. Eng. Sci. 71, 15–35 (2013)
32. Intarit, P., Senjuntichai, T., Rungamornrat, J.: Elastic layer under axisymmetric indentation and surface energy effects. Z.

Angew. Math. Phys. 69, 29 (2018)
33. Karasudhi, P.: Foundations of Solid Mechanics. Kluwer Academic Publishers, Boston (1991)
34. Povstenko, Y.Z.: Theoretical investigation of phenomena caused by heterogeneous surface tension in solids. J. Mech. Phys.

Solids 41, 1499–1514 (1993)
35. Spence, D.A.: Self similar solutions to adhesive contact problems with incremental loading. Proc. R. Soc. A Math. Phys.

305, 55–80 (1968)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.


	Indentation of a nanolayer on a substrate by a rigid cylinder in adhesive contact
	Abstract
	1 Introduction
	2 Basic equations
	3 Indentation on a nanolayer-substrate system with adhesive contact
	4 Numerical results and discussion
	5 Conclusions
	Acknowledgements
	References




