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Abstract A geometric transformation method based on discrete singular convolution (DSC) is firstly applied
to solve the buckling problem of a functionally graded carbon nanotube (FG-CNT)-reinforced composite skew
plate. The straight-sided quadrilateral plate geometry is mapped into a square domain in the computational
space using a four-node DSC transformation method. Hence, the related governing equations of plate buckling
and boundary conditions of the problem are transformed from the physical domain into a square computa-
tional domain by using the geometric transformation-based singular convolution. The discretization process
is achieved via the DSC method together with numerical differential and two different regularized kernels
such as regularized Shannon’s delta and Lagrange-delta sequence kernels. The accuracy of the present DSC
results is first verified, and then, a detailed parametric study is presented to show the impacts of CNT volume
fraction, CNT distribution pattern, geometry of the skew plate and skew angle on the axial and biaxial buckling
responses of FG-CNTR composite skew plates with different boundary conditions. Some new results related
to critical buckling of an FG-CNT-reinforced composite skew plate are also presented, which can serve as
benchmark solutions for future investigations.

1 Introduction

Throughout the history of civilization, materials play a major role in every field of technology such as engi-
neering, biomedicine, computers, sensors, micro- and nano-electro-mechanical systems (MEMS and NEMS),
and different industries. From stone up to nanocomposites, all materials have been used to satisfy human needs
and to lead to a comfortable life. Carbon nanotube (CNT)- and graphene-reinforced material are two advanced
novel materials possessing high strength/stiffness, a very good thermal and electrical performance as well as
a high aspect ratio and low density. It is commonly accepted that CNT, fullerene, graphite, and diamond are
the main allotropes of carbon. However, CNT-reinforced material has emerged as an effective material, which
has many applications in many areas.

It is known that different shapes of plate and shell components are made of a wide range of material
properties such as isotropic, orthotropic, laminated composite, anisotropic, and functionally graded composites.
Additionally, bending, buckling and vibration behaviors of homogeneous or isotropic and composite plates
with rectangular and circular shapes have been widely analyzed in the open literature [1–10]. Skew plates have
also found widespread usages in aerospace and aeronautics, civil, mechanical and marine/ship engineering.
Due to their frequent use in many areas of engineering, it is important to define and understand the buckling
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characteristics of skew plates. Until today many numerical and analytical methods such as Ritz, finite element
method, meshless method, differential quadrature, Galerkin and boundary element method have been used
for the analysis of buckling and vibration problems of skew plates [11–18]. By using the element-free IMLS-
Ritz method, buckling and post-buckling analyses of plates with CNT-reinforced functionally graded materials
(FGMs) have beenmade by Zhang et al. [19]. In this study, they applied the first-order shear deformation theory
and vonKármán assumption to take the effects of transverse shear strains, rotary inertia andmoderate rotations.
Jaberzadeh and Azhari [20] proposed an element-free Galerkin method using meshless formulation for local
buckling of moderately thick stepped skew viscoelastic composite plates. Kiani [21] gives some benchmark
results for buckling of FG-CNT-reinforced composite plates subjected to parabolic loading. Post-buckling
analysis of skew plates subjected to combined in-plane loadings has been analyzed in detail by Upadhyay and
Shukla [22]. An higher-order shear deformation theory for isogeometric thermal buckling analysis of FGM
plates with temperature-dependent material properties has been discussed by Van Do and Lee [23]. Frikha et
al. [24] used efficient shell elements for functionally graded CNT composite shell analysis via finite rotation of
three- and four-node shell elements. Mehri et al. [25] introduced the harmonic differential quadrature method
for buckling and free vibration solution of a pressurized FG-CNT-reinforced shell under an axial compression
load. By using the mesh-free radial basis function method, the linear buckling analysis of arbitrarily shaped
shear deformable plates has been investigated by Liew et al. [26]. Huang and Lin [27] introduced amoving least
square differential quadrature method for bending and buckling analysis of antisymmetric laminates plates via
shear deformable plate theories.Wang et al. [28] also used shear the deformation theory ofMindlin formodeling
of buckling problems of plates with internal line supports. The solution was obtained via pb-2 Rayleigh–Ritz
method, and detailed benchmark results were provided. Buckling of FG-CNT-reinforced panels under axial
compression has been studied using the kernel particle approximation via the Ritz method by Liew et al.
[29]. The panels have been reinforced by single-walled carbon nanotubes (SWCNTs) with different types of
distributions.Khdeir andLibrescu [30] utilized an analytical benchmark solution for buckling and free vibration
of symmetric-laminated cross-ply elastic plates based on the higher-order theory. An analysis of arbitrarily
shaped FG-CNT-reinforced plates was given by Fantuzzi et al. [31]. In this research, the method of generalized
differential quadrature was used for numerical discretization. An analysis of laminated nanocomposite plates
using the first-order shear deformation theory and the generalized differential quadrature method was applied
for a numerical solution by Tornabene et al. [32]. Buckling of FG-CNT-reinforced composite thick skew plates
was studied via the improved moving least squares-Ritz approach by Zhang et al. [33] and Lei et al. [34] with
or without elastic foundation. In [33,34], CNTs were reinforced uniaxially aligned in the axial direction of
the plate, and some detailed numerical examples were supplied. Recently, elastic buckling of rectangular and
skew plates with FGMwith cutout resting on a two-parameter elastic foundation was discussed by Shahrestani
et al. [35]. In this study, the isoparametric spline finite strip method has been developed, and detailed results
have been listed. In a series of paper, Shen [36,37] and Shen and Zhang [38] gave a detailed formulation,
benchmark results, and the related coefficient for CNTparameters related to the analysis of FG-CNT-reinforced
components. An FG-CNT-reinforced composite plate was analyzed using the three-dimensional theory of
elasticity and the state-space method by Alibeigloo and Liew [39]. A detailed review on static, vibration and
buckling analysis of FG-CNT-reinforced composite structures was given by Liew et al. [40]. Other than that,
there are also some other studies that are related to the vibration and buckling analyses of FG-CNT-reinforced
composite beams, plates, and shells [41–51].

It is generally known that two main plate theories have been widely used during the past years such
as classical or thin plate theories or higher-order deformation theories. The classical plate theory based on
Kirchhoff’s hypothesis is not efficient to describe the accurate behavior of thick plates, especially laminated
composite plates, because the transverse shear deformation is not considered. Hence, it is necessary to develop
some refined and higher-order shear deformation plate theories. The concept of higher-order shear deformation
theories has been subsequently proposed to obtain more accurate solutions of the thick and laminated problems
[79–106].

In the literature, different numerical and analytical methods such as Ritz, finite element method, differential
quadrature methods, and meshless methods have been used for buckling analyses of thin and thick plates. In
the method of DSC implementation, boundary conditions are similar for both thin and thick plates. We used
the symmetric and antisymmetric extension proposed by Wei [52,53] and Wei et al. [54,55] for imposing
boundary conditions.

In applications of mechanical, civil, ship, and aerospace engineering areas, skew plates have been widely
used as swept wings of aero planes, horizontal and vertical alignments in bridge design, ship hulls and paral-
lelogram slabs in buildings, and reinforced slabs or stiffened plates.
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In this study, a buckling analysis of skew plates made of an FG-CNT-reinforced composite has been
performed based on the first-order shear deformation and thin plate theory. The skew plate material comprises
amixture of CNTs and thematrix. Also, a nanocomposite skew platemay comprise three different distributions
such as uniform distribution of CNTs (UD), O-type functionally graded distributions of CNTs (FG-O) and
an X-type functionally graded distribution of CNTs (FG-X). Furthermore, a skew plate is considered to
have a linear distribution of the volume fraction of CNTs. Two different singular kernels have been used
in conjunction with the discretization of a singular convolution procedure. The straight-sided quadrilateral
element is transformed into a square domain in the computational plate domain by using the four-node discrete
singular convolution (DSC) mapping. After giving the related governing equations for the buckling of skew
plates and boundary conditions, related geometric transformation has been defined via the DSC transformation
approach. Then, detailed numerical solutions have been obtained for various FGM and CNT distributions and
CNT volume fraction numbers, FGM index, skew angles, load and boundary conditions. To the best of the
authors’ knowledge, this is the first instance in which the DSC mapping procedure has been presented for the
buckling analysis of FG-CNT-reinforced composite skew plates.

2 Discrete singular convolution (DSC)

Numerical methods for differentiation are of significant interest and important during the numerical discretiza-
tion of many problems in different engineering problems and applied sciences. The method of DSC has
generally become a preferable method by many researchers in recent ten years due to its simplicity and fast
convergence characteristics for application. The DSC method was first proposed at the end of the nineties by
Wei [52,53]. This new method has been applied to many mathematical physics and engineering problems by
Wei et al. [54,55] and Ng et al. [56]. It was completely shown and proven by many scientists in different areas
via different examples [57–71] that the method of DSC has good accuracy, efficiency, and rapid convergence.
At the beginning of 2000s, the DSC method was introduced via computer realization of some singular convo-
lutions [45,52]. Wei [53] used some singular kernels of Hilbert, Abel and delta types in some applications. By
the way, the mathematical foundation of the DSC method is older and based on the theory of distributions and
the theory of wavelets. In different DSC applications, many DSC kernels such as regularized Shannon’s delta
(RSD), regularized Dirichlet, regularized Lagrange, and regularized de la Vallée Poussin kernels were used in
[52–71]. Such a singular convolution is defined as [52]

γ (t) = (� ∗ ϕ)(t) =
∞∫

−∞
�(t − x)ϕ(x)dx (1)

where �(t − x) is a singular kernel. Additionally, a delta-type kernel is more suitable and is defined below:
[53]

�(x) = δ(n)(x); (n = 0, 1, 2, . . . , ). (2)

Wei gives the final form for practical applications [55],

γα(t) =
∑

�α(t − xk)g(xk). (3)

In Eq. (3), γα (t) is an approximation to γ (t), and {xk} is the set of discrete points.

2.1 Regularized Shannon’s Delta (RSD) kernel

Shannon’s kernel is regularized as below:

δ�,σ (x − xk) = sin[(π/�)(x − xk)]
(π/�)(x − xk)

exp

[
− (x − xk)2

2σ 2

]
; σ > 0. (4)
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Equation (4) can be used for providing discrete approximations to the singular convolution kernels of the delta
type, namely

g(n)(x) ≈
M∑

k=−M

δ�(x − xk) f (gk), (5)

In the method of DSC approach, a discrete partial derivative of a given function is as below [52]:

dng(x)

dxn

∣∣∣∣
x=xi

= g(n)(x) ≈
M∑

k=−M

δ
(n)
�,σ (xi − xk)g(xk); (n = 0, 1, 2, . . . , ). (6)

A second-order derivative at x = xi is given by:

δ
(2)
�,σ (x − x j ) = d2

dx2
[
δ�,σ (x − x j )

]∣∣
x=xi

. (7.1)

The discretized form of the second-order derivative can also be written as:

g(2)(x) = d2g

dx2

∣∣∣∣
x=xi

≈
M∑

k=−M

δ
(2)
�,σ (k�xN )gi+k, j . (7.2)

For Shannon’s kernel, the related derivatives are defined as: [52,53]

δ
(1)
π/�,σ (xm − xk) = cos(π/�)(x − xk)

(x − xk)
exp[−(x − xk)

2/2σ 2]

− sin(π/�)(x − xk)

π(x − xk)2/�
exp[−(x − xk)

2/2σ 2)]

− sin(π/�)(x − xk)

(πσ 2/�)
exp[−(x − xk)

2/2σ 2)], (8)

δ
(2)
π/�,σ (xm − xk) = − (π/�) sin(π/�)(x − xk)

(x − xk)
exp[−(x − xk)

2/2σ 2]

−2
cos(π/�)(x − xk)

(x − xk)2
exp[−(x − xk)

2/2σ 2)]

−2
cos(π/�)(x − xk)

σ 2 exp[−(x − xk)
2/2σ 2]

+2
sin(π/�)(x − xk)

π(x − xk)3/�
exp[−(x − xk)

2/2σ 2)]

+ sin(π/�)(x − xk)

π(x − xk)σ 2/�
exp[−(x − xk)

2/2σ 2]

+ sin(π/�)(x − xk)

πσ 4/�
(x − xk) exp[−(x − xk)

2/2σ 2)] (9)

where � = π/(N− 1) is the grid spacing and N is the number of grid points. The parameter σ determines the
width of the Gaussian envelope and often varies in association with the grid spacing, i.e., σ = rh. Here, r is a
parameter chosen in computation [52–54].

2.2 Lagrange-delta sequence (LDS) kernel

This kernel for i = 0, 1, . . . , N – 1 and j = –M, . . . , M is given by [57–61]:

Ri, j (x) =

⎧⎪⎪⎨
⎪⎪⎩

i+M∏
k=i−M,k �=i+ j

x−xk
xi+ j−xk

, xi−M ≤ x ≤ xi+M,

0 otherwise

(10)

where W (n)
i, j are the weighting coefficients, and these coefficients for the first derivative can be given as:
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W (1)
i, j = R

(1)
i, j ; for i = 0, 1, . . . , N − 1 and j = −M, . . . ,M, j �= 0, (11.1)

Wi,0
(1) = −

M∑
j=−M, j �=0

W (1)
i, j ; for i = 0, 1, . . . , N − 1 and j = 0. (11.2)

Related to this kernel, the weighting coefficients for any order derivatives can be written as: [58]

W (n)
i, j = n

[
W (1)

i, j W
(n−1)
i, j − W (n−1)

i, j

(xi − xi+ j )

]
(12)

for i = 0, 1, . . . , N – 1 and j = –M, . . . , M, j �= 0, and n = 2, 3, . . . , 2M ,

Wi,0
(n) = −

M∑
j=−M, j �=0

W (n)
i, j . (13)

For a Lagrange kernel, these derivatives are as follows:

δ
(1)
�,σ (x) =

M∑
i=−M; i �=k

(
1

xk − xi

) i+M∏
i=−M, k �=i

x − xi
xk − xi

, (14)

δ
(2)
�,σ (x) =

M∑
i,m = −M; i �= k
m �= k, i �= m

(
1

(x − xi )(x − xm)

) i+M∏
i=−M,k �=i

x − xi
xk − xi

. (15)

3 Geometric mapping for DSC approach

An arbitrary straight-sided quadrilateral CNT plate in the Cartesian x-y coordinate system is shown in Fig. 1a.
The field of this CNT plate can be mapped into a rectangular plate in the natural ξ-η plane, as displayed in
Fig. 1b. Using the transformation equation, the physical domain can be mapped into the computational domain
as:

x =
N∑
i=1

xi
i (ξ, η) and y =
N∑
i=1

yi
i (ξ, η) (16)

where xi and yi are the coordinates of node i in the physical domain, N is the number of grid points, Φi (ξ, η);
i = 1, 2, 3, . . . , N are the interpolation or shape functions. The interpolation function can be defined as:


i (ξ, η) = 1

4
(1 + ξ ξi )(1 + η ηi ). (17)

According to After the well-known chain rule, the related differential derivatives of this function can be written
as:

{
ux
uy

}
= [J11]−1

{
uξ

uη

}
, (18.1)

⎧⎨
⎩

uxx
uyy
2uyx

⎫⎬
⎭ = [J22]−1

⎧⎨
⎩

uξξ

uηη

2uξη

⎫⎬
⎭− [J22]−1[J21][J11]−1

{
uξ

uη

}
(18.2)
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Fig. 1 Configuration and transformation of quadrilateral plate: a Geometric mapping and b CNT skew plate

where ξi and ηi are the coordinates of node i in the ξ -η plane, and Ji j are the elements of the Jacobian matrix.
These are expressed as follows:

[J11] =
[
xξ yξ
xη yη

]
; [J21] =

⎡
⎣ xξξ yξξ

xηη yηη

xξη yξη

⎤
⎦ ;

[J22] =
⎡
⎣ xξ

2 yξ 2 xξ yξ
xη

2 yη2 xηyη
xξ xη yξ yη

1
2 (xξ yη + xηyξ )

⎤
⎦ . (19)

Based on these transformation rules, the related derivations are as follows:

∂2w

∂x2
=

M∑
i=−M

δ(2)
�,σ (k�x)wik, (20.1)

∂2w

∂y2
=

M∑
j=−M

δ(2)
�,σ (k�y)w jk (20.2)
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or ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2w
∂x2

∂2w
∂y2

∂2w
∂x∂y

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= [J22]
−1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2w
∂ξ2

∂2w
∂η2

∂2w
∂ξ∂η

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

− [J22]
−1 [J21] [J11]

−1

{
∂w
∂ξ

∂w
∂η

}
. (21)

The discrete form of these derivatives includes the transformation rule defined by:

∂2w

∂x2
= [J22]−1

M∑
i=−M

δ(2)
�,σ (k�ξ)wik − [J22]−1[J21][J11]−1

M∑
i=−M

δ(1)
�,σ (k�ξ)wik, (22)

∂2w

∂y2
= [J22]−1

M∑
i=−M

δ(2)
�,σ (k�η)w jk − [J22]−1[J21][J11]−1

M∑
i=−M

δ
(1)
�,σ (k�η)w jk, (23)

∂2w

∂x∂y
= [J22]−1

M∑
i=−M

δ(1)
�,σ (k�ξ)wik

M∑
i=−M

δ(1)
�,σ (k�η)w jk

−[J22]−1[J21][J11]−1
M∑

i=−M

δ(1)
�,σ (k�η)w jk . (24)

4 Fundamental equation for buckling

In this Section, the related formulations have been presented for CNT skew plates. In order to compare with the
literature results, not only thick plate theory but also thin plate equations are presented. So, when the plate is
thin, we have used the thin plate formulations; otherwise, thick plate formulations have been used. In order to
show the performance of the DSC method, some detailed analyses via thin and thick plate theories have been
presented [106] for skew plates. Convergence, comparison, and error analysis related to some DSC parameters
and grid numbers have also been supplied [106].

4.1 Thin plate theory

The related governing equation for buckling of a thin CNT plate (Fig. 2) is given as:

D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4

)

−Nx
∂2w

∂x2
− Ny

∂2w

∂y2
− 2Nxy

∂2w

∂x∂y
= 0 (25)

where D is the bending rigidity of theCNTplate, h is the plate thickness, Nx and Ny are the applied compressive
loads in the respective x and y directions, Nxy is the shear force, w is the deflection, and x and y are the mid-
plane Cartesian coordinates. We can define the below differential operators for brevity:

R = ∂2W

∂X2 (26.1)

and

S = ∂2W

∂Y 2 . (26.2)

Fourth-order derivatives can be written via Eq. (26),

∂4W

∂X4 = ∂2

∂X2 R, (27)
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Fig. 2 Different types of loads applied to CNT skew plate: a biaxial and b uniaxial loading

∂4W

∂Y 4 = ∂2

∂Y 2 S, (28)

∂4W

∂X2∂Y 2 = ∂2

∂X2

[
∂2W

∂Y 2

]
= ∂2

∂X2 S. (29)

Consequently, the related derivatives in the computational domain can be listed for related derivations:

∂W

∂X
= [J11]−1 ∂W

∂ξ
, (30)

∂W

∂Y
= [J11]−1 ∂W

∂η
, (31)

∂2W

∂X2 = [J22]−1 ∂2W

∂ξ2
− [J22]−1[J21][J11]−1 ∂W

∂ξ
, (32)

∂2W

∂Y 2 = [J22]−1 ∂2W

∂η2
− [J22]−1[J21][J11]−1 ∂W

∂η
, (33)

∂4W

∂X4 = ∂2R

∂ξ2
= [J22]−1 ∂2R

∂ξ2
− [J22]−1[J21][J11]−1 ∂R

∂ξ
, (34)

∂4W

∂Y 4 = ∂2S

∂η2
= [J22]−1 ∂2S

∂η2
− [J22]−1[J21][J11]−1 ∂S

∂η
, (35)

∂4W

∂X2∂Y 2 = ∂2S

∂X2 = [J22]−1 ∂2S

∂ξ2
− [J22]−1[J21][J11]−1 ∂S

∂ξ
. (36)

Equation (25) can be written using the above transformation, such as

∂2R

∂X2 + 2
∂2S

∂X2 + ∂2S

∂Y 2
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−Nx
∂2w

∂x2
− Ny

∂2w

∂y2
− 2Nxy

∂2w

∂x∂y
= 0. (37)

For related coordinates, Eq. (37) then becomes

[J22]−1 ∂2R

∂ξ2
− [J22]−1[J21][J11]−1 ∂R

∂ξ

+2

(
[J22]−1 ∂2R

∂η2
− [J22]−1[J21][J11]−1 ∂R

∂η

)

+
(

[J22]−1 ∂2S

∂η2
− [J22]−1[J21][J11]−1 ∂S

∂η

)

−Nx

(
[J22]−1 ∂2W

∂ξ2
− [J22]−1[J21][J11]−1 ∂W

∂ξ

)

−Ny

(
[J22]−1 ∂2W

∂η2
− [J22]−1[J21][J11]−1 ∂W

∂η

)
− 2Nxy

(
[J22]−1 ∂2W

∂ξ∂η

)
= 0. (38)

The discretized equations can be written as:

[J22]−1

[
M∑

k=−M

δ
(2)
�,σ (k�ξ)Rk j + 2

M∑
k=−M

δ
(2)
�,σ (k�η)Rik +

M∑
k=−M

δ
(2)
�,σ (k�η)Sik

]

−[J22]−1[J21][J11]−1

(
M∑

k=−M

δ
(1)
�,σ (k�ξ)Rk j + 2

M∑
k=−M

δ
(1)
�,σ (k�η)Rik +

M∑
k=−M

δ
(2)
�,σ (k�η)Sik

)

−Nx

(
[J22]−1

M∑
k=−M

δ
(2)
�,σ (k�ξ)Wkj − 2[J22]−1[J21][J11]−1

M∑
k=−M

δ
(1)
�,σ (k�ξ)Wkj

)

−NY

(
[J22]−1

M∑
k=−M

δ
(2)
�,σ (k�η)Wik − 2[J22]−1[J21][J11]−1

M∑
k=−M

δ
(1)
�,σ (k�η)Wik

)

−2Nxy

(
[J22]−1

M∑
k=−M

δ
(1)
�,σ (k�ξ)

M∑
k=−M

δ
(1)
�,σ (k�η)Wik

)
= 0. (39)

Now we introduce

∇2(•) = ∂2(•)

∂x2
+ ∂2(•)

∂y2
(40)

where ∇2 is the Laplace operator. Thus, the fourth-order equation takes the following simple form:

∇4(Wξη) = ∇2∇2(Wξη). (41)

Substituting Eq. (39) in Eq. (41) and using the fourth-order operator, we find(
[J22]−1

[
M∑

k=−M

δ
(2)
�,σI

]
− [J22]−1[J21][J11]−1

[
M∑

k=−M

δ
(1)
�,σ �

]

×[J22]−1

[
M∑

k=−M

δ
(2)
�,σI

]
− [J22]−1[J21][J11]−1

[
M∑

k=−M

δ
(1)
�,σ �

])

−Nx (Gξ ) − Ny(Gη) − 2Nxy(Gξη) = 0. (42)

For brevity, the below new variables are used in Eq. (42):

I(Wξη) = (k�ξ)R2
k j + 2(k�ξ)S2k j + (k�η)S2k j , (43)

�(Wξη) = (k�ξ)Rk j + 2(k�ξ)Sk j + (k�η)Sik (44)

in which the Gξ ,Gη, and Gξη take the following values:
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Gξ =
(

[J22]−1
M∑

k=−M

δ
(2)
�,σ (k�ξ)Wkj − 2[J22]−1[J21][J11]−1

M∑
k=−M

δ
(1)
�,σ (k�ξ)Wkj

)
,

Gη =
(

[J22]−1
M∑

k=−M

δ
(2)
�,σ (k�η)Wik − 2[J22]−1[J21][J11]−1

M∑
k=−M

δ
(1)
�,σ (k�η)Wik

)
,

Gξη =
(

[J22]−1
M∑

k=−M

δ
(1)
�,σ (k�ξ)

M∑
k=−M

δ
(1)
�,σ (k�η)Wik

)
. (45)

We have the following equation for buckling:

(D4
ξ ⊗ Iη + 2D2

ξ ⊗ D2
η + Iξ ⊗ D4

η)W = λW. (46)

During the numerical simulation, simply supported, clamped and free edges are used. In the following, the
related formulations and their DSC form are given in detail.

(i) For simply supported edge (S)

W = 0,−D

(
∂2W

∂n2
+ ν

∂2W

∂s2

)
= 0. (47)

(ii) For clamped edge (C)

W = 0,
∂W

∂n
= 0. (48)

(iii) For free edge (F)

Qx = 0, Mx = 0, Mxy = 0. (49)

For imposing boundary conditions, the formulation given by Wei et al. [52,53,55] is used. Let us consider a
uniform grid distribution,

0 = X0 < X1 < . . . < XNx = 1, (50.1)

0 = Y0 < Y1 < . . . < YNy = 1. (50.2)

Consider a column vectorW given as

W = (W0,0, . . .W0,N ,W1,0, . . .WN ,N )T . (51)

For any order derivatives, these can be written as:

[D(n)
x ]i, j = δ

(n)
σ,�(xi − x j ), (52.1)

[D(n)
y ]i, j = δ

(n)
σ,�(yi − y j ). (52.2)

The related derivation in Eq. (46) can be given by:

[D(n)
x ]i, j = δ

(n)
σ,�(xi − x j ) =

[(
d

dx

)n

δσ,�(x − x j )

]
x=xi

, (53.1)

[D(n)
y ]i, j = δ

(n)
σ,�(yi − y j ) =

[(
d

dy

)n

δσ,�(y − y j )

]
y=yi

. (53.2)

In this stage, we consider the following relation between the inner nodes and outer nodes on the left boundary:

W (X−i ) − W (X0) = ai [W (Xi ) − W (X0)], (54.1)

or

W (X−i ) − W (X0) = W (X0)

⎛
⎝ J∑

j=0

ai X−i

⎞
⎠ [W (Xi ) − W (X0)]. (54.2)
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After rearrangement, ones obtain

W (X−i ) = aiW (Xi ) + (1 − ai )W (X0) (55)

where parameter ai , (i = 1, 2, . . . , M) can be determined by the boundary conditions. Thus, the first- and
second-order derivatives of W on the left boundary are approximated by:

W ′(X0) =
⎛
⎝δ

(1)
σ,�(Xi − X0) −

J∑
j=0

(1 − ai )δ
(1)
σ,�(Xi − X j )

⎞
⎠W (X0)

+
J∑

j=0

(1 − ai )δ
(1)
σ,�(Xi − X j )W (Xi ), (56.1)

W ′′(X0) =
⎛
⎝δ

(2)
σ,�(Xi − X0) +

J∑
j=0

(1 − ai )δ
(2)
σ,�(Xi − X j )

⎞
⎠W (X0)

+
J∑

j=0

(1 + ai )δ
(2)
σ,�(Xi − X j )W (Xi ). (56.2)

Similarly, the first- and second-order derivatives of f on the right boundary (at XN-1) are approximated by:

W (XN−1+i ) − W (XN−1) = ai [W (XN−1−i ) − W (XN−1)] (57.1)

or

W (XN−1+i ) − W (XN−1) = W (XN−1−i )

⎛
⎝ J∑

j=0

ai X−i

⎞
⎠ [W (Xi ) − W (XN )]. (57.2)

Consequently, we obtain the following relation:

W (XN−1+i ) = aiW (XN−1−i ) + W (XN−1)[1 − ai ]. (58)

Hence, the first- and second-order derivatives of f on the right boundary are given by:

W ′(XN−1) =
⎛
⎝δ

(1)
σ,�(Xi − XN−1) −

J∑
j=0

(1 − ai )δ
(1)
σ,�(Xi − X j )

⎞
⎠W (XN−1)

+
J∑

j=0

(1 − ai )δ
(1)
σ,�(Xi − X j )W (Xi ), (59)

W ′′(XN−1) =
⎛
⎝δ

(2)
σ,�(Xi − XN−1) +

J∑
j=0

(1 − ai )δ
(2)
σ,�(Xi − X j )

⎞
⎠W (XN−1)

+
J∑

j=0

(1 + ai )δ
(2)
σ,�(Xi − X j )W (Xi ). (60)

For simply supported boundary conditions, the related equations are given by:

W (X0) = 0,W ′′(X0) = 0. (61)

For clamped edge, the antisymmetric extension can be written as:

W (X0) = 0,W ′(X0) = 0, (62)

Also, these equations given by (62) are satisfied by choosing ai = 1 for i = 1, 2, . . . , M,. This is called
symmetric extension. Thus, the DSC form of the related boundary conditions can be given as below:
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(i) For simply supported edge (S)

Wi j = 0, (63)

−
⎛
⎝δ

(2)
σ,�(Xi − X0) +

J∑
j=0

(1 − ai )δ
(2)
σ,�(Xi − X j )

⎞
⎠W (X0)

+
J∑

j=0

(1 + ai )δ
(2)
σ,�(Xi − X j )W (Xi )

+ν

⎧⎨
⎩
⎛
⎝δ

(2)
σ,�(Yi − Y0) +

J∑
j=0

(1 − ai )δ
(2)
σ,�(Yi − Y j )

⎞
⎠W (Y0)

+
J∑

j=0

(1 + ai )δ
(2)
σ,�(Yi − Y j )W (Yi )

⎫⎬
⎭ = 0. (64)

(ii) For clamped edge (C)

Wi j = 0, (65)⎛
⎝δ

(1)
σ,�(Xi − XN−1) −

J∑
j=0

(1 − ai )δ
(1)
σ,�(Xi − X j )

⎞
⎠W (XN−1)

+
J∑

j=0

(1 − ai )δ
(1)
σ,�(Xi − X j )W (Xi ). (66)

Finally, Eq. (46) is rewritten as:

(D∗4
ξ ⊗ Iη + 2λ2D∗2

ξ ⊗ D∗2
η + λ4Iξ ⊗ D∗4

η )W = λW (67)

where Iξ and Iη are the (Nr + 1)2; (r = ξ, η) unit matrix and ⊗ denotes the tensor product.

W = (W1,1, . . .W1,N−2,W2,1, . . .WN−2,N−2)
T . (68)

4.2 Thick plate theory

Based on the first-order shear deformation theory, the governing equations for buckling of thick plates are
given [2,34]:

D11
∂2ϕx

∂x2
+ D66

∂2ϕx

∂y2
+ D16

∂2ϕy

∂x2
+ D26

∂2ϕy

∂y2
+ 2D16

∂2ϕx

∂x∂y

(D12 + D66)
∂2ϕy

∂x∂y
− k A45

(
ϕy + ∂w

∂y

)
− k A55

(
ϕx + ∂w

∂x

)
= 0 (69.1)

D16
∂2ϕx

∂x2
+ D26

∂2ϕx

∂y2
+ D66

∂2ϕy

∂x2
+ D22

∂2ϕy

∂y2
+ 2D26

∂2ϕy

∂x∂y

(D12 + D66)
∂2ϕx

∂x∂y
− k A44

(
ϕy + ∂w

∂y

)
− k A55

(
ϕx + ∂w

∂x

)
= 0, (69.2)
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∂

∂x

[
k A45

(
ϕy + ∂w

∂y

)
+ k A55

(
ϕx + ∂w

∂x

)]

+ ∂

∂y

[
k A44

(
ϕy + ∂w

∂y

)
+ k A55

(
ϕx + ∂w

∂x

)]
+ q(x, y)

+Nx
∂2w

∂x2
+ 2Nxy

∂2w

∂x∂y
+ Ny

∂2w

∂y2
= 0 (69.3)

where Nx , Nxy , and Ny are the in-plane applied forces. The bending moments and shear forces are given as:

Mx = D11
∂ϕx

∂x
+ D12

∂ϕy

∂y
+ D16

∂ϕy

∂x
+ D16

∂ϕx

∂y
, (70.1)

My = D12
∂ϕx

∂x
+ D22

∂ϕy

∂y
+ D26

∂ϕy

∂x
+ D16

∂ϕx

∂y
, (70.2)

My = D16
∂ϕx

∂x
+ D26

∂ϕy

∂y
+ D66

∂ϕy

∂x
+ D16

∂ϕx

∂y
, (71)

Qx = k A55

(
ϕx + ∂w

∂x

)
+ k A45

(
ϕy + ∂w

∂y

)
, (72)

Qy = k A45

(
ϕx + ∂w

∂x

)
+ k A44

(
ϕy + ∂w

∂y

)
. (73)

As similar to a thin plate, the related Eqs. (69) have also been transformed via the DSC method. For brevity,
the DSC form of thick plate equations will not be given.

5 FG-CNT composite

Different structural components made of FGM or CNT-reinforced composite material have attracted enormous
attention by researchers and design engineers inmany disciplines due to their unique properties such as thermal,
electrical, and strength advantage [72–78].

If two different constituent materials have been used, the volume fraction can be defined as:

V f 1(z) + V f 2(z) = 1. (74)

In this study, material properties are assumed to be continuous varying in the z-direction (thickness), namely

V f 2(z) =
(
z

h
+ 1

2

)p

. (75)

Hence, the related material properties can be easily written. For example, the modulus of elasticity is:

E(z) = (E2 − E1)

(
z

h
+ 1

2

)p

+ E1. (76)

Three different CNTs have been used in the study. The volume fraction of a CNT-reinforced composite is
defined below:

UD : VCN = V ∗
CN , (77.1)

FG-O : VCN = 2

(
1 − 2

|z|
h

)
V ∗
CN , (77.2)

FG-X : VCN =
(
4
|z|
h

)
V ∗
CN (77.3)
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where VCNT is the volume fraction of CNT, and V ∗
CNT is defined by:

V ∗
CNT = mCNT

mCNT + (ρCNT /ρM ) − (ρCNT /ρM )mCNT
(78)

in which the mCNT represents the mass fraction of CNTs. Also, ρM and ρCNT are the densities of the matrix
and CNT, respectively. Also, some material properties must be given as

E11 = η1VCNT E
CNT
11 + VmE

m, (79)

ν12 = V ∗
CNT νCNT

12 + (1 − V ∗
CNT )νm, (80)

E22 = η2(
VCNT

ECNT
22

+ Vm
Em

) , (81)

G12 = η3(
VCNT

GCNT
12

+ Vm
Gm

) . (82)

6 Numerical results

In this Section, a detailed parametric study is performed in order to investigate the buckling behavior of
the FG-CNT-reinforced composite skew plates via DSC mapping methodology. During the convergence and
comparison, thin and thick plate results have been used. So, we also used the thin and thick plate theories for
the related comparison. For FG cases, material properties are summarized in Table 1. Also, material properties
of CNT-reinforced composite skew plates are used from the simulated results reported by Shen and Zhang [38].
To study the validity and accuracy of this present DSC geometric mapping approach, Tables 2–5 summarize
the comparison of the buckling load for a skew plate under different material and geometry properties.

Table 2 shows the convergence of buckling load parameters of an isotropic skew plate with clamped
edge (a/b = 1; h/b = 0.2) under uniaxial compression for two different DSC kernels. The obtained DSC
results match well with those presented in the literature given by Kitipornchai et al. [11] and Zhang et al.

Table 1 Material properties of FGM cases

Material Properties

E (N/m2) ν ρ (kg/m3)

Aluminum (Al) 70.0 × 109 0.30 2707
Alumina (Al2O3) 380 × 109 0.30 3800
Zirconia (ZrO2) 151 × 109 0.30 3000

Table 2 Convergence of buckling load parameters (λ = Ncrb2/Dπ2) of an isotropic skew plate with the clamped edge (a/b = 1;
h/b = 0.2) under uniaxial compression

Skew angles(0) Zhang et al. [18] Kitipornchai et al. [7] DSC-Shannon’s kernel

9 × 9 11 × 9 11 × 11 13 × 11

90 5.3043 5.3156 5.3134 5.3128 5.3128 5.3128
75 5.4553 5.4913 5.4788 5.4785 5.4785 5.4785
60 5.9264 6.0328 5.9660 5.9656 5.9653 5.9653
45 6.9610 6.9712 6.9702 6.9699 6.9697 6.9697

Skew angles(0) Zhang et al. [18] Kitipornchai et al. [7] DSC-Lagrange-delta kernel

9 × 9 11 × 9 11 × 11 13 × 11

90 5.3043 5.3156 5.3145 5.3142 5.3142 5.3142
75 5.4553 5.4913 5.4818 5.4816 5.4816 5.4816
60 5.9264 6.0328 5.9675 5.9671 5.9671 5.9671
45 6.9610 6.9712 6.9737 6.9735 6.9733 6.9730
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Table 3 Comparison of the buckling load (λ = Ncrb2/Emh3) of SSSS skew plates with CNT-reinforcement (a/b = 1; h/a = 0.01;
FG-O) under uniaxial loading

Vcn Skew angles Zhang et al. [18] Present DSC

9 × 9 11 × 9 11 × 11 13 × 11

0.11 75 42.5896 43.0984 43.0982 43.0982 43.0982
60 76.7106 76.9261 76.9257 76.9257 76.9257
45 130.3856 131.1055 131.1054 131.1052 131.1052

0.17 90 58.4320 58.4471 58.4471 58.4468 58.4468
60 107.2656 107.2903 107.2904 107.2904 107.2904
45 185.2418 186.1977 186.1975 186.1973 186.1973

Table 4 Comparison of buckling load (λ = cos4(θ)·Ncrb2/Dπ2)of SSSS skewplateswith FGM(Al/ZrO2; a/b = 1; h/a = 0.001)
under uniaxial loading

Skew angles p Ref. [62] Present DSC

9 × 9 11 × 9 11 × 11 13 × 11

75 0 20.9458 20.8711 20.8706 20.8705 20.8705
0.5 14.5991 13.9874 13.9873 13.9871 13.9871
2 10.6934 10.5349 10.5348 10.5346 10.5346
10 7.2042 7.1803 7.1795 7.1793 7.1793

60 0 18.7951 17.9660 17.9658 17.9658 17.9658
0.5 13.1000 12.9906 12.9906 12.9904 12.9904
2 9.5954 9.5768 9.5767 9.5765 9.5765
10 6.4645 6.4473 6.4474 6.4471 6.4471

Table 5 Comparison of buckling load (λ = Ncrb2/Emh3) of skew plates with CNT-reinforcement (h/a = 0.01; b/a = 1; α = 60)
under uniaxial loading

Boundary condi-
tions

CNT types Zhang et al. [18] Present
DSC(11 × 11)
Shannon’s kernel

Present DSC(11 × 11)
Lagrange-delta kernel

SSSF UD 91.6234 91.6481 91.6487
FG-O 57.0086 57.1003 57.1011
FG-X 119.1949 120.2698 120.2702

SCSC UD 102.9716 103.0515 103.0518
FG-O 67.5650 68.1040 68.1044
FG-X 131.3016 132.2813 132.2817

Table 6 Buckling load (λ = Ncrb2/Emh3) of SSSS skew plates with CNT-reinforcement (h/a = 0.01; b/a = 1) under biaxial
compression loading

α CNT types Vcn

0.11 0.14 0.17

75 FG-X 18.5721 21.2037 31.0327
UD 15.7703 17.4694 26.0894

60 FG-X 34.6183 39.1005 55.2219
UD 29.5480 33.0114 45.4698

45 FG-X 75.9021 86.5341 119.7546
UD 63.0516 71.1157 98.1724

[33]. Four different skew angles are considered. This comparison demonstrates that the present DSC solution
is completely good and reliable. It is also observed that increasing the number of grid points N improves
the accuracy of the results and leads to convergent solutions at Nx = Ny = 11. Hence, N = 11 is used
in the following numerical calculations in each direction. Buckling loads of SSSS skew plates with CNT-
reinforcement (a/b = 1; h/a = 0.01; FG-O) under uniaxial loading are compared with the Ritz results given by
Zhang et al. [33], which are based on the first-order shear deformation plate theory and element-free approach
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Table 7 Buckling load (λ = Ncrb2/Emh3) of SSSS skew plates with CNT-reinforcement (UD-CNT; b/a = 1; Vcn = 0.11)
under uniaxial loading

α h/a Present DSC results

11 × 11 11 × 13 13 × 13

75 0.01 63.3019 63.3019 63.3019
0.10 20.7835 20.7835 20.7835
0.15 12.7014 12.7014 12.7014
0.20 8.3920 8.3920 8.3920

60 0.01 123.0546 123.0546 123.0546
0.10 27.1018 27.1018 27.1018
0.15 15.9725 15.9725 15.9725
0.20 10.3011 10.3011 10.3011

45 0.01 216.7148 216.7148 216.7148
0.10 42.4415 42.4415 42.4415
0.15 25.5013 25.5013 25.5013
0.20 16.4829 16.4829 16.4829

Table 8 Buckling load (λ = Ncrb2/Emh3) of SSSS skew plates with CNT-reinforcement (FG-X-CNT; h/a = 0.01; Vcn = 0.11)
under uniaxial loading

Skew angles b/a DSC results

Shannon’s kernel Lagrange-delta kernel

9 × 9 11 × 11 13 × 13 9 × 9 11 × 11 13 × 13

45 1 288.1466 288.1463 288.1463 288.1470 288.1469 288.1469
1.5 610.0252 610.0249 610.0249 610.0254 610.0251 610.0251
2 826.1478 826.1475 826.1475 826.1481 826.1478 826.1478
2.5 1124.0374 1124.0371 1124.0371 1124.0424 1124.0420 1124.0420
3.0 1528.1595 1528.1593 1528.1593 1528.1598 1528.1596 1528.1596

60 1 159.0128 159.0126 159.0126 159.0132 159.0129 159.0129
1.5 351.7016 351.7014 351.7014 351.7019 351.7017 351.7017
2 548.1381 548.1378 548.1378 548.1384 548.1380 548.1380
2.5 763.8072 763.8069 763.8069 763.8075 763.8072 763.8072
3.0 1014.2095 1014.2093 1014.2093 1014.2096 1014.2093 1014.2093

75 1 85.6919 85.6916 85.6916 85.6923 85.6920 85.6920
1.5 188.0176 188.0173 188.0173 188.0178 188.0175 188.0175
2 331.2798 331.2794 331.2794 331.2802 331.2799 331.2799
2.5 503.1693 503.1689 503.1689 5063.1696 5063.1693 5063.1693
3.0 714.0214 714.0211 714.0211 714.0218 714.0214 714.0214

90 1 57.1088 57.1085 57.1085 57.1092 57.1089 57.1089
1.5 123.0707 123.0705 123.0705 123.0712 123.0710 123.0710
2 216.6621 216.6618 216.6618 216.6621 216.6618 216.6618
2.5 338.9616 338.9612 338.9612 338.9614 338.9612 338.9612
3.0 482.0149 482.0146 482.0146 482.0149 482.0146 482.0146

in Table 3. According to the buckling loads listed in this Table, it can be seen that the results are in excellent
agreement with the element-free results.

Table 4 shows the comparisons of the buckling loads of SSSS skew plates with FGM (Al/ZrO2; a/b = 1;
h/a = 0.001) under uniaxial loading with the solutions of Shahrestani et al. [35] using isoparametric spline
finite strip method for different skew angles and FGM indexes. The Table also shows that the present DSC
results agreewell with the buckling loads listed in [35]. Finally, another comparison ismade for CNT composite
skew plates, and calculated results are listed in Table 5 with the results by Zhang et al. [33]. From the results,
one can conclude that theDSCmethod leads to accurate results even using a few grid points. Furthermore, these
convergence and comparison results listed in Tables 2–5 show that as the number of grid points increased, DSC
results are rapidly converged to the correct values, which show the fast rate of convergence of themethod. Thus,
the mesh size of 11 × 11 is used in the next numerical examples, if otherwise it is not mentioned. In addition
to this, the slight difference between our DSC results and the results given by open literature approaches may
result from different plate theories or different solution procedures. It is also shown that the convergence of
the DSC-Shannon’s delta kernel is much better than that of the DSC-Lagrange-delta kernel.
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Table 9 Buckling load (λ = Ncrb2/Emh3) of skew plates with CNT-reinforcement (UD-CNT; h/a = 0.01; b/a = 1;Vcn = 0.11)
under uniaxial loading

Skew angles Boundary conditions DSC results

Shannon’s kernel Lagrange-delta kernel

11 × 9 15 × 11 15 × 13 11 × 9 15 × 11 15 × 13

45 CCCC 287.0817 287.0816 287.0816 287.0824 287.0821 287.0821
SCSC 221.2609 221.2607 221.2607 221.2613 221.2613 221.2613
SFSF 214.2134 214.2134 214.2134 214.2141 214.2139 214.2138
SSSS 216.7149 216.7148 216.7148 216.7156 216.7154 216.7154

60 CCCC 191.2077 191.2075 191.2075 191.2081 191.2079 191.2079
SCSC 123.1643 123.1640 123.1640 123.1650 123.1650 123.1651
SFSF 117.1471 117.1473 117.1473 117.1480 117.1478 117.1478
SSSS 123.0544 123.0546 123.0546 123.0556 123.0554 123.0552

75 CCCC 155.1137 155.1134 155.1134 155.1140 155.1138 155.1138
SCSC 67.2348 67.2348 67.2348 67.2358 67.2355 67.2353
SFSF 61.2358 61.2355 61.2355 61.2363 61.2361 61.2359
SSSS 63.3021 63.3019 63.3019 63.3027 63.3025 63.3023

Table 10 Buckling load (λ = Ncrb2/Emh3) of SSSS skew plates with CNT-reinforcement (h/a = 0.01; b/a = 1; Vcn = 0.11)
under biaxial compression and tension loading

α CNT types Present DSC results

11 × 11 13 × 11 13 × 13

75 FG-X 329.0439 329.0439 329.0439
FG-O 135.3014 135.3014 135.3014

60 FG-X 418.0525 418.0523 418.0523
FG-O 177.1294 177.1294 177.1294

45 FG-X 911.1478 911.1476 911.1476
FG-O 375.0149 375.0149 375.0150

Table 11 Buckling load (λ = cos4(θ) · Ncrb2/Dπ2) of CCCC skew plates with FGM (Al/ZrO2; a/b = 1; h/a = 0.001) under
uniaxial loading

Skew angles p Present DSC

9 × 9 11 × 11 11 × 13 13 × 13 13 × 15

75 0 50.3291 50.3285 50.3285 50.3285 50.3285
0.5 34.8112 34.8106 34.8106 34.8106 34.8104
2 24.9880 24.9872 24.9872 24.9872 24.9873
10 17.5951 17.5943 17.5943 17.5943 17.5943

60 0 40.8367 40.8359 40.8359 40.8359 40.8360
0.5 27.8002 27.7994 27.7994 27.7994 27.7994
2 20.8698 20.8691 20.8691 20.8691 20.8692
10 14.2073 14.2065 14.2065 14.2065 14.2065

45 0 27.3820 27.3816 27.3816 27.3816 27.3814
0.5 19.1542 19.1534 19.1534 19.1534 19.1534
2 13.9879 13.9873 13.9873 13.9873 13.9872
10 9.4413 9.4408 9.4408 9.4408 9.44089

Table 6 shows the buckling loads of SSSS skew plates with CNT-reinforcement (h/a = 0.01; b/a = 1;
θ = 60) under biaxial loading for various skew angles and different values of VCNT distribution patterns.
Results show that as the skew angles increase, buckling loads are increased rapidly. Also, it can be seen that
the natural buckling loads increase with the increase in the volume fraction value of CNT. Buckling loads of
SSSS skew plates with CNT-reinforcement (UD-CNT; b/a = 1; VCNT = 0.11) under uniaxial loading are
presented in Table 7 with different skew angles and thickness-to-side ratio. Results show that as the skew angle
increases, buckling of a CNT skew plate decreases. Furthermore, an increase in the plate thickness causes a
serious decrease in the buckling loads.

In Table 8, buckling loads of skew plates with CNT-reinforcement (FG-X-CNT; h/a = 0.01; VCNT = 0.11)
under uniaxial loading are presented for different skew angles and aspect ratios.
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Table 12 Buckling load (λ = Ncrb2/Dπ2) of SSSS skew plates with FGM (Al/Al2O2; a/b = 1; h/a = 0.01) under uniaxial
loading

Skew angles p Present DSC

9 × 9 9 × 11 11 × 11 11 × 13 13 × 13

75 0 4.4130 4.4130 4.4128 4.4128 4.4128
0.5 2.9833 2.9832 2.9830 2.9830 2.9830
1 2.4295 2.4295 2.4294 2.4294 2.4294

60 0 5.9076 5.9075 5.9074 5.9074 5.9074
0.5 4.0718 4.0716 4.0713 4.0713 4.0713
1 3.3023 3.3021 3.3019 3.3019 3.3019

45 0 10.1250 10.1248 10.1245 10.1245 10.1245
0.5 7.2042 7.2041 7.2039 7.2039 7.2039
1 5.8018 5.8016 5.8013 5.8013 5.8013

Table 13 Buckling load (λ = Ncrb2/Dπ2) of SSSS skew plates with FGM (Al/Al2O2; a/b = 2) under uniaxial loading

Skew angles p DSC results

h/a = 0.1 h/a = 0.01

9 × 9 9 × 11 11 × 11 9 × 9 9 × 11 11 × 11

45 0 5.5403 5.5410 5.5410 9.1012 9.1016 9.1016
0.5 3.7486 3.7491 3.7491 6.0107 6.0112 6.0112
1 2.9602 2.9608 2.9608 4.7181 4.7185 4.7185

60 0 4.1998 4.2003 4.2003 5.6820 5.6824 5.6824
0.5 2.8230 2.8234 2.8234 3.7608 3.7613 3.7613
1 2.2212 2.2217 2.2217 2.9791 2.9794 2.9794

75 0 3.4667 3.4670 3.4670 4.3508 4.3512 4.3512
0.5 2.3281 2.3289 2.3289 2.8901 2.8905 2.8905
1 1.8462 1.8466 1.8466 2.2888 2.2891 2.2891

90 0 3.2245 3.2248 3.2248 3.9976 3.9980 3.9980
0.5 2.1671 2.1674 2.1674 2.6480 2.6483 2.6483
1 1.7242 1.7246 1.7246 2.9994 2.1006 2.1006

Table 14 Buckling load (λ = Nyb2/Dπ2) of SSSS skew plates with FGM (Al/Al2O2; a/b = 1; h/a = 0.1) under biaxial loading

Skew angles p Present DSC

9 × 9 9 × 11 11 × 11 11 × 13 13 × 13

75 0 1.9718 1.9716 1.9714 1.9714 1.9714
0.5 1.3581 1.3580 1.3578 1.3578 1.3578
1 1.1020 1.1018 1.1015 1.1015 1.1015

60 0 2.3424 2.3422 2.3420 2.3420 2.3420
0.5 1.6205 1.6203 1.6203 1.6203 1.6203
1 1.3178 1.3177 1.3176 1.3176 1.3176

45 0 3.2032 3.2029 3.2027 3.2027 3.2027
0.5 2.2823 2.2820 2.2819 2.2819 2.2819
1 1.8598 1.8595 1.8593 1.8593 1.8593

The value of the buckling parameters essentially depends on the CNT types, skew angles, and the boundary
conditions.

Buckling loads of skewplateswithCNT-reinforcement (UD-CNT; h/a = 0.01; b/a = 1;Vcn = 0.11) under
uniaxial loading for different skew angles and four different boundary conditions are also given in Table 9.
Also, buckling loads of SSSS skew plates with CNT-reinforcement (h/a = 0.01; b/a = 1; VCNT = 0.11)
under biaxial loading for two different CNT types are listed in Table 10. Obviously, buckling load parameters
decrease with the increase in the skew angles for all considered cases. As clearly shown in these two Tables, an
increase in the aspect ratio yields to increasing buckling. It can also be seen that as the skew angles increase,
the buckling load decreases.

It is also shown that the aspect ratio plays a major effect in the buckling values of the CNT skew plate.
Among the different FG patterns of CNTs across the thickness, FG-X panels feature the maximum values
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Table 15 Buckling load (λ = Nyb2/Dπ2) of SSSS skew plates with FGM (Al/Al2O2; a/b = 2; h/a = 0.1) under biaxial loading

Skew angles p Present DSC

9 × 9 9 × 11 11 × 11 11 × 13 13 × 13

75 0 1.1497 1.1495 1.1493 1.1493 1.1493
0.5 0.7940 0.7938 0.7936 0.7936 0.7936
1 0.6482 0.6481 0.6478 0.6478 0.6479

60 0 1.3515 1.3512 1.3512 1.3512 1.3512
0.5 0.9348 0.9346 0.9346 0.9346 0.9346
1 0.7639 0.7637 0.7635 0.7635 0.7635

45 0 1.8435 1.8434 1.8432 1.8432 1.8432
0.5 1.2650 1.2649 1.2647 1.2647 1.2647
1 1.0414 1.0413 1.0412 1.0412 1.0412

Table 16 Buckling load (λ = Ncrb2/Dπ2) of CCCC skew plates with FGM (Al/Al2O2; h/a = 0.1; a/b = 1)

Skew angles p Uniaxial loading

DSC results

9 × 9 9 × 11 11 × 11 11 × 13 13 × 13 13 × 15

75 0 7.9215 7.9215 7.9214 7.9214 7.9214 7.9214
0.5 5.2813 5.2811 5.2809 5.2809 5.2809 5.2809
2 3.1282 3.1282 3.1280 3.1280 3.1280 3.1280

60 0 7.4906 7.4904 7.4903 7.4903 7.4903 7.4903
0.5 4.9910 4.9912 4.9912 4.9912 4.9912 4.9912
2 2.9572 2.9570 2.9570 2.9570 2.9570 2.9570

45 0 6.5576 6.5575 6.5574 6.5574 6.5574 6.5574
0.5 4.4228 4.4227 4.4225 4.4225 4.4225 4.4225
2 2.5714 2.5717 2.5716 2.5716 2.5716 2.5716

30 0 4.9612 4.9611 4.9610 4.9610 4.9610 4.9610
0.5 3.3830 3.3828 3.3826 3.3826 3.3826 3.3826
2 1.9778 1.9776 1.9774 1.9774 1.9774 1.9774

Table 17 Buckling load (λ = Ncrb2/Dπ2) of CCCC skew plates with FGM (Al/Al2O2; h/a = 0.1; a/b = 1)

Skew angles p Biaxial loading

DSC results

7 × 9 9 × 11 11 × 11 11 × 13 13 × 13 13 × 15

75 0 4.3308 4.3307 4.3305 4.3305 4.3305 4.3305
0.5 2.4711 2.4713 2.4712 2.4712 2.4712 2.4712
2 1.7011 1.7010 1.7008 1.7008 1.7008 1.7008

60 0 4.0920 4.0918 4.0917 4.0917 4.0917 4.0917
0.5 2.7116 2.7114 2.7113 2.7113 2.7113 2.7113
2 1.6028 1.6026 1.6024 1.6024 1.6024 1.6024

45 0 3.6320 3.6318 3.6315 3.6315 3.6315 3.6315
0.5 2.4233 2.4231 2.4229 2.4229 2.4229 2.4229
2 1.4235 1.4233 1.4232 1.4231 1.4231 1.4231

30 0 2.8208 2.8207 2.8204 2.8204 2.8204 2.8204
0.5 1.9062 1.9061 1.9058 1.9058 1.9058 1.9058
2 1.1204 1.1205 1.1203 1.1203 1.1203 1.1203

of buckling loads, whereas FG-O panels feature the minimum buckling loads. As also expected, skew plates
that are completely clamped show the highest buckling loads due to their higher bending stiffness nearby the
clamped edge compared to simply supported and free edges. It is worth noticing that an increased enrichment of
CNTs within the matrix from 0.11 to 0.27 yields an increase in the buckling loads, for all boundary conditions.

For FGM composites, all results are tabulated in Tables 11–17 for different material and geometric param-
eters. Buckling loads of CCCC and SSSS skew plates with FGM (Al/ZrO2; a/b = 1; h/a = 0.001) under
uniaxial loading are obtained and summarized in Tables 11 and 12, respectively. The effect of the FGM index
parameters on the non-dimensional buckling loads of FGM skew plates is exhibited in these Tables. It can
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be seen that as the FGM index parameters increase, the buckling loads decrease rapidly. Further, it can be
observed that the buckling load increases monotonically as the skew angle increases.

In order to study the effects of thickness on the buckling loads of SSSS skew plates with FGM (Al/Al2O2;
a/b = 2), a composite material under uniaxial loading with different skew angles and grid numbers is obtained
and presented in Table 13. Also, three different FGM index parameters have been studied. It can be concluded
that the increase in the FGM index parameters decreases the buckling load parameter for all cases of skew
angles under study.

It is also found that the buckling load parameter decreases as the thickness of the plate increases. Buckling
loads of SSSS skew plates with FGM (Al/Al2O2; h/a = 0.1) under biaxial loading for two different aspect
ratios are listed in Tables 14 and 15. According to these Tables, it is evident that the buckling loads decrease as
the plate aspect ratio increases for all skew angles. The influence of the load cases on the buckling characteristics
of FGM skew plates with fully clamped boundary condition under uniaxial and biaxial loads is presented in
Tables 16 and 17, respectively. As can be seen, under the same material, geometric and boundary conditions
and the buckling loads of uniaxial loading are always higher than of biaxial loading.

7 Conclusions

The main purpose of the present study was to investigate the buckling behavior of FG-CNT-reinforced com-
posite thick skew plates under biaxial and uniaxial loadings. Buckling of shear deformable FG-CNT-reinforced
composite thick skew plates was examined by employing geometric transformation DSC method due to their
excellent computational efficiency for buckling and vibration problems of beams, plates, and shells. The con-
vergence and accuracy of the present DSC field transformation modeling were validated by comparing its
results with those available in the literature. Different material and geometric parameter effects were exam-
ined. All parametric studies were performed in detail. The results from the study showed that the method of
DSC can provide very good results for buckling of CNT or FGM composite plates of skew shape. Boundary
conditions and CNT distributions can significantly influence the buckling load of a CNT skew plate. The CCCC
boundary condition and FG-X distribution pattern have given the highest buckling loads. The larger value of
skew angles leads to the smallest buckling load of CNT or FGM composite skew plates. Uniaxial buckling
case gives larger buckling load than the biaxial loading. Also, results showed that in most cases an increase
in the aspect ratio decreases the buckling load, indicating a reduction in the flexural stiffness of FGM/CNT
plates. It was also concluded that the buckling load value decreases as the thickness of the plate increases.
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105. Kim, J., Żur, K.K., Reddy, J.N.: Bending, free vibration, and buckling of modified couples stress-based functionally graded
porous micro-plates. Compos. Struct. 209, 879–888 (2019)

106. Barretta, R.: Analogies between Kirchhoff plates and Saint-Venant beams under torsion. Acta Mech. 224(5), 2955–2964
(2013)

107. Civalek, O.: Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometrictransformation
discrete singular convolution method. Int. J. Numer. Eng. https://doi.org/10.1002/nme.6254

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

https://doi.org/10.1002/nme.6254

	Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method
	Abstract
	1 Introduction
	2 Discrete singular convolution (DSC)
	2.1 Regularized Shannon's Delta (RSD) kernel
	2.2 Lagrange-delta sequence (LDS) kernel

	3 Geometric mapping for DSC approach
	4 Fundamental equation for buckling
	4.1 Thin plate theory
	4.2 Thick plate theory

	5 FG-CNT composite
	6 Numerical results
	7 Conclusions
	References




