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Abstract In this study, an aeroelastic model that accounts for the fluid–structure interaction is developed to
investigate vibration and stability of rectangular plates in contact with sloshing fluid on one side and under
supersonic aeroelastic load on the other side. The fifth-order shear deformation theory, which is capable of
considering rotary inertia and transverse shear stress, is employed to model the structure. Bulging and sloshing
modes of the incompressible, inviscid and irrotational fluid are obtained with satisfying Laplace’s equation and
fluid boundary conditions. The first-order piston theory is applied to consider the supersonic aeroelastic load.
On the basis of Hamilton’s principle, the governing equations of the coupled fluid–structure system are derived
and discretized using the Galerkin method. Numerical results for specific cases are compared with available
results in the literature and an excellent agreement is observed. In the discussion section, influences of various
parameters such as the dimensions of the fluid domain, plate dimensions and aerodynamic parameters on the
natural frequencies and flutter behavior are studied.

1 Introduction

Understanding vibration and stability of structures interacting with fluid is of great importance due to its
extensive applications in various industries such as aeronautics, shipbuilding, space vehicles, submarines and
civil engineering. Vibration characteristics of a structure like natural frequencies and mode shapes will be
affected by the presence of fluid around structure as it can vary the kinetic energy of the overall system.
Numerous studies of fluid–structure interaction problems have been investigated for a variety of fluids and
different geometries [1–4,14,21,23–26,34,35,44] Some experimental studies on the natural frequencies of
the plate interacting with fluid were carried out during the past years. For instance, [22] investigated the free
vibration response of a rectangular plate in contact with bounded fluid by the acoustic and modal test. Also,
[27] experimentally studied the hydroelastic vibration of free-edge annular plates to obtain added virtual mass
incremental factors. They utilized the Hankel transformation technique in conjunction with the Fourier–Bessel
series approach to achieve added virtual mass incremental factors. The dynamic behavior of non-rectangular
plates in contact with bounded fluid was considered by Watts et al. [42] based on a semi-analytical technique.
They applied the element-free Galerkin approach and moving Kriging shape functions based on Mindlin plate
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theory for modeling the structure. Jeong [17] developed a hydroelastic model to analyze the vibration of two
annular plates coupled with a bounded compressible fluid based on the Rayleigh–Ritz method by taking the
finite element approach. He showed that by increasing the compressibility of the fluid, the natural frequencies
decrease.

Stability analysis of various structures subjected to the aerodynamic forces received a great deal of attention
due to its prominent role in structural design of aircrafts during several decades. Hence, extensive research
related to the aeroelasticity can be found in the literature [7,9,11–13,18,28,30,36,38,39,45]. Most of these
works investigated the flutter analysis of elastic structures exposed to supersonic air flow [5,6,15,25,26,29,
31,43]. Flutter is a dynamic instability that may appear in supersonic airflow conditions and can damage
the structure. When flutter instability occurs, the amplitude of the vibrating structure increases with time.
Therefore, the proper design of the lifting surfaces and panels of space and aeronautical vehicles is crucial to
prevent flutter instability.

Sawyer [33] investigated buckling and flutter analysis of simply supported laminate plate using theGalerkin
approach. According to his paper, bending-extensional coupling and bending-twisting stiffness terms create
instability on the behavior of flutter and buckling. Khalafi and Fazilati [19] studied free vibration and supersonic
flutter analysis of variable stiffness composite laminated (VSCL) square and skew panels under yawed flow
based on the isogeometric approach. They applied first-order shear deformation theory (FSDT) along with the
linear piston theory to investigate vibrational and stability behavior of the laminates composed of curvilinear
fibers. Zhou et al. [46] developed a unified solution to analyze supersonic flutter characteristics of coupled plate
subjected to thermal force with classical and elastic boundary conditions. They expanded the displacement
field of FSDT into a combination of two-dimensional Fourier series with auxiliary functions to satisfy arbitrary
boundary conditions. Bochkarev and Lekomtsev [8] employed the finite element method to study aero- and
hydro-elastic stability of plates interacting with gas flow and ideal fluid for different boundary conditions.
They presented various stability diagrams to show the stabilizing and destabilizing effects of gas flow on the
dynamic behavior of the structure.

saThe aim of this paper is to study supersonic flutter of rectangular plates interacting with the incompress-
ible, irrotational and inviscid fluid subjected to sloshing on one side of the plate. Both the fifth-order shear
deformation theory (FOSDT) and classical plate theory (CPT) are utilized to model the plate along with the
first-order piston theory for considering aerodynamic force. Within the framework of Hamilton’s principle,
governing equations and boundary conditions are derived and then discretized by the Galerkin method. After
validation, the effect of various parameters on vibrational and flutter behavior of the plate are discussed.

2 Formulation

2.1 Geometrical model

An isotropic rectangular plate with mass density ρ, length a, width b and thickness h interacting with an ideal
fluid from one side and subjected to supersonic aerodynamic flow from another side is considered with the
coordinates of x and y along the in-plane directions and z along the thickness direction as shown in Fig. 1.
The considered fluid is bounded by a rigid tank with width c and depth b1.

2.2 Modified shear deformation theories

The modified shear deformation theories are a group of plate theories that consider nonlinear distributions
for the transverse shear stresses along the thickness of the structure. These nonlinear distributions commonly
provide the shear stress-free surface conditions on the bottom and top surfaces of the structure. Based on the
modified shear deformation theories (MSDT)with the commonhypothesis of neglecting thickness deformation,
the displacement field can be described as

u1 (x, y, z, t) = u (x, y, t) −
(
z + h

2

)
∂w (x, y, t)

∂x
+ F

(
z + h

2

)
ζ(x, y, t),

u2 (x, y, z, t) = v (x, y, t) −
(
z + h

2

)
∂w (x, y, t)

∂y
+ F

(
z + h

2

)
ψ(x, y, t),
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Fig. 1 Geometry of the isotropic plate under supersonic flow on one side in the direction of the arrow (in the x–y plane) and
interacting with sloshing liquid on the other side

u3 (x, y, z, t) = w(x, y, t),

f (z) = F

(
z + h

2

)
, (1)

where u1 (x, y, t), u2 (x, y, t) and u3 (x, y, t) are the displacement of an arbitrary point along the x axis, y axis
and z axis, respectively. F(z) is a continuous function that controls the distribution of transverse shear stress
along the thickness of the plate. In this paper, we have considered fifth-order shear deformation theory (FOSDT)

of Khorshidi and Karimi [25,26], and classical plate theory (CPT) by setting F (z) = z
(
1
h − 2

h3
z2 + 8

5h5
z4

)
and F(z) = 0. respectively. u, v and w denote the displacements of middle-surface (z = h/2) in the x , y
and z-direction, respectively. The unknowns ψ and ζ are the functions related to the shear slopes in the xoz
plane and in the yoz plane. As it is seen in Eq. (1), the in-plane displacement components (u1 and u2) include
two parts; the first part which is the same as in classical plate theory and the second one which catches shear
deformation effects. Additionally, the kinematics of FOSDT includes just five unknowns (u, v, w,ψ and ζ ).
Within the framework of linear elasticity, the components of linear strain can be written as

εxx = ∂u

∂x
−

(
z + h

2

)
∂2w

∂x2
+ f (z)

∂ζ

∂x
,

εyy = ∂v

∂y
−

(
z + h

2

)
∂2w

∂y2
+ f (z)

∂ψ

∂y
,

εxy = 1

2

((
∂u

∂y
+ ∂v

∂x

)
− 2

(
z + h

2

)
∂2w

∂x∂y
+ f (z)

(
∂ψ

∂x
+ ∂ζ

∂y

))
,

εxz = 1

2
ξ
∂ f (z)

∂z
, εyz = 1

2
ψ

∂ f (z)

∂z
. (2)

For the considered isotropic plate under the assumption of the plane-stress condition, the components of the
stress field can be written as

σxx = E

1 − υ2 (εxx + υεyy),

σyy = E

1 − υ2 (εyy + υεxx ),

σxy = E

2(1 + υ)
εxy,

σxz = E

2(1 + υ)
εxz,

σyz = E

2(1 + υ)
εyz, (3)
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Table 1 Comparison study of flutter characteristics for isotropic square plate

Method λ̄cr ω̃cr

Grover et al. [16] 511.9900 43.0407
Singha and Ganapathi [37] 513.3500 –
Valizadeh et al. [41] 511.1100 –
Present (FOSDT) 511.2232 42.9318
Present (CPT) 511.7065 42.9435

in which E and ν are Young’s modulus and Poisson’s ratio, respectively.

2.3 Piston theory

The piston theory has been extensively applied to evaluate the aerodynamic load of supersonic flow. This
theory relates the local normal component of fluid velocity to the local pressure caused by the motion of the
structure, in other words, this inviscid aerodynamic model is a simple point-function relationship between the
surface deformation and aerodynamic pressure. Piston theory can be utilized for large Mach numbers or high
reduced frequencies of unsteady motion, and the surface involved must be nearly plane. In fact, it has been
shown that the local pressure exerted on the structure can be written in the expansions of thickness ratio and
the inverse of the Mach number. For high Mach numbers, the contribution of higher-order terms is negligible
and as a result, a point-function relationship will be obtained for anticipating aerodynamic load on the surface
of the panel [32]. Generally, different types of nonlinear and linear panel flutter are depicted in Table 1. A great
deal of research has shown that first-order piston theory has proper and acceptable accuracy for flows with
Mach number greater than 1.7. The aerodynamic pressure exerted on the structure according to the first-order
piston theory can be expressed as [10]

Pa = −
(

Υ1
∂w (x, y, t)

∂x
cos θ + Υ1

∂w (x, y, t)

∂y
sin θ + Υ2

∂w (x, y, t)

∂t

)
,

Υ1 = ρ∞U 2∞√
M2 − 1

,

Υ2 = 1

U∞
ρ∞U 2∞√
M2 − 1

M2 − 2

M2 − 1
, (4)

where M, θ , ρ∞ and U∞ are Mach number, yaw angle, air density and air stream velocity, respectively, and t
denotes the time It must be noted that the supersonic flow is parallel to the plate surface, and the yaw angle is
measured from the positive direction of the x-axis as seen in Fig. 1.

2.4 Formulation of fluid–structure interaction

According to the linearity of the present problem, it is possible to consider themotions of fluid as a combination
of bulging modes and sloshing modes. Sloshing modes are caused by the rigid motions of the tank, whereas
bulging modes are due to the effects of plate vibration on the fluid. As the fluid is assumed to be ideal, the fluid
potential velocity Φ0 is definable for that as follows:

�V = �∇Φ0, (5)

where �∇ denotes the gradient operator. Moreover, the continuity equation for an ideal fluid can be expressed
as

�∇ �V = 0. (6)

Substituting Eq. (5) into Eq. (6) leads to the Laplace equation as follows:

∇2φ0 = ∂2φ0

∂x2
+ ∂2φ0

∂y2
+ ∂2φ0

∂z2
= 0. (7)
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The fluid potential velocity can be divided into fluid potential velocity due to fluid sloshing ΦS and fluid
bulging ΦB:

Φ0 = ΦB + ΦS. (8)

The fluid boundary conditions are simply satisfied using this division. By inserting Eq. (8) into Eq. (7), the
governing equations of the fluid are obtained:

∇2φB = 0, (9)

∇2φS = 0. (10)

Impermeability constraints on the boundaries of the fluid can be written as follows:

at x = 0 ⇒ ∂φB

∂x
= ∂φS

∂x
= 0,

at x = a ⇒ ∂φB

∂x
= ∂φS

∂x
= 0,

at y = 0 ⇒ ∂φB

∂y
= ∂φS

∂y
= 0,

at z = c ⇒ ∂φB

∂z
= ∂φS

∂z
= 0,

at z = 0 ⇒ ∂φS

∂z
= 0. (11)

The assumption of no bulging mode on the free surface of the fluid leads to

at y = b1 ⇒ φB = 0. (12)

The velocities of the fluid and the vibrating plate are equal at the interface of the container and the plate because
theyhold their perfect contact duringvibration, so the followingboundary condition is the fundamental coupling
equation which relates the motions of the fluid to the structure:

at z = 0 ⇒ ∂φB

∂z
= ∂w

∂t
. (13)

Under the assumption of harmonic oscillation of the fluid and based on the separation of variables method, the
fluid potential velocity due to fluid sloshing and fluid bulging can be separated as

ΦB (x, y, z, t) = XB(x)YB(y)ZB(z) Ṫ (t), (14)

ΦS (x, y, z, t) = XS(x)YS(y)ZS(z) Ṫ (t). (15)

Substitution Eqs. (14, 15) into Eqs. (9, 10), one obtains

1

XB(x)

d2XB(x)

dx2
+ 1

YB(y)

d2YB(y)

dy2
+ 1

ZB(z)

d2ZB(z)

dz2
= 0, (16)

1

XS(x)

d2XS(x)

dx2
+ 1

YS(y)

d2YS(y)

dy2
+ 1

ZS(z)

d2ZS(z)

dz2
= 0. (17)

Equations (16, 17) can easily be converted to the following decoupled equations:

1

XB(x)

d2XB(x)

dx2
= ± p21,

1

YB(y)

d2YB(y)

dy2
= ± q21 ,

1

ZB(z)

d2ZB(z)

dz2
= ∓ (

p21 + q21
)
, (18)
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1

XS(x)

d2XS(x)

dx2
= ± p22,

1

YS(y)

d2YS(y)

dy2
= ∓ (

p22 + q22
)
,

1

ZS(z)

d2ZS(z)

dz2
= ± q22 , (19)

where p21 p22, q
2
1 and q22 are arbitrary nonnegative real numbers.

General solution for Eqs. (18, 19) can be written as

XB(x) = a1 sin (p1x) + a2 cos (p1x),

YB(y) = a3 sin (q1y) + a4 cos (q1y),

ZB(z) = a5e
√

p12+q12z + a6e
−
√

p12+q12z, (20)

XS(x) = a7 sin (p2x) + a8 cos (p2x),

YS(y) = a9 sin (q2y) + a10 cos (q2y),

ZS(z) = a11e
√

p22+q22z + a12e
−
√

p22+q22z . (21)

Using Eqs. (11–13), and employing the method of separation of variables, the following expression can be
found for the fluid velocity potential associated with the bulging and sloshing modes:

φB (x, y, z, t) =
∞∑

l1=0

∞∑
k1=0

Al1,k1 (t) cos

(
l1πx

a

)
cos

(
(2k1 + 1) πy

2b1

)
(eS1z + eS1(2c−z)),

(22)

φS (x, y, z, t) =
Ns∑

i1=0

Ms∑
j1=0

Bi1, j1 (t) cos

(
i1πx

a

)
cosh(S2y)cos

(
j1π z

c

)
,

(l1 = k1 = 0, 1, 2, . . .), (i1 = j1 = 0, 1, 2, . . .),

S1 = π

√
(l1/a)2 + (2k1 + 1/(2b1))2,

S2 = π

√
(i1/a)2 + ( j1/c)2, (23)

where Ns and Ms specify the terms required to have acceptable accuracy in Eq. (23). Al1,k1 (t) and Bi1, j1 (t)
are unknown Fourier coefficients relating to the bulging and sloshing modes, respectively. Al1,k1 (t) can be
easily obtained with satisfying the boundary condition at the interface of the fluid and plate, i.e., Eq. (13) as
follows:

Al1,k1 (t) =
coff
ab1

∫ a
0

∫ b1
0

∂w(x,y,t)
∂t cos

(
l1πx
a

)
cos

(
(2k1+1)πy

2b1

)
dydx

S1
(
1 − eS1(2c)

) ,

coff =
⎧⎨
⎩
1 if l1 = k1 = 0,
2 if l1 or k1 = 0,
4 if l1 and k1 = 0.

(24)

The kinetic energies of the fluid due to the bulging and sloshing modes can be written as [25,26]

TfB = −1

2
ρF

∫
Vf

∣∣∣ �∇ΦB

∣∣∣2 dVf = −1

2
ρF

∫ a

0

∫ b1

0
ΦB (x, y, 0, t)

∂w(x,y, t)

∂t
dydx,

TfS = −1

2
ρF

∫
Vf

∣∣∣ �∇ΦS

∣∣∣2 dVf = −1

2
ρF

∫ a

0

∫ b1

0
ΦS (x, y, 0, t)

∂w(x,y, t)

∂t
dydx . (25)
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An additional equation from the concept of linearized sloshing [2,3] at the free surface of the fluid can be
easily employed as follows:

ρf
∂ΦB

∂y

∣∣∣∣
y=b1

+ ρf
∂ΦS

∂y

∣∣∣∣
y=b1

− ρf
ω2

g
ΦS

∣∣∣∣
y=b1

= 0, (26)

where g denotes the acceleration of gravity.

2.5 Equations of motion

The governing equations of motion for the assumed plate are derived usingHamilton’s principle. Therefore, the
time integral of the Lagrangian L must be extremized for the considered system in any possible time interval
as follows:

δ

∫ t2

t1
Ldt = δ

∫ t2

t1
(Tp + TfS + TfB −U + W )dt = 0, (27)

where δ and L denote the variation operator and the Lagrangian, respectively. Tp represents the kinetic energy
of the plate, U is the strain energy and W expresses the work done by external force, and they are defined as

U = 1

2

∫
A

∫ 0

−h

(
σxxεxx + σyyεyy + 2σxyεxy + 2σ xzεxz + 2σyzεyz

)
dzdA, (28)

Tp = 1

2
ρp

∫
A

∫ 0

−h

((
∂u1
∂t

)2

+
(

∂u2
∂t

)2

+
(

∂u3
∂t

)2
)
dzdA, (29)

W = 1

2

∫
A

�pw dA. (30)

Inserting Eqs. (28–30) and Eq. (25) in Eq. (27), and considering Eqs. (2–4) lead to the final displacement form
of the governing equations:

C1
∂2u

∂y2
+ C2

∂2ζ

∂y2
+ (A1 + C1)

∂2v

∂x∂y
+ (A2 + C2)

∂2ψ

∂x∂y
+ B

1

∂2u

∂x2
+ B2

∂2ζ

∂x2
=

(
I1

∂2u

∂t2
+ I4

∂2ζ

∂t2

)
, (31)

B1
∂2v

∂y2
+ B2

∂2ψ

∂y2
+ (A1 + C1)

∂2u

∂x∂y
+ (A2 + C2)

∂2ζ

∂x∂y
+ C1

∂2v

∂x2
+ C2

∂2ψ

∂x2
=

(
I1

∂2v

∂t2
+ I4

∂2ψ

∂t2

)
,

(32)

−(D3 + D4)
∂ψ

∂y
− 2(D1 + D2)

∂2w

∂y2
+ B3

∂3ψ

∂y3
+ B

4

∂4w

∂y4
−(D3 + D4)

∂ζ

∂x
+ (A3 + 2C3)

∂3ζ

∂x∂y2

−2(D1 + D2)
∂2w

∂x2
+ (A3 + 2C3)

∂3ψ

∂y∂x2
+ 2 (A4 + 2C4)

∂4w

∂y2∂x2
+ B3

∂3ζ

∂x3
+ B4

∂4w

∂x4
+ Pa

=
(

−1

2
ρf (ΦB (x, y, 0, t) + ΦS (x, y, 0, t)) + I1

∂2w

∂t2
− I2

∂4w

∂y2∂t2
− I2

∂4w

∂x2∂t2
− I5

∂3ψ

∂y∂t2
− I5

∂3ζ

∂x∂t2

)
, (33)

−D5ζ + C2
∂2u

∂y2
+ C5

∂2ζ

∂y2
− (D3 + D4)

∂w

∂x
+ (A2 + C2)

∂2v

∂x∂y
+ (A5 + C5)

∂2ψ

∂x∂y

+ (A3 + 2C3)
∂3w

∂x∂y2
+ B2

∂2u

∂x2
+ B5

∂2ζ

∂x2
+ B3

∂3w

∂x3
=

(
I3

∂2ζ

∂t2
+ I4

∂2u

∂t2
+ I5

∂3w

∂x∂t2

)
, (34)

−D5ψ − (D3 + D4)
∂w

∂y
+ B2

∂2v

∂y2
+ B5

∂2ψ

∂y2
+ B3

∂3w

∂y3
+ (A2 + C2)

∂2u

∂x∂y

+ (A5 + C5)
∂2ζ

∂x∂y
+ C2

∂2v

∂x2
+ C5

∂2ψ

∂x2
+ (A3 + 2C3)

∂3w

∂y∂x2

=
(
I4

∂2v

∂t2
+ I3

∂2ψ

∂t2
+ I5

∂3w

∂y∂t2

)
. (35)
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2.6 Solution procedure

In this section, we apply the Galerkin weighted residual method to derive solutions for vibration analysis
of the simply supported plate. The considered problem has six unknown functions including u, v, w,ψ, ζ
and ΦS, and six coupled partial differential equations including Eqs. (31–35) and (26) We must expand the
unknown functions in infinite series form in the Galerkin method to minimize the weighted residuals. It can
be approximated to the exact solution of the problem by considering the adequate terms in these series. In this
paper, trigonometric functions are employed to express unknown functions as follows:

{u (x, y, t) , ζ (x, y, t)} =
N∑

n=1

M∑
m=1

{um,n, ζm,n} cos
(mπx

a

)
sin

(nπy

b

)
ept ,

{v (x, y, t) , ψ (x, y, t)} =
N∑

n=1

M∑
m=1

{vm,n, ψm,n}sin
(mπx

a

)
cos

(nπy

b

)
e
pt

,

w (x, y, t) =
N∑

n=1

M∑
m=1

wm,n sin
(mπx

a

)
sin

(nπy

b

)
ept . (36)

Substituting expressions (36) into Eqs. (31–35) and (26), then multiplying the residual functions by the cor-
responding eigenfunctions, and using the orthogonality lead to a homogeneous system of linear algebraic
equations as follows:

[M]
[
Q̈

] + [C]
[
Q̇

] + [K ] [Q] = 0, (37)

where [K ], [C] and [M] represent the stiffnessmatrix, dampingmatrix andmassmatrix of the presentedmodel.
To solve Eq. (37), we can add the following equation, as aerodynamic damping used here is not proportional:

[M]
[
Q̇

] − [M]
[
Q̇

] = 0. (38)

By augmenting Eq. (38) in Eq. (37), one obtains

[R] [q̇] + [S] [q] = 0,

[R] =
[
[0] [M]

[M] [C]

]
, [S] =

[− [M] [0]
[0] [K ]

]
, [q] =

[ [
Q̇

]
[Q]

]
. (39)

Assuming solutions of the form [q] = [ f ]ept and inserting in Eq. (39), the following equation can be written:
(Ω [R] + [S]) [q] = 0. (40)

By multiplying Eq. (40) in [S]−1 , the following eigenvalue problem is obtained:

(
[S]−1 [R] + 1

p
I

)
[q] = 0. (41)

The non-trivial solution of the relation (37) is obtained when the following determinant equals zero:

det

(
[S]−1 [R] + 1

p
I

)
= 0. (42)

Frequencies of the presented model can be easily obtained asΩ = ΩR + iω by solving the above characteristic
equation, i.e., Eq. (42), in which ΩR is the aerodynamic damping and ω represents the natural frequency of
the system. Natural frequencies of the system can be obtained by vanishing the aerodynamic force (U∞ = 0).

As the aerodynamic force rises, the eigenvalues and eigenfunctions of the structure vary, and finally the
sign of the aerodynamic damping changes from negative to positive at a critical dynamic pressure(λcr). In fact,
instability begins at this critical dynamic pressure and the panel’s amplitude grows exponentially with time.
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3 Numerical results

3.1 Validation studies

The solutionmethodologymentioned in the previous section for the out of plane vibration and stability analysis
of the systemwere coded in mathematical analytical software. Since no research has been carried out for flutter
behavior of a plate in interaction with the fluid, demonstration of reliability, applicability and effectiveness of
the present model is investigated for two special cases including critical dynamic pressure of a plate in vacuum
environment and wet frequencies of an isotropic plate.

Unless otherwise expressed, it is assumed that Young’s modulus E = 200GPa, Poisson’s ratio υ = 0.3,
plate density ρp = 7800 kg/m3, fluid density ρf = 1000 kg/m3 and the length of the plate a = 1m. The
following parameters are employed to express numerical results in tables and figures.

thickness ratio: δ = a
h

aspect ratio: η = a
b

fluid depth ratio: τ = b1
a

fluid width ratio: ς = c
a

frequency parameter: ω̃ = ω
2π a

2√ρph/D

damping parameter: Ω̃R = ΩR
2π a2

√
ρph/D

Moreover, the ratios of the frequency and damping of the plate under supersonic flow to the fundamental

frequency of the dry plate are denoted by ω̄(m,n) = ω̃(m,n)

ω̃dry−(1,1)
and Ω̄(m,n) = Ω̃R(m,n)

ω̃dry−(1,1)
, respectively.

3.1.1 Flutter boundary of an isotropic plate

To confirm the effectiveness of the present formulation with previously published works in the case of flutter
behavior, the critical dynamic pressure parameter (λ̄cr) and critical flutter frequency (ω̃cr) of an isotropic plate
with δ = 100 and υ = 0.3 are compared with those reported by Singha and Ganapathi [37], Valizadeh et al.
[41] and Grover et al. [16] in Table 2. It is seen that there is an excellent agreement between the present model
and available results in the literature for the flutter boundary of a plate in contact with air.

3.1.2 Frequencies of an isotropic plate interacting with inviscid fluid

As another validation study, the frequencies corresponding to various modes of a square plate coupled with
water for different percentages of fluid depth are tabulated in Table 3. The obtained results in this table are
calculated for a = b = 10m, h = 0.15m, c = 100m, E = 25GPa, υ = 0.15. As observed, again, suitable
compatibility is seen by comparing the current model and available data including Ritz solution of Khorshid
and Farhadi [20] and the finite element of Uğurlu et al. [40]. As seen in Tables 2 and 3, results reported by
CPT are greater than those obtained by FOSDT. This is due to the fact that the rotary inertia and transverse
shear deformations have dissimilar effects through the thickness of the structure in CPT and FOSDT. In fact,
CPT neglects transverse shear stress and rotary inertia effects and therefore overestimates natural frequencies.

3.2 Convergence study

The Galerkin method can provide reliable solutions depending on the choice of trial functions and the number
of terms used in the series. Table 3 shows the convergence study of frequency parameter and critical dynamic
pressure parameter for the vibrating plate in contactwith fluid in order to establish necessary degrees of freedom
in the expansion of the displacements and rotations relating to the structure. It is seen that by increasing the
required terms in series, the natural frequencies and critical dynamic pressure approach to more desirable
amounts. Besides, it can be concluded that N = M = 10 leads to accurate results in this study. The numerical
results reported in Table 3 were calculated for τ = ς = 0.5, η = 1 and δ = 10.
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Table 2 Frequency parameter of isotropic plate coupled with bounded fluid

Mode no. Method τ

0 0.2 0.4 0.6 0.8 1

(1, 1) Uğurlu et al. [40] 3.1690 3.0640 2.1960 1.4960 1.1730 1.0360
Khorshid and Farhadi 3.1415 3.0127 2.0746 1.3563 1.0172 0.8565
Present (FOSDT) 3.1393 3.0551 2.3427 1.6428 1.2822 1.1168
Present (CPT) 3.1401 3.0563 2.3439 1.6436 1.2827 1.1174

(2, 1) Uğurlu et al. [40] 7.9020 7.0920 5.7080 5.1740 3.9260 3.3370
Khorshid and Farhadi 7.8528 7.9032 5.5313 4.9530 3.7329 3.1434
Present (FOSDT) 7.8402 7.2180 5.8051 4.4952 3.8950 3.2368
Present (CPT) 7.8503 7.2275 5.8136 4.5013 3.9001 3.2410

(1, 2) Uğurlu et al. [40] 7.9020 7.6220 5.3820 4.0580 3.4840 3.2610
Khorshid and Farhadi 7.8528 7.4957 5.0916 3.7884 3.2288 3.0037
Present (FOSDT) 7.8402 7.6243 5.9346 5.3440 3.9375 3.6993
Present (CPT) 7.8503 7.6343 5.9423 5.3416 3.9429 3.7041

(2, 2) Uğurlu et al. [40] 12.680 11.400 9.9740 8.7460 6.7770 5.9420
Khorshid and Farhadi 12.563 11.074 9.7556 8.4732 6.5259 5.6503
Present (FOSDT) 12.5312 11.5866 10.1932 9.0820 6.9234 5.8826
Present (CPT) 12.5571 11.6109 10.2132 9.1029 6.9384 5.8948

(3, 1) Uğurlu et al. [40] 15.950 13.800 12.570 10.570 9.4100 7.8480
Khorshid and Farhadi 15.6962 13.3586 12.1332 10.2708 9.1994 7.7808
Present (FOSDT) 15.653 14.1553 11.5324 9.7757 8.8536 7.6498
Present (CPT) 15.6934 14.1916 12.2732 10.3049 9.3841 7.6696

(3, 2) Uğurlu et al. [40] 20.690 18.100 16.680 14.470 12.660 10.720
Khorshid and Farhadi 20.4032 17.6359 16.1027 14.1435 12.4425 10.9678
Present (FOSDT) 20.3277 18.5814 16.9801 14.2891 12.2234 10.6087
Present (CPT) 20.3958 18.6430 17.5956 14.8437 13.0622 10.6444

Table 3 Convergence of frequency parameter and critical dynamic pressure for isotropic plate in contact with liquid (N1 = M1 =
6)

ω̃11 ω̃12 ω̃21 ω̃22 λ̄cr

N = M = 4 2.87939 6.78699 6.97256 10.6434 143.159
N = M = 5 2.87914 6.77828 6.97158 10.6334 135.327
N = M = 6 2.87910 6.77786 6.9715 10.6327 115.327
N = M = 7 2.87909 6.77775 6.97149 10.6327 101.813
N = M = 8 2.87909 6.77766 6.97145 10.6326 101.343
N = M = 9 2.87909 6.77766 6.97144 10.6325 100.213
N = M = 10 2.87909 6.77766 6.97144 10.6325 100.213

3.3 Results and discussion

In this section, results for stability and vibration analysis of rectangular plates coupled with inviscid fluid
under supersonic flow are presented in tabular and graphical form for variou parameters of the plate, fluid and
aerodynamic force. Since the present problem may seem complicated, the four following cases of the system
are considered to demonstrate vibration and flutter behavior of the plate:

Case (a) A rectangular plate without liquid interaction in the absence of supersonic flow, i.e., U∞ = b1 = 0
Case (b) A rectangular plate without liquid interaction in the presence of supersonic flow, i.e., b1 = 0
Case (c) A rectangular plate interacting with liquid in the absence of supersonic flow, i.e., U∞ = 0
Case (d) A rectangular plate interacting with liquid in the presence of supersonic flow.

Figure 2 shows different eight dry and wet mode shapes of the isotropic plate for four abovementioned
cases a–d. Herein λcr-dry and λcr-wet express the critical dynamic pressure parameter in the second and fourth
case, respectively. It is seen thanmode shapes are entirely symmetric in the absence of aerodynamic flow, while
the symmetry of mode shapes is violated in the presence of supersonic air flow. It must be mentioned that by
increasing the supersonic flow velocity the position of peaks shifts and some nodes appear in mode shapes.
Instability of the square plate under consideration (case b) begins when the dynamic pressure parameter is
greater than λcr-dry = 511.22, and two first mode shapes of the plate merge to each other. As seen in case
(c), the coupling between plate and fluid changes the mode shapes as compared to case (a), and it creates
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Fig. 2 Various of mode shapes and natural frequencies of the isotropic plate, awithout liquid in the absence of aerodynamic force,
b without liquid and in the presence of supersonic flow, c interacting with liquid in the absence of supersonic flow, d interacting
with liquid in the presence of supersonic flow
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Fig. 3 Variations of the first five frequency ratios (ω̄) and damping ratios (Ω̄) of the square plate without liquid versus variations
of the dynamic pressure parameter (λ̄)

Fig. 4 Variations of the first five frequency ratios (ω̄) and damping ratios (Ω̄) of the square plate in contact with liquid (τ = 0.4)
versus variations of the dynamic pressure parameter (λ̄)

a remarkable distortion in the wet mode shapes especially for higher modes. This is due to the bulging and
sloshing effects of fluid on the overall kinetic energy of the system. For the square plate coupled with fluid,
i.e., case (d), instability begins later than a plate in vacuum at λcr-wet = 619.542. Additionally, it is seen that
in contrast to case (b) the flutter phenomenon occurs due to the coalescence of the second and third modes.
The numerical results for Fig. 2 are extracted for δ = 100, η = 1 and τ = ς = 0.5

Figures 3, 4 and 5 show the variations of the frequency ratio (ω̄) and damping ratio (Ω̄) against variations
of dynamic pressure (λ̄) of the supersonic flow for the first five modes of the system with δ = 40. Figure 3 is
equivalent to case (a), and the tank is empty of fluid. From this figure, it is seen that the first and secondmodes of
the plate coalesce into one mode at λ̄ = 446.74. If increasing dynamic pressure goes on, other instabilities will
occur at higher dynamic pressure. For instance, a second instability happens at λ̄ = 902.34 The tank has been
considered to be full of fluid by 40% in Fig. 4. According to this figure, the second mode shape of the system
is coupled to the third mode shape at λ̄ = 560.12. In contrast to the previous case, i.e., Fig. 3, this instability is
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Fig. 5 Variations of the first five frequency ratios (ω̄) and damping ratios (Ω̄) of the square plate in contact with liquid (τ = 0.8)
versus variations of the dynamic pressure parameter (λ̄)

Fig. 6 Variations of the first five frequency ratios (ω̄) of the square plate in contact with liquid (τ = 0.5) versus variations of the
dynamic pressure parameter (λ̄) using classical plate theory (CPT) and fourth-order shear deformation theory (FOSDT)

not permanent and coalescence of modes is eliminated at λ̄R = 988.95. In other words, a post-stable region is
formed due to the effects of fluid. Herein, λ̄R denotes the critical dynamic pressure which coupling of modes
is released. Fluid depth ratio is assumed to be 0.8 in Fig. 5. As seen from this figure, changing the level of
fluid alters the kinetic energies related to the bulging and sloshing modes, and as a consequence new branches
of instability appear in Fig. 5. In fact, the first coupling of modes occurrs due to the approaching third and
fourth mode shapes. Moreover, the length of the post-stable region (LPSR = λ̄R − λ̄cr) has been enhanced
from 428.83 to 465.84 as compared to the previous case.

Figure 6 displays the effects of supersonic flow on the first five wet frequencies of a square plate with
τ = ς = 0.5 formulated on CPT and FOSDT. It is evident that natural frequencies and critical dynamic
pressure predicted by CPT are greater than those predicted by FOSDT which is due to the effects of transverse
shear deformation and rotary inertia on dynamic and stability behavior of the structure. It can be concluded
that transverse shear deformation has a destabilizing effect, and it can expedite the flutter phenomenon. The
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Fig. 7 Effects of fluid depth ratio on critical dynamic pressure parameter of the plate interacting with liquid

Fig. 8 Effects of fluid depth ratio on the length of post-stable region of the plate interacting with liquid

thickness ratio of the plate is taken to be δ = 10 in this figure to highlight the transverse shear deformation
effects.

Figure 7 depicts the influences of fluid depth ratio on the stability of the square plate. It is observed from
this figure that, apart from the depth ratio, the existence of fluid around the structure creates a postponement
in the occurrence of flutter. In addition, some jumping points appear in this figure which is due to the shifting
of the mode shapes involved in the flutter. Moreover, it can be concluded that the variations of the critical
dynamic pressure versus fluid depth ratio vary monotonically as far as there is no changing in mode shapes
participating in the flutter. It is worth mentioning that the flutter onset varies sharply for the low values of the
fluid depth ratio. However, this rate reduces as the fluid depth ratio increases. This means that the stability of
the system mainly depends on the fluid near the bottom of the tank rather than the fluid near the free surface
of the tank.

As discussed in the previous figures, the presence of fluid can form a temporary instability in the dynamic
behavior of the wet plate. Figure 8 displays effects of fluid depth ratio on the length of post-stable region
(LPSR). There are four different regions depending on the level of fluid according to this figure. The first
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region (τ < 0.17) is formed due to the coalescence of the first two mode shapes, and the conventional
supersonic flutter instability occurs. When 0.17 < τ < 0.38, again, the first and second mode shapes are
coupled to each other but with forming a post-stable region. It is seen that for greater values of τ > 0.17, a
post-stable region arises because of the coupling of higher modes. For values of fluid depth ratio between 0.38
and 0.61, the second and third mode shapes and for higher values of fluid depth ratio (τ > 0.61), the third and
fourth mode shapes coalesce into a single mode. It can be concluded that the length of the post-stable region
rises as the fluid depth ratio increases. Numerical results in Figs. 7 and 8 have been calculated for a plate with
δ = 40

4 Conclusion

In this work, both the fifth-order shear deformation theory and classical plate theory are adopted to investigate
the vibrational and flutter behavior of isotropic plates coupled to fluid. The fluid is considered to be inviscid,
irrotational and incompressible and the fluid velocity potential due to sloshing and bulging motions is derived
satisfying the Laplace equation. The linear piston theory is employed to evaluate the supersonic aerodynamic
pressure over the plate. Governing equations of the rectangular plate subjected to supersonic flow on one
side and coupled to fluid on the other side are obtained on the basis of Hamilton’s principle. Rotations and
displacements of the plate are assumed in terms of trigonometric functions, and the Galerkin approach is taken
to obtain the dynamic response of the simply supported plate. Convergence and comparison studies confirm the
validity and reliability of the current model. Numerical results reveal that the presence of fluid has a significant
effect on the dynamic response of the system, and that it gives a distortion of the mode shapes in vacuum. Also,
it is observed that fluid–structure interaction has a major effect on the flutter behavior of the system. It may
change the modes participating in the flutter instability and give rise to a post-flutter stable region depending
on the level of fluid. Additionally, it is observed that the extension of the post-stable region is influenced by
the fluid depth ratio, and that it increases by enhancing the fluid level.
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