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Abstract The nonlinear forced vibration characteristics of functionally graded carbon nanotube reinforced
composite (FG-CNTRC) circular cylindrical shells are investigated. On the basis of Reddy’s first-order shear
deformation theory, von Kármán geometric nonlinearity and Hamilton’s principle, the equations of motion are
derived. TheGalerkin technique is applied to discretize the partial differential equations into nonlinear ordinary
differential equations,which are reduced by usingVolmir’s assumption and the static condensationmethod. The
incremental harmonic balance method is applied to analyze the dynamic response of FG-CNTRC cylindrical
shells. A convergence study on the mode expansions is conducted by considering both axisymmetric and
asymmetric modes. The natural frequencies and the resonance responses are compared with existing studies to
examine the validity of this study. The effects of distribution and volume fraction of carbon nanotube, thickness-
to-radius ratio, length-to-radius ratio, dimensionless radial excitation amplitude and damping ratio on the
resonance responses of FG-CNTRC cylindrical shells are discussed. The results show that the reduced model
of the system is reasonable. The frequency responses of FG-CNTRCcylindrical shells showboth hardening and
softening types of nonlinearities, and they are greatly influenced by the change of the fundamental vibrational
mode.

1 Introduction

Carbon nanotubes (CNTs) possess outstanding mechanical, electrical and thermodynamic performance, and
they have become an ideal reinforcing material for advanced composites [1–3]. Many investigations related
to carbon nanotube reinforced composites (CNTRCs) implied that the percentage and alignment of CNTs
can remarkably affect the mechanical behavior of CNTRCs [4–6]. Adopting the notion of functionally graded
materials and usingCNTs as reinforcements in thematrix produce new emerging advanced composites, namely
functionally graded carbon nanotube reinforced composites (FG-CNTRCs). It was reported that Kwon et al.
[7] successfully implemented the fabrication of FG-CNTRCs in the laboratory. A variety of studies on the
mechanical characteristic of FG-CNTRC structures have been conducted recently.

Shen et al. [8,9] explored the large and small amplitude vibrations, thermal postbuckling and bending
of thermally postbuckled CNTRC beams in the conditions of elastic foundations and thermal environments,
considering the foundation-beam interaction and initial deformation resulting from thermal postbuckling. Their
studies illustrated that the thermal postbuckling path of beams with asymmetric CNT distributions is no longer
bifurcated. Lin and Xiang [10] and Ke et al. [11] researched the free vibration of FG-CNTRC beams in a
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linear and nonlinear field, respectively. Both their studies imply that beams with symmetric CNT distribution
possess greater frequencies than those with uniform or asymmetric CNT distribution. Using several shear
deformation theories, Wattanasakulpong and Ungbhakorn [12] studied the vibration and bending behavior of
CNTRC beams under uniform and sinusoidal loads. Ansari et al. [13,14] investigated the nonlinear primary
resonance responses of perfect and geometrically imperfect FG-CNTRC beams.Wu et al. [15,16] also reported
the important influences of the initial geometric imperfections on the vibrational properties of FG-CNTRC
beams. Mirzaei and Kiani [17] researched the large amplitude nonlinear free vibrations of sandwich beams
with FG-CNTRC face sheets and stiff cores. Recently, Wu et al. [18] investigated the nonlinear primary and
superharmonic resonances of FG-CNTRC beams utilizing the incremental harmonic balance (IHB) method.
They found that only in FG-CNTRC beams possessing asymmetric CNT distribution can the 2 superharmonic
resonance occur.

Several investigations on FG-CNTRC plates can be found in published works. Among those, Shen et al.
[19–21] carried out a number of studies on the nonlinear bending characteristics, dynamic response, buckling
and postbuckling behavior of FG-CNTRC plates. By using the element-free method, Zhang et al. [22–24]
explored the free vibrations of FG-CNTRC triangular, quadrilateral and rectangular plates. Considering four
different loadings, including uniform, linear, sinusoidal and exponential distributions, Sobhy [25] researched
the bending characteristics and stresses of FG-CNTRC plates. Kiani et al. [26,27] examined the free vibration
and shear buckling of FG-CNTRC skew plates by using the FSDT andRitzmethod. Kiani [28] also obtained the
buckling loads and buckling mode shape of FG-CNTRC rectangular plates subjected to uniaxial compressive
parabolic loading.

Some reports about FG-CNTRC shell structures are available in the literature. Shen and Xiang [29] inves-
tigated the free vibrations of FG-CNTRC cylindrical shells under thermal loading. Shen [30,31] analyzed
the postbuckling of FG-CNTRC cylindrical shells in different conditions, including uniform temperature rise,
axial compression and external pressure. These two studies illustrated the remarkable influences of volume
fraction and distribution of CNTs on the postbuckling behavior of FG-CNTRC cylindrical shells, such as the
buckling load, buckling temperature, postbuckling strength postbuckling equilibrium path. Thang et al. [32]
proposed an exact solution to explore the influences of imperfection parameters and material properties on the
buckling characteristics of FG-CNTRC cylindrical shells under axial compressive force. Qin et al. [33] estab-
lished a general model via artificial spring approach and Ritz method to examine the vibrations of FG-CNTRC
cylindrical shells under arbitrary boundary conditions. Using the linear model, Song et al. [34,35] studied the
vibrational characteristics and impact response and active vibration control of FG-CNTRC cylindrical shells
via the assumed mode method. Thomas and Roy [36] presented the finite element modeling and vibration
analysis of FG-CNTRC shell structures, including spherical, ellipsoidal, doubly curved and cylindrical shells.
Ansari et al. [37,38] also studied the free vibration of FG-CNTRC cylindrical, conical and spherical shells. By
means of the Galerkin technique combined with the Runge–Kutta method, Due et al. [39,40] gave the vibration
responses of shear deformable FG-CNTRC cylindrical and double curved shallow shells. Shojaee et al. [41]
studied the free vibration behavior of FG-CNTRC skewed cylindrical shell panels based on FSDT. Considering
various boundary and loading conditions, the vibrational and postbuckling properties of FG-CNTRC cylindri-
cal shell panels were studied by Chakraborty et al. [42] using a semi-analytical approach. Pouresmaeeli and
Fazelzadeh [43] investigated the vibrational characteristics of moderately thick doubly curved FG-CNTRC
cylindrical, spherical and hyperbolic paraboloid shell panels.

Asmentioned above, numerous researches have been presented about the vibration analysis of FG-CNTRC
structures. The aforementioned studies related to FG-CNTRC cylindrical shells mainly focus on the linear or
nonlinear free vibrations and postbuckling behaviors. At present, there are few studies on the nonlinear forced
vibrations of FG-CNTRC cylindrical shells under resonance conditions, which prompts us to carry out this
work. The nonlinear resonance of engineering structures should be avoided, which is worth studying through
forced vibration analysis. The equations of motion are derived from FSDT and von Kármán geometric non-
linearity and discretized by the Galerkin technique. By using Volmir’s assumption and the static condensation
method, two reduced models are established and compared with the full-order system. A convergence study
on the mode expansions is conducted considering both asymmetric and axisymmetric modes. The incremental
harmonic balance method [44] is utilized to calculate the nonlinear dynamic response of FG-CNTRC cylin-
drical shells under radial harmonic excitation. The effects of some key factors such as the distributions and
volume fraction of CNTs, geometric and excitation parameters on the resonance responses of the system are
revealed with numerical examples.
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Fig. 1 Sketch of the FG-CNTRC cylindrical shell with different CNT distribution patterns: a geometry and cylindrical coordinate
system of shell and b CNT distribution patterns in the thickness direction of shell

2 Functionally graded carbon nanotube reinforced composite cylindrical shells

As shown in Fig. 1a, a simply supported FG-CNTRC cylindrical shell with length L , mean radius L and
thickness h is considered. The origin of cylindrical coordinate system is at the center of the left end of the
shell. x , θ and z axes are along the axial, circumferential and radial directions, respectively. In the present
study, the FG-CNTRC cylindrical shell is under an external excitation F(x, θ) cos(Ωt) in the radial direction.
The FG-CNTRC cylindrical shell is composed of an isotropic matrix and CNTs. The CNTs are used as
reinforcement and are dispersed in the form of uniform distribution (UD) or functionally graded distributions
(FGA, FGV, FGO, FGX) along the shell’s thickness direction, as plotted in Fig. 1b. The inner surface of the
FGA-CNTRC shell and the outer surface of the FGV-CNTRC shell are CNT-rich. Besides, both the outer and
inner surfaces of the FGX-CNTRC shell are CNT-rich, and the mid-plane is CNT-rich for the FGO-CNTRC
shell.

The material properties of FG-CNTRCs can be computed by the extended rule of mixture [19]

E11 = η1VcntE
cnt
11 + VmEm, (1a)

η2

E22
= Vcnt

Ecnt
22

+ Vm
Em , (1b)

η3

G12
= Vcnt

Gcnt
12

+ Vm
Gm , (1c)

where Ecnt
11 , E

cnt
22 and Gcnt

12 signify the Young’s and shear modulus of the CNTs, Em and Gm are the properties
of the matrix, and η j ( j = 1, 2, 3) denote the CNT efficiency parameters. Vm and Vcnt signify the volume
fractions of matrix and CNTs, which are linear functions of z for each type of CNT distribution:

Vcnt =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

V ∗
cnt (UD)
(
1 − 2z

h

)
V ∗
cnt (FGA)

(
1 + 2z

h

)
V ∗
cnt (FGV)

2
(
1 − 2|z|

h

)
V ∗
cnt (FGO)

4 |z|
h V ∗

cnt (FGX)

Vm = 1 − Vcnt, (2)

where

V ∗
cnt = Λcnt

Λcnt +
(
ρcnt/ρm

)− (ρcnt/ρm
)
Λcnt

, (3)
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where Λcnt is the CNT mass fraction, and ρcnt and ρm signify the densities of CNT and matrix.
Besides, the Poisson’s ratio and density are obtained as

ν12 = Vcntν
cnt
12 + Vmνm, ρ = Vcntρ

cnt + Vmρm, (4)

where νcnt12 and νm signify the Poisson’s ratios of CNT and matrix.

3 Equations of motion

On basis of the FSDT, the displacement at an any position of the cylindrical shell is defined by

u1(x, θ, z, t) = u(x, θ, t) + zφx (x, θ, t), (5a)

v1(x, θ, z, t) = v(x, θ, t) + zφθ (x, θ, t), (5b)

w1(x, θ, z, t) = w(x, θ, t), (5c)

where u(x, θ, t), v(x, θ, t) and w(x, θ, t) signify the axial, circumferential and radial displacements in the
mid-plane; φx (x, θ, t) and φθ (x, θ, t) signify the rotations of transverse normal around x and θ axes.

In accordancewith vonKármán geometric nonlinearitywithDonnell’s shell theory, the strain–displacement
relations are

⎧
⎨

⎩

εx
εθ

εxθ

⎫
⎬

⎭
=

⎧
⎪⎪⎨

⎪⎪⎩

ε0x

ε0θ

ε0xθ

⎫
⎪⎪⎬

⎪⎪⎭

+ z

⎧
⎨

⎩

κx
κθ

κxθ

⎫
⎬

⎭
,

{
εxz
εθ z

}

=
{

ε0xz

ε0θ z

}

, (6)

in which the normal strains and shear strains in the mid-plane are
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε0x

ε0θ

ε0xθ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u
∂x + 1

2

(
∂w
∂x

)2

1
R

∂v
∂θ

+ w
R + 1

2

( 1
R

∂w
∂θ

)2

1
R

∂u
∂θ

+ ∂v
∂x + 1

R
∂w
∂x

∂w
∂θ

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

⎧
⎨

⎩

ε0xz

ε0θ z

⎫
⎬

⎭
=
⎧
⎨

⎩

φx + ∂w
∂x

φθ + ∂w
R∂θ

⎫
⎬

⎭
, (7)

and the changes of curvature and torsion are

⎧
⎨

⎩

κx
κθ

κxθ

⎫
⎬

⎭
=

⎧
⎪⎪⎨

⎪⎪⎩

∂φx
∂x
∂φθ

R∂θ

1
R

∂φx
∂θ

+ ∂φθ

∂x

⎫
⎪⎪⎬

⎪⎪⎭

. (8)

The normal stress and shear stress can be expressed from Hooke’s law as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σx
σθ

σθ z
σxz
σxθ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎣

Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q44 0 0
0 0 0 Q55 0
0 0 0 0 Q66

⎤

⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

εx
εθ

εθ z
εxz
εxθ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (9)

where the effective elasticity coefficients are

Q11 = E11

1 − ν12ν21
, Q22 = E22

1 − ν12ν21
, Q12 = ν21E11

1 − ν12ν21
, Q44 = G23, Q55 = G13, Q66 = G12.

(10)

The force and moment expressions could be acquired by integrating the stress components and their
moments over the thickness of the shell

⎧
⎨

⎩

Nx
Nθ

Nxθ

⎫
⎬

⎭
=
∫ h/2

−h/2

⎧
⎨

⎩

σx
σθ

σxθ

⎫
⎬

⎭
dz,

⎧
⎨

⎩

Mx
Mθ

Mxθ

⎫
⎬

⎭
=
∫ h/2

−h/2

⎧
⎨

⎩

σx z
σθ z
σxθ z

⎫
⎬

⎭
dz,

{
Qx
Qθ

}

=
∫ h/2

−h/2

{
σxz
σθ z

}

dz, (11)
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Substituting Eqs. (6–8, 10) into Eq. (9) and then substituting the results into Eq. (11) gives rise to the
constitutive relations as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nx

Nθ

Nxθ

Mx

Mθ

Mxθ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A11 A12 0 B11 B12 0

A12 A22 0 B12 B22 0

0 0 A66 0 0 B66

B11 B12 0 D11 D12 0

B12 B22 0 D12 D22 0

0 0 B66 0 0 D66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε0x

ε0θ

ε0xθ

κx

κθ

κxθ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

{
Qθ

Qx

}

=
[
A44 0
0 A55

]{
ε0θ z

ε0xz

}

, (12)

where the stiffness coefficients are defined by

(Ai j , Bi j , Di j ) =
∫ h/2

−h/2
Qi j (1, z, z

2)dz (i, j = 1, 2, 6) , (13a)

A44 = ks

∫ h/2

−h/2
Q44dz, A55 = ks

∫ h/2

−h/2
Q55d z, (13b)

in which ks = 5/6 is the shear correction factor.
The potential energy V and kinetic energy T of the shell are

T = 1

2

∫ L

0

∫ 2π

0

∫ h/2

−h/2
ρ(z)

[(
∂u

∂t
+ z

∂φx

∂t

)2

+
(

∂v

∂t
+ z

∂φθ

∂t

)2

+
(

∂w

∂t

)2
]

R d z d θ d x, (14)

V = 1

2

∫ L

0

∫ 2π

0

∫ h/2

−h/2
(σxεx + σθεθ + σxθ εxθ + σxzεxz + σθ zεθ z)R d z d θ d x . (15)

The virtual work done by the radial excitation can be expressed as

δWT =
∫ L

0

∫ 2π

0
F(x, θ) cos(Ωt)δwRdθdx . (16)

Substituting Eqs. (14)–(16) into Hamilton’s principle
∫ t2

t1
(δT − δV )dt +

∫ t2

t1
δWTdt = 0, (17)

the equations of motion in terms of the force and moment can be obtained:

δu : ∂Nx

∂x
+ 1

R

∂Nxθ

∂θ
= I0

∂2u

∂t2
+ I1

∂2φx

∂t2
, (18a)

δv : ∂Nxθ

∂x
+ 1

R

∂Nθ

∂θ
= I0

∂2v

∂t2
+ I1

∂2φθ

∂t2
, (18b)

δw : ∂Qx

∂x
+ 1

R

∂Qθ

∂θ
− Nθ

R
+ ∂

∂x

(

Nx
∂w

∂x
+ Nxθ

R

∂w

∂θ

)

+ ∂

∂θ

(
Nθ

R2

∂w

∂θ
+ Nxθ

R

∂w

∂x

)

+ F(x, θ) cos(Ωt) = I0
∂2w

∂t2
, (18c)

δφx : ∂Mx

∂x
+ 1

R

∂Mxθ

∂θ
− Qx = I1

∂2u

∂t2
+ I2

∂2φx

∂t2
, (18d)

δφθ : 1

R

∂Mθ

∂θ
+ ∂Mxθ

∂x
− Qθ = I1

∂2v

∂t2
+ I2

∂2φθ

∂t2
, (18e)

in which the inertia terms are

{I1, I2, I3} =
∫ h/2

−h/2
ρ(z)

{
1, z, z2

}
dz. (19)
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Substituting the results obtained from Eq. (12) into Eq. (18), the nonlinear equations of motion in terms of
displacements and rotations can be obtained. The dimensionless parameters are introduced as follows:

(
x∗, θ∗, z∗

) =
( x

L
, θ,

z

h

)
, λ1 = L

R
, λ2 = h

R
, λ3 = h

L
,
(
u∗, v∗, w∗) = (u, v, w)

h
, (20a)

t∗ = t

L

√
A110

I10
, Ω∗ = ΩL

√
I10
A110

, F∗ = FL2

hA110
, (20b)

(a11, a12, a22, a44, a55, a66) =
(

A11

A110
,
A12

A110
,
A22

A110
,
A44

A110
,
A55

A110
,
A66

A110

)

, (20c)

(b11, b12, b22, b66) =
(

B11

A110h
,

B12

A110h
,

B22

A110h
,

B66

A110h

)

, (20d)

(d11, d12, d22, d66) =
(

D11

A110h2
,

D12

A110h2
,

D22

A110h2
,

D66

A110h2

)

, (20e)

(
I ∗
1 , I ∗

2 , I ∗
3

) =
(

I1
I10

,
I2
I10h

,
I3

I10h2

)

, (20f)

where A110 and I10 the values of A11 and I1 for a homogeneous cylindrical shell made of polymer matrix
material.

Omitting the asterisk for brevity, the resulting dimensionless partial differential equations (PDEs) ofmotion
are given as

δu : a11
∂2u

∂x2
+ a66λ

2
1
∂2u

∂θ2
+ (a12 + a66) λ1

∂2v

∂x∂θ
+ a12λ1

∂w

∂x

+ b11
∂2φx

∂x2
+ b66λ

2
1
∂2φx

∂θ2
+ (b12 + b66) λ1

∂2φθ

∂x∂θ

+ ∂w

∂x

(

a11λ3
∂2w

∂x2
+ a66λ1λ2

∂2w

∂θ2

)

+ (a12 + a66) λ1λ2
∂w

∂θ

∂2w

∂x∂θ
= I1

∂2u

∂t2
+ I2

∂2φx

∂t2
, (21a)

δv : (a12 + a66) λ1
∂2u

∂x∂θ
+ a66

∂2v

∂x2
+ a22λ

2
1
∂2v

∂θ2
+ a22λ

2
1
∂w

∂x

+ (b12 + b66) λ1
∂2φx

∂x∂θ
+ b66

∂2φθ

∂x2
+ b22λ

2
1
∂2φθ

∂θ2

+ (a12 + a66) λ2
∂w

∂x

∂2w

∂x∂θ
+ ∂w

∂θ

(

a66λ2
∂2w

∂x2
+ a22λ

2
1λ2

∂2w

∂θ2

)

= I1
∂2v

∂t2
+ I2

∂2φθ

∂t2
, (21b)

δw : − a12λ1
∂u

∂x
− a22λ

2
1
∂v

∂θ
+ a55

∂2w

∂x2
+ a44λ

2
1
∂2w

∂θ2
− a22λ

2
1w

+
(
a55
λ3

− b12λ1

)
∂φx

∂x
+
(

a44
λ1

λ3
− b22λ

2
1

)
∂φθ

∂θ

+ ∂w

∂x

(

a11λ3
∂2u

∂x2
+ a66λ1λ2

∂2u

∂θ2

)

+ (a12 + a66) λ1λ2
∂w

∂θ

∂2u

∂x∂θ

+∂u

∂x

(

a11λ3
∂2w

∂x2
+ a12λ1λ2

∂2w

∂θ2

)

+ 2a66λ1λ2
∂u

∂θ

∂2w

∂x∂θ
+ (a12 + a66) λ2

∂w

∂x

∂2v

∂x∂θ
+ ∂w

∂θ

(

a66λ2
∂2v

∂x2
+ a22λ

2
1λ2

∂2v

∂θ2

)

+2a66λ2
∂v

∂x

∂2w

∂x∂θ

+ ∂v

∂θ

(

a12λ2
∂2w

∂x2
+ a22λ

2
1λ2

∂2w

∂θ2

)

+ a12
2

λ2

(
∂w

∂x

)2

+ a22
2

λ21λ2

(
∂w

∂θ

)2
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+
(

a12λ2
∂2w

∂x2
+ a22λ

2
1λ2

∂2w

∂θ2

)

w

+ ∂w

∂x

(

b11λ3
∂2φx

∂x2
+ b66λ1λ2

∂2φx

∂θ2

)

+ (b12 + b66) λ1λ2
∂w

∂θ

∂2φx

∂x∂θ

+∂φx

∂x

(

b11λ3
∂2w

∂x2
+ b12λ1λ2

∂2w

∂θ2

)

+ 2b66λ1λ2
∂φx

∂θ

∂2w

∂x∂θ
+ (b12 + b66) λ2

∂w

∂x

∂2φθ

∂x∂θ
+ ∂w

∂θ

(

b66λ2
∂2φθ

∂x2
+ b22λ

2
1λ2

∂2φθ

∂θ2

)

+ 2b66λ2
∂φθ

∂x

∂2w

∂x∂θ

+ ∂φθ

∂θ

(

b12λ2
∂2w

∂x2
+ b22λ

2
1λ2

∂2w

∂θ2

)

+
(
3a11
2

λ23
∂2w

∂x2
+ a12 + 2a66

2
λ22

∂2w

∂θ2

)(
∂w

∂x

)2

+
(
a12 + 2a66

2
λ22

∂2w

∂x2
+ 3a22

2
λ21λ

2
2
∂2w

∂θ2

)(
∂w

∂θ

)2

+ (2a12 + 4a66) λ22
∂w

∂x

∂w

∂θ

∂2w

∂x∂θ

+ F (x, θ) cos(Ωt) = I1
∂2w

∂t2
, (21c)

δφx : b11
∂2u

∂x2
+ b66λ

2
1
∂2u

∂θ2
+ (b12 + b66) λ1

∂2v

∂x∂θ
+
(

b12λ1 − a55
λ3

)
∂w

∂x

+ d11
∂2φx

∂x2
+ d66λ

2
1
∂2φx

∂θ2
− a55

λ23
φx

+ (d12 + d66) λ1
∂2φθ

∂x∂θ
+ ∂w

∂x

(

b11λ3
∂2w

∂x2
+ b66λ1λ2

∂2w

∂θ2

)

+ (b12 + b66) λ1λ2
∂w

∂θ

∂2w

∂x∂θ
= I2

∂2u

∂t2
+ I3

∂2φx

∂t2
, (21d)

δφθ : (b12 + b66) λ1
∂2u

∂x∂θ
+ b66

∂2v

∂x2
+ b22λ

2
1
∂2v

∂θ2
+
(

b22λ
2
1 − a44

λ1

λ3

)
∂w

∂θ

+ (d12 + d66) λ1
∂2φx

∂x∂θ
+ d66

∂2φθ

∂x2

+ d22λ
2
1
∂2φθ

∂θ2
− a44

λ23
φθ + (b12 + b66) λ2

∂w

∂x

∂2w

∂x∂θ

+ ∂w

∂θ

(

b66λ2
∂2w

∂x2
+ b22λ

2
1λ2

∂2w

∂θ2

)

= I2
∂2v

∂t2
+ I3

∂2φθ

∂t2
. (21e)

4 Solution procedure

4.1 Model reduction

The mathematical expressions of simply supported boundary conditions are [45]

v = w = φθ = Nx = Mx = 0 (x = 0 and L). (22)

The Galerkin procedure is utilized to discretize PDEs. Considering both the asymmetric and axisymmetric
modes, the approximate displacement functions to satisfy the boundary conditions can be written as [45,46]

u(x, θ, t) =
M1∑

m=1

J∑

j=1

um, jn(t) cos(mπx) cos( jnθ) +
M2∑

m=1

u(2m−1),0(t) cos((2m − 1)πx), (23a)
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v(x, θ, t) =
M1∑

m=1

J∑

j=1

vm, jn(t) sin(mπx) sin( jnθ), (23b)

w(x, θ, t) =
M1∑

m=1

J∑

j=1

wm, jn(t) sin(mπx) cos( jnθ) +
M2∑

m=1

w(2m−1),0(t) sin((2m − 1)πx), (23c)

φx (x, θ, t) =
M1∑

m=1

J∑

j=1

φxm, jn(t) cos(mπx) cos( jnθ) +
M2∑

m=1

φx(2m−1),0(t) cos((2m − 1)πx), (23d)

φθ (x, θ, t) =
M1∑

m=1

J∑

j=1

φθm, jn(t) sin(mπx) sin( jnθ), (23e)

where m and n, respectively, denotes the axial half wave number and circumferential wave number, um, jn(t),
vm, jn(t), wm, jn(t), φxm, jn(t) and φθm, jn(t) are generalized coordinates of asymmetric modes (n > 0),
u(2m−1),0, w(2m−1),0 and φx(2m−1),0(t) are generalized coordinates of axisymmetric modes (n = 0).

The external radial modal excitation is defined as F (x, θ, t) = f sin(mπx) cos(nθ) cos(Ωt). Introducing
Eq. (23) into Eq. (21) and executing theGalerkin integration yields the nonlinear ordinary differential equations
(ODEs) in matrix-vector form as

Mq̈ + (K + K(2) + K(3))q = F cos(Ωt), (24)

where q = [qT
u , qT

v , qT
w, qT

φx
, qT

φθ
]T and F = [0, 0, Fw, 0, 0]T, respectively, represent the generalized

coordinate and force vectors, Ω is the frequency of radial harmonic excitation, and M, K, K(2) and K(3) are
the mass, linear stiffness, quadratic and cubic nonlinear stiffness matrices, which, respectively, take the form

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M11 0 0 M14 0

0 M22 0 0 M25

0 0 M33 0 0

M41 0 0 M44 0

0 M52 0 0 M55

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, K =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

K11 K12 K13 K14 K15

K21 K22 K23 K24 K25

K31 K32 K33 K34 K35

K41 K42 K43 K44 K45

K51 K52 K53 K54 K55

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (25a)

K(2) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 K(2)
13 0 0

0 0 K(2)
23 0 0

K(2)
31 K(2)

32 K(2)
33 K(2)

34 K(2)
35

0 0 K(2)
43 0 0

0 0 K(2)
53 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, K(3) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0

0 0 0 0 0

0 0 K(3)
33 0 0

0 0 0 0 0

0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (25b)

The elements of the above matrices are defined in Appendix A.
To reduce the degrees of freedom, the nonlinear dynamic model is simplified by using Volmir’s assumption

and the static condensation method, respectively. First, the equations of motion can be rewritten as

K11qu + K12qv + K13qw + K14qφx + K15qφθ + K(2)
13 qw = −M11q̈u − M14ϕ̈x , (26a)

K21qu + K22qv + K23qw + K24qφx + K25qφθ + K(2)
23 qw = −M22q̈v − M25q̈φθ , (26b)

M33q̈w + K31qu + K32qv + K33qw + K34qφx + K35qφθ

K(2)
31 qu + K(2)

32 qv + K(2)
33 qw + K(2)

34 qφx + K(2)
35 qφθ + K(3)

33 qw = Fw, (26c)

K41qu + K42qv + K43qw + K44ϕx + K45qφθ + K(2)
43 qw = −M41q̈u − M44q̈φx , (26d)

K51qu + K52qv + K53qw + K54qφx + K55qφθ + K(2)
53 qw = M52q̈v + M55q̈φθ . (26e)
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According toVolmir’s assumption [47], the in-planedisplacements (um,n, vm,n) and the rotations (φxm,n, φθm,n)
are much smaller than the radial displacement wm,n . Neglecting the in-plane inertias and rotational inertias in
Eqs. (26a–b) and (26d–e), one can write

⎡

⎢
⎢
⎢
⎢
⎢
⎣

K11 K12 K14 K15

K21 K22 K24 K25

K41 K42 K44 K45

K51 K52 K54 K55

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

qu

qv

qφx

qφθ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡

⎢
⎢
⎢
⎢
⎢
⎣

K13

K23

K43

K53

⎤

⎥
⎥
⎥
⎥
⎥
⎦

qw −

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

K(2)
13

K(2)
23

K(2)
43

K(2)
53

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

qw. (27)

Solving Eq. (27) with regard to the generalized coordinates of in-plane displacements and rotations (qu ,
qv , qφx and qφθ ), and then introducing the results into Eq. (26c), the equations of motion are converted into a
reduced equation with regard to the generalized coordinates of radial displacement (qw)

M33q̈w + (Ks + K(2)
s + K(3)

s )qw = Fw, (28)

where Ks, K(2)
s and K(3)

s are the generalized linear, quadratic and cubic nonlinear stiffness matrices.
In addition, the static condensation method [48] is also a technique to simplify the model. Solving Eq. (27)

with respect to qu , qv , qφx and qφθ , and then introducing the results into the right hand side of Eqs. (26a–b)
and (26d–e) yields

⎡

⎢
⎢
⎢
⎢
⎣

K11 K12 K14 K15

K21 K22 K24 K25

K41 K42 K44 K45

K51 K52 K54 K55

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

qu

qv

qφx

qφθ

⎤

⎥
⎥
⎥
⎥
⎦

= −

⎡

⎢
⎢
⎢
⎢
⎣

K13

K23

K43

K53

⎤

⎥
⎥
⎥
⎥
⎦

qw −

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

K(2)
13

K(2)
23

K(2)
43

K(2)
53

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

qw +

⎡

⎢
⎢
⎢
⎢
⎣

M1

M2

M3

M4

⎤

⎥
⎥
⎥
⎥
⎦

q̈w, (29)

where Mi (i = 1, 2, 3, 4) are matrices obtained from Eq. (27).
Repeating the procedure to calculate qu , qv , qφx and qφθ by solving Eq. (29) and then introducing the

results into Eq. (26c), the equation of motion is converted into another reduced equation with regard to qw:

Msq̈w + Cq̇w + (Ks + K(2)
s + K(3)

s )qw = Fw, (30)

where the generalized mass matrix Ms is a complicated function of the in-plane, radial direction and rotary
inertias. Besides, the damping matrix is introduced as C = 2cωm, nMs, where ωm,n and c represent the natural
frequency and the damping ratio, respectively. In Sect. 5.1, the results of vibration analysis for FG-CNTRC
cylindrical shells from these two reduced models are compared with those from the full-order system.

4.2 Incremental harmonic balance method

The process of calculating the dynamic response of nonlinear vibrational system by IHB method is briefly
introduced. Introducing a new dimensionless time scale τ = Ωt and omitting the subscripts for brevity, Eq.
(28) or Eq. (30) can be rewritten as

Ω2Mq̈ + ΩCq̇ + (K + K(2) + K(3))q = F cos(τ ). (31)

The incremental process is performed firstly. A certain vibration state is denoted in terms of q j0 and ω0, and
adding the corresponding small increments to them gives the adjacent state

q j = q j0 + �q j , ( j = 1, 2, ..., N ), Ω = ω0 + �ω. (32)

Substituting Eq. (32) into Eq. (31) and omitting the higher-order terms of increments, the linearized incremental
equation can be obtained:

ω2
0M�q̈ + ω0C�q̇ + (K + 2K(2) + 3K(3))�q = Re − (2ω0Mq̈0 + Cq̇0)�ω, (33a)
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Re = F0 cos(τ ) −
[
ω2
0Mq̈0 + ω0Cq̇0 + (K + K(2) + K(3))q0

]
, (33b)

where q0 = [q10, q20, ..., qN0]T and �q = [�q1, �q2, ...,�qN ]T, Re is the residual error and will become
zero when q0 approaches the exact solution.

Secondly, the harmonic balance process is executed. The periodic solution and increment are assumed to
be truncated Fourier series

q j0 = 1

2
a j0 +

Nh∑

k=1

a jk cos kτ +
Nh∑

k=1

b jk sin kτ = CsA j , (34a)

�q j0 = 1

2
�a j0 +

Nh∑

k=1

�a jk cos kτ +
Nh∑

k=1

�b jk sin kτ = Cs�A j , (34b)

where

Cs = [1, cos τ, cos 2τ, ..., cos Nhτ, sin τ, sin 2τ, ..., sin Nhτ ] , (34c)

A j =
[
1

2
a j0, a j1, a j2, ..., a jNh , b j1, b j2, ..., b jNh

]T

, (34d)

�A j =
[
1

2
�a j0, �a j1, �a j2, ...,�a jNh , �b j1, �b j2, ...,�b jNh

]T

. (34e)

Nh is the number of harmonic terms, which is determined by the required computational accuracy. The solution
is a periodic function of τ with a period T = 2π .

The unknown periodic solution q0 and increment �q can be written as

q0 = SA, �q = S�A, (35)

where A = [A1, A2, ..., Am]T, �A = [�A1, �A2, ...,�Am]T and S = diag . [Cs, Cs, ..., Cs].
Substituting Eq. (33) into Eq. (31) and executing the Galerkin averaging process yields

∫ 2π

0
δ(�q)T

[
ω2
0M�q̈ + ω0C�q̇ + (K + 2K(2) + 3K(3))�q

]
d τ

=
∫ 2π

0
δ(�q)T

[
Re − (2ω0Mq̈0 + Cq̇0)�ω

]
d τ. (36)

Then, the linear equations with respect to increments �A and �ω are obtained as

Kmc�A = R − Rmc�ω, (37)

where

Kmc =
∫ 2π

0
ST
[
ω2
0MS̈ + ω0CṠ + (K + 2K(2) + 3K(3))S

]
d τ, (38a)

R =
∫ 2π

0
ST
{

F0 cos(τ ) −
[
ω2
0MS̈ + ω0CṠ + (K + K(2) + K(3))S

]
A
}
d τ, (38b)

Rmc =
∫ 2π

0
ST(2ω0MS̈ + CṠ)Ad τ. (38c)

The initial value used in solving Eq. (37) is assumed to be a guess solution or a known linear solution.
Combined with the incremental arc-length method [44], the complicated frequency response curve for FG-
CNTRC cylindrical shells can be automatically constructed.
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Table 1 Comparisons of natural frequency (Hz) for an isotropic cylindrical shell (L = 410mm, R = 301.5mm, h = 1mm,
E = 210GPa, ν = 0.3, ρ = 7850 kg/m3)

Mode (m, n) Ref. [29] Ref. [34] Present results

Full Eq. (24) Reduced Eq. (28) Reduced Eq. (30)

(1, 7) 306.73 303.34 303.3356 306.7347 303.3366
(1, 8) 283.30 280.92 280.9182 283.3065 280.9187
(1, 9) 290.59 288.68 288.6767 290.6001 288.6770
(1, 10) 320.04 318.35 318.3473 320.0549 318.3476
(1, 11) 364.83 363.26 363.2485 364.8527 363.2487
(1, 12) 420.59 419.08 419.0642 420.6174 419.0645
(1, 13) 484.84 483.37 483.3472 484.8757 483.3475
(1, 14) 556.24 554.80 554.7730 556.2917 554.7733
(1, 15) 634.08 632.66 632.6251 634.1438 632.6255

5 Results and discussion

The nonlinear resonant responses of FG-CNTRC cylindrical shells are numerically simulated, and parameter
studies are carried out in this section. Poly methyl methacrylate (PMMA) is chosen as the matrix with Em =
2.5Gpa, ρm = 1190 kg/m3 and νm = 0.3. The (10, 10) single-walled carbon nanotubes are chosen as
reinforcements with [29] Ecnt

11 = 5.6466Tpa, Ecnt
22 = 7.0800 Tpa, Gcnt

12 = 1.9445Tpa, ρcnt = 1400 kg/m3 and
νcnt12 = 0.175. The CNT efficiency parameters are: η1 = 0.137, η2 = 1.022 and η3 = 0.715 for V ∗

cnt = 0.12,
η1 = 0.142, η2 = 1.626 and η3 = 1.138 for V ∗

cnt = 0.17, and η1 = 0.141, η2 = 1.585 and η3 = 1.109 for
V ∗
cnt = 0.28.

5.1 Validation and convergence studies

To examine the validity of the structural dynamic model and solution method, comparison studies with results
in the literature are conducted. Firstly, the natural frequencies of an isotropic cylindrical shell are computed
by using the full-order system Eq. (24), reduced model Eq. (28) and reduced model Eq. (30), and they are
compared with those of Shen and Xiang [29] and Song et al. [34] in Table 1. It is obvious that the present
natural frequencies are consistent with those in the literature. The natural frequencies from the reduced model
Eq. (30) (static condensation method) are very close to those from the full-order system, while the results from
the reduced model Eq. (28) (Volmir’s assumption) are slightly larger than those from the full-order system.

Secondly, the dimensionless natural frequenciesΩ = ω(R2/h)
√

ρm/Em of FG-CNTRC cylindrical shells
are computed inTable 2.As can be seen, the results from the reducedmodel equation (28) (Volmir’s assumption)
are in accordance with those of Shen and Xiang [29] and Ansari et al. [37]. The natural frequencies from the
reduced model equation (28) (Volmir’s assumption) are much larger than those from the full-order system.
Ignoring the in-plane and rotational inertias will reduce the generalized mass and make the natural frequency
larger. Therefore, the reduced model equation (30) using the static condensation method can describe the
natural characteristics of FG-CNTRC cylindrical shells with more reasonable accuracy.

The convergence on the mode expansions of Eq. (23) is tested for the frequency responses of FG-CNTRC
cylindrical shells. Due to quadratic and cubic nonlinearities, the resonant mode (m, n) directly driven by
modal harmonic excitation is coupled with asymmetric modes (k × m, j × n)(k = 1, 3, j = 1, 2, 3) and
axisymmetric modes (m, 0) (m = 1, 3, 5, 7) [45,46]. Because of the symmetry of system and external
excitation distribution, only modes having odd m axial half waves are considered. Therefore, the convergence
is examined though introducing these additional modes to the mode expansions, and the following models
with different degrees of freedom are established:

(a) 2 dofs, modes (m, n) and (m, 0) for axial and radial displacements u, w and rotation φx ; modes (m, n)
and (m, 2n) for circumferential v and rotation φθ ;

(b) 3 dofs, modes (m, n), (m, 0) and (3m, 0) for u, w and φx ; modes (m, n), (m, 2n) and (3m, 2n) for v and
φθ ;

(c) 4 dofs, modes (m, n), (3m, n), (m, 0) and (3m, 0) for u, w and φx ; modes (m, 2n), (m, 2n), (3m, n) and
(3m, 2n) for v and φθ ;
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Table 2 Comparisons of the dimensionless natural frequency Ω = ω(R2/h)
√

ρm/Em for a FG-CNTRC circular cylindrical
shell (h = 0.005m, R/h = 10, L = √

500Rh)

V ∗
cnt Distribution Ref. [29] Ref. [37] Present results

Full Eq. (24) Reduced Eq. (28) Reduced Eq. (30)

0.12 UD 1.7231 1.7020 1.54277 1.72522 1.54357
FGV 1.7595 – 1.57358 1.76145 1.57443
FGA 1.6652 1.6614 1.50912 1.68598 1.50985
FGX 1.7814 1.6977 1.58857 1.77653 1.58943

0.17 UD 2.2106 2.1900 1.97889 2.21317 1.97991
FGV 2.2619 – 2.02191 2.26531 2.02299
FGA 2.1477 2.1486 1.95022 2.17738 1.95116
FGX 2.3121 2.1913 2.06218 2.30648 2.06330

0.28 UD 2.3548 2.3178 2.10889 2.35785 2.11000
FGV 2.4196 – 2.16716 2.43333 2.16834
FGA 2.3306 2.3228 2.12079 2.36142 2.12183
FGX 2.5651 2.3675 2.29833 2.56999 2.29969

(a) 
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] 

Fig. 2 Convergence analysis of frequency response curve of FGA-CNTRC cylindrical shells: a hardening behavior with V ∗
cnt =

0.17, L/R = 2, h/R = 0.005, c = 0.001, f = 0.00025; b softening behavior with V ∗
cnt = 0.17, L/R = 20, h/R = 0.01,

c = 0.001, f = 0015

(d) 5 dofs, modes (m, n), (3m, n), (m, 0), (3m, 0) and (5m, 0) for u, w and φx ; modes (m, n), (m, 2n),
(m, 3n), (3m, n) and (3m, 2n) for v and φθ ;

(e) 6 dofs, modes (m, n), (3m, n), (m, 0), (3m, 0), (5m, 0) and (7m, 0) for u, w and φx ; modes (m, n),
(m, 2n), (m, 3n), (3m, n), (3m, 2n) and (3m, 3n) for v and φθ .

Figure 2 presents the frequency responses of FGA-CNTRC cylindrical shells under primary resonance (at
Ω near ωm,n) by using different mode expansions. The mode (m = 1, n = 6) is considered. From Fig. 2a, the
hardening nonlinear behavior is expected for a short and very thin shell (V ∗

cnt = 0.17, L/R = 2, h/R = 0.005),
and the 2 dof model shows a more strongly but inaccurate hardening behavior. For a long and moderately thin
shell (V ∗

cnt = 0.17, L/R = 20, h/R = 0.01) in Fig. 2b, the 2 dof model with only the first axisymmetric
mode used in the expansion gives a strongly hardening behavior. However, the 3 dof model gives a softening
behavior and the higher-order expansions (5 dof and 6 dof models) converge to a more strongly softening
behavior. False hardening behavior is obtained when the number of mode expansions is insufficient, which
indicates that the axisymmetric modes play a key role in predicting the actual nonlinear behaviors of the shell.
The above convergence study illustrates that the 5 dof model can gives accurate results and the corresponding
computational time is reasonable. Consequently, the 5 dof model will be used in the subsequent numerical
analysis.

As an example of verifying the nonlinear dynamic model and the accuracy of the solution procedure, the
frequency responses of an isotropic cylindrical shell under the external modal excitation are calculated from the
reducedmodel, and comparedwith those of Pellicano et al. [46] in Fig. 3. Thematerial and geometric properties
of the considered isotropic cylindrical shell are: Em = 71.02Gpa, ρm = 2796 kg/m3 and νm = 0.31; L =



Nonlinear forced vibration 2509

Frequency ratio (Ω/ω1, 6) 

M
ax

 [w
1,

 6
] 

Present  
Ref. [46] 

Fig. 3 Comparison of frequency responses of isotropic cylindrical shells

0.2m, R = 0.1m, h = 0.000247m. The amplitude of external modal excitation is fm,n = 0.0012h2ρmω2
m,n

and the damping ratio is ζm,n = 0.0005. The mode studied is (m = 1, n = 6). Good consistency with the
results in the literature can be seen from Fig. 3, which verifies the correctness of present nonlinear reduced
model and solution procedure.

In this subsequent numerical simulation, the nonlinear primary resonance responses of the fundamental
mode (with the lowest natural frequencyωm,n) of FG-CNTRC cylindrical shells are analyzed. Figure 4 plots the
frequency responses of different asymmetric and axisymmetric modes for FGA-CNTRC cylindrical shells in
the softening case (V ∗

cnt = 0.17, L/R = 20, h/R = 0.01). The amplitudes of those additional modes are much
smaller than that of the first asymmetric mode w1, 6 (driven mode). Besides, the first and fifth axisymmetric
modes (w1,0 and w5,0) show negative amplitude. This is because the displacements of w1,0 and w5,0 are
always negative and the minimum amplitudes are used in the frequency response curves. The first and fifth
axisymmetric modes contribute to the axisymmetric shell contraction, and they are important in predicting the
softening or weakly hardening behaviors of cylindrical shells.

5.2 Effect of CNT distributions on the system response

Figure 5 depicts the frequency responses of the fundamental mode of CNTRC cylindrical shells with the
five distributions of CNTs. It be seen from Fig. 5a, for the long and thick shells (V ∗

cnt = 0.17, L/R = 16,
h/R = 0.1) with the five considered CNT distributions, the fundamental modes of the shells are all (m = 1,
n = 1) and the their nonlinearities are hardening. The FGA-CNTRC shell has the lowest dimensionless
fundamental natural frequency and highest peak amplitude. On the contrary, the FGV-CNTRC shell possesses
the highest dimensionless fundamental natural frequency and lowest peak amplitude.

In Fig. 5b, a thin shell (V ∗
cnt = 0.17, L/R = 4, h/R = 0.005) with softening behavior is studied. Similarly,

the CNT distributions do not change the fundamental mode shape (m = 1, n = 6) and its nonlinearity. The
highest fundamental natural frequency and lowest peak amplitude correspond to FGX-CNTRC shell. The
lowest fundamental natural frequency and the largest peak amplitude belong to FGO-CNTRC shells.

5.3 Effect of CNT volume fraction on the system response

The influence of CNT volume fraction on the dynamic resonance responses of FGA-CNTRC cylindrical shells
is analyzed in Fig. 6. With the increase in CNT volume fraction, the fundamental natural frequency increases
and the peak amplitude decreases, whether the nonlinearity is hardening or softening. For both the thick and thin
shells, the variations of CNT volume fraction do not change the fundamental mode shape and the nonlinearity
(hardening or softening). The lower the CNT volume fraction, the stronger the hardening or softening nonlinear
behavior becomes, and the wider the resonant region. For the thin shell with softening behavior, the unstable
solution branch disappears when V ∗

cnt = 0.28. Consequently, the FGA-CNTRC cylindrical shell having higher
CNT volume fraction are more stable and safer.
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Fig. 4 Frequency response curve of different modes of FGA-CNTRC cylindrical shells (V ∗
cnt = 0.17, L/R = 20, h/R = 0.01,

c = 0.001, f = 0.0015). Solid and dashed lines represent the stable and unstable solutions, respectively

5.4 Effect of thickness-to-radius ratio on the system response

The linear natural frequencies of FGA-CNTRC cylindrical shells with various thickness-to-radius h/R ratios
form = 1 are given in Fig. 7. As the ratio h/R is increasing, the circumferential wave number n corresponding
to the fundamental mode decreases, n = 6 for h/R = 0.002; n = 5 for h/R = 0.004; n = 4 for h/R = 0.006
and 0.008; n = 3 for h/R = 0.01 and 0.02; and n = 2 for h/R = 0.04, 0.06, 0.08 and 0.1.

Figure 8 illustrates the influence of the ratio h/R on the frequency responses of the fundamental mode of
FGA-CNTRC cylindrical shells. Increasing the ratio h/R will enlarge the stiffness and fundamental natural
frequency of the shell. For thin shells with smaller h/R in Fig. 8a, the resonance response curves show softening
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Fig. 5 Frequency response curves of the fundamental mode of CNTRC cylindrical shells with different CNT distributions: a
hardening behavior with V ∗

cnt = 0.17, L/R = 16, h/R = 0.1, c = 0.001, f = 0.01; b softening behavior with V ∗
cnt = 0.17,

L/R = 4, h/R = 0.005, c = 0.001, f = 0.0004

*
cntV =0.12, ω1, 1=1.0806 
*

cntV =0.17, ω1, 1 =1.3860
*

cntV =0.28, ω1, 1=1.5257

(a) 

Frequency ratio (Ω/ω1, 1) 

M
ax

 [w
1,

 1
] 

(b) 

Frequency ratio (Ω/ω1, 6) 

M
ax

 [w
1,

 6
] 

*
cntV =0.12, ω1, 6=0.2998 
*

cntV =0.17, ω1, 6=0.3844
*

cntV =0.28, ω1, 6=0.4221

Fig. 6 Frequency response curves of the fundamental mode of FGA-CNTRC cylindrical shells with different CNT volume
fractions: a hardening behavior with L/R = 16, h/R = 0.1, c = 0.001, f = 0.008; b softening behavior with L/R = 4,
h/R = 0.005, c = 0.001, f = 0.0004
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Fig. 7 Variation of natural frequencies of FGA-CNTRC cylindrical shells with the circumferential wave number n under different
h/R ratios (V ∗

cnt = 0.17, L/R = 8, m = 1)
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Fig. 8 Frequency response curves of the fundamental mode of FGA-CNTRC cylindrical shells with different h/R ratios: a thin
shell with f = 0.001; b thick shell with f = 0.003 (V ∗

cnt = 0.17, L/R = 8, c = 0.001)
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Fig. 9 Variation of natural frequencies of FGA-CNTRC cylindrical shells with the circumferential wave number n under different
L/R ratios (V ∗

cnt = 0.17, h/R = 0.01, m = 1)

nonlinear behavior. The peak amplitude decreases markedly with increasing h/R ratio. It is noteworthy that
for the case h/R = 0.004 which has the highest peak amplitude, the resonance response curve displays a
softening behavior initially and then tends to a hardening behavior at the higher vibration amplitudes.

With the h/R ratio increasing further, the thickness of shell is moderate and the nonlinearity tends from
softening to hardening, as depicted in Fig. 8b. The fundamental mode of the shell with softening behavior is
obtained for n = 3 in the case of h/R = 0.02, while the fundamental modes (n = 2) for h/R = 0.04, 0.06
and 0.08 have hardening behavior.

5.5 Effect of length-to-radius ratio on the system response

Figure 9 shows the natural frequencies of FGA-CNTRC cylindrical thin shells with various length-to-radius
ratios L/R for m = 1. The circumferential wave number n of the fundamental mode decreases as the L/R
ratio increases n = 7 for L/R = 1; n = 6 for L/R = 2; n = 5 for L/R = 3; n = 4 for L/R = 4, 5 and 6;
n = 3 for L/R = 8, 12 and 16; and n = 2 for L/R = 20.

Figure 10 demonstrates the effect of L/R on the resonance responses of the fundamental mode of FGA-
CNTRC cylindrical shells. With increasing L/R ratio for moderately long shells (L/R = 4−7), the fun-
damental natural frequency ω1,4 increases, while for long shells (L/R = 8−16), the fundamental natural
frequency ω1,3 first decreases slightly and then increases. Accordingly, the peak amplitude w1,4 of the shell
is reduced by increasing the length-to-radius ratio, while w1,3 is enlarged first and then reduced. Hardening
behavior only shows in the short shells (L/R = 3−5) and generally softening behavior is shown in long shells
(L/R = 6−20).
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Fig. 10 Frequency response curves of the fundamental mode of FGA-CNTRC cylindrical shells with different L/R ratios: a
moderately long shell and b long shell (V ∗

cnt = 0.17, h/R = 0.01, c = 0.001, f = 0.0015)

(a) 

Frequency ratio (Ω/ω1 1)

M
ax

 [w
1,

 1
] 

(b) 

Frequency ratio (Ω/ω1 6)

M
ax

 [ w
1,

 6
] 

Fig. 11 Frequency response curves of the fundamental mode of FGA-CNTRC cylindrical shells with different excitation ampli-
tudes: a hardening behavior with V ∗

cnt = 0.17, L/R = 16, h/R = 0.1, c = 0.001; b softening behavior with V ∗
cnt = 0.17,

L/R = 4, h/R = 0.005, c = 0.001

5.6 Effects of excitation amplitude and damping ratio on the system response

The influences of excitation amplitude and damping ratio on the dynamic responses of the fundamental mode
of a FGA-CNTRC cylindrical shell are, respectively, analyzed in Figs. 11 and 12.

Figure 11 indicates that the increase in radial excitation amplitude can enlarge the resonant responses of
the shell. The unstable solution branches appear and become broader with increasing the radial excitation
amplitude. As the resonance response can be suppressed effectively by the damping, increasing the damping
ratio can reduce the peak amplitudes. As shown in Fig. 12, with the damping ratio increasing, the unstable
solution branches in both the hardening and softening frequency response curves are narrowed, and vanish
when c = 0.0015.

6 Conclusion

Thenonlinear forcedvibration characteristics of FG-CNTRCcylindrical shells under radial harmonic excitation
are analyzed in view of FSDT and von Kármán geometric nonlinearity. Two reduced models are established by
Volmir’s assumption and the static condensationmethod, and comparedwith the full-order system and previous
studies in the literature. A convergence study on the mode expansions is conducted by introducing different
asymmetric and axisymmetric modes. The dynamic responses of the fundamental mode of FG-CNTRC shells
are calculated using the IHB method. The effects of distribution and volume fraction of CNT, geometric and
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Fig. 12 Frequency response curves of the fundamental mode of FGA-CNTRC cylindrical shells with different damping ratios:
a hardening behavior with V ∗

cnt = 0.17, L/R = 16, h/R = 0.1, f = 0.01; b softening behavior with V ∗
cnt = 0.17, L/R = 4,

h/R = 0.005, f = 0.0004

excitation parameters on the nonlinear dynamic behaviors are discussed. The following conclusions can be
drawn:

1. The variations of distribution and volume fraction of CNTs do not transform the fundamental mode shape
of FG-CNTRC shells and its nonlinearity. The FGA-CNTRC shell has the lowest fundamental natural fre-
quency and the highest peak amplitude for thick shellwith hardening behavior,whereas these characteristics
belong to the FGO type for thin shell with softening behavior.

2. The increase in CNT volume fraction results in enlarging the fundamental natural frequency and a decrease
in the peak amplitude. The hardening or softening nonlinear behavior of the FGA-CNTRC shell becomes
stronger and the unstable solution region is broader with the CNT volume fraction decreasing. The FG-
CNTRC cylindrical shells having higher CNT volume fraction are more stable and safer.

3. The circumferential wave number n corresponding to the fundamental mode with increasing thickness-to-
radius ratio and length-to-radius ratio. The increase in thickness-to-radius ratio causes the enhancements
of stiffness and fundamental natural frequency of FG-CNTRC shells, and enables the nonlinearity of
fundamental mode tend from softening to hardening.

4. As the length-to-radius ratio increases, the fundamental natural frequency increases and the peak amplitude
of the fundamental mode of the shell decreases. Hardening nonlinear behavior only shows in short or thick
shells and softening behavior is generally displayed in long shells. Increasing the excitation amplitude and
decreasing the damping ratio will amplify the resonance response and broaden the unstable solution region.

The present study can be instructive for the nonlinear forced vibration analysis of FG-CNTRC cylindrical
shells.
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Appendix A

Rewrite Eq. (23) in vector form as

u(x, θ, t) = UT(x, θ)qu(t), v(x, θ, t) = VT(x, θ)qv(t), w(x, θ, t) = WT(x, θ)qw(t),

φx (x, θ, t) = �T
x (x, θ)qφx (t), φθ (x, θ, t) = �T

θ (x, θ)qφθ (t),



Nonlinear forced vibration 2515

whereUm, jn(x, θ) = Φxm, jn(x, θ) = cos(mπx) cos( jnθ),Vm, jn(x, θ) = Φθm, jn(x, θ) = sin(mπx) sin( jnθ)
and Wm, jn(x, θ) = sin(mπx) cos( jnθ).
The elements of the matrix M are

M11 =
∫ L

0

∫ 2π

0
I0UUTd θ d x, M14 =

∫ L

0

∫ 2π

0
I1U�T

x d θ d x;

M22 =
∫ L

0

∫ 2π

0
I0VVTd θ d x, M25 =

∫ L

0

∫ 2π

0
I1V�T

θ d θ d x,

M33 =
∫ L

0

∫ 2π

0
I0WWTd θ d x;

M41 =
∫ L

0

∫ 2π

0
I1�xUTd θ d x, M44 =

∫ L

0

∫ 2π

0
I2�x�

T
x d θ d x;

M52 =
∫ L

0

∫ 2π

0
I1�θVTd θ d x, M55 =

∫ L

0

∫ 2π

0
I2�θ�

T
θ d θ d x .

The elements of the matrix K are

K11 = −
∫ 1

0

∫ 2π

0

(

a11U
∂2UT

∂x2
+ a66λ

2
1U

∂2UT

∂θ2

)

d θ d x, K12 = − (a12 + a66) λ1

∫ 1

0

∫ 2π

0
U

∂2VT

∂x∂θ
d θ d x,

K13 = −a12λ1

∫ 1

0

∫ 2π

0
U

∂WT

∂x
d θ d x, K14 = −

∫ 1

0

∫ 2π

0

(

b11U
∂2�T

x

∂x2
+ b66λ

2
1U

∂2�T
x

∂θ2

)

d θ d x,

K15 = − (b12 + b66) λ1

∫ 1

0

∫ 2π

0
U

∂2�T
θ

∂x∂θ
d θ d x;

K21 = − (a12 + a66) λ1

∫ 1

0

∫ 2π

0
V

∂2UT

∂x∂θ
d θ d x, K22 = −

∫ 1

0

∫ 2π

0

(

a66V
∂2VT

∂x2
+ a22λ

2
1V

∂2VT

∂θ2

)

d θ d x,

K23 = −a22λ
2
1

∫ 1

0

∫ 2π

0
V

∂WT

∂θ
d θ d x, K24 = − (b12 + b66) λ1

∫ 1

0

∫ 2π

0
V

∂2�T
x

∂x∂θ
d θ d x,

K25 = −
∫ 1

0

∫ 2π

0

(

b66V
∂2�T

θ

∂x2
+ b22λ

2
1V

∂2�T
θ

∂θ2

)

d θ d x;

K31 = a12λ1

∫ 1

0

∫ 2π

0
W

∂UT

∂x
d θ d x, K32 = a22λ

2
1

∫ 1

0

∫ 2π

0
W

∂VT

∂θ
d θ d x,

K33 = −
∫ 1

0

∫ 2π

0

(

a55W
∂2WT

∂x2
+ a44λ

2
1W

∂2WT

∂θ2
− a22λ

2
1WWT

)

d θ d x,

K34 = −
(
a55
λ3

− b12λ1

)∫ 1

0

∫ 2π

0
W

∂�T
x

∂x
d θ d x,

K35 = −
(

a44
λ1

λ3
− b22λ

2
1

)∫ 1

0

∫ 2π

0
W�θ

∂�T
θ

∂θ
d θ d x;

K41 = −
∫ 1

0

∫ 2π

0

(

b11�x
∂2UT

∂x2
+ b66λ

2
1�x

∂2UT

∂θ2

)

d θ d x,

K42 = − (b12 + b66) λ1

∫ 1

0

∫ 2π

0
�x

∂2VT

∂x∂θ
d θ d x,

K43 = −
(

b12λ1 − a55
λ3

)∫ 1

0

∫ 2π

0
�x

∂WT

∂x
d θ d x,

K44 = −
∫ 1

0

∫ 2π

0

(

d11�x
∂2�T

x

∂x2
+ d66λ

2
1�x

∂2�T
x

∂θ2
− a55

λ23
�x�

T
x

)

d θ d x,
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K45 = − (d12 + d66) λ1

∫ 1

0

∫ 2π

0
�x

∂2�T
θ

∂x∂θ
d θ d x;

K51 = − (b12 + b66) λ1

∫ 1

0

∫ 2π

0
�θ

∂2UT

∂x∂θ
d θ d x,

K52 = −
∫ 1

0

∫ 2π

0

(

b66�θ

∂2VT

∂x2
+ b22λ

2
1�θ

∂2VT

∂θ2

)

d θ d x,

K53 = −
(

b22λ
2
1 − a44

λ1

λ3

)∫ 1

0

∫ 2π

0
�θ

∂WT

∂θ
d θ d x,

K54 = − (d12 + d66) λ1

∫ 1

0

∫ 2π

0
�θ

∂2�T
x

∂x∂θ
d θ d x,

K55 = −
∫ 1

0

∫ 2π

0

(

d66�θ

∂2�T
θ

∂x2
+ d22λ

2
1�θ

∂2�T
θ

∂θ2
− a44

λ23
�θ�

T
θ

)

d θ d x .

The elements of the matrix K(2) are

K(2)
13 = −

∫ 1

0

∫ 2π

0
U

∂WT

∂x
qw

(

a11λ3
∂2WT

∂x2
+ a66λ1λ2

∂2WT

∂θ2

)

d θ d x

− (a12 + a66) λ1λ2

∫ 1

0

∫ 2π

0
U

∂WT

∂θ
qw

∂2WT

∂x∂θ
d θ d x;

K(2)
23 = − (a12 + a66) λ2

∫ 1

0

∫ 2π

0
V

∂WT

∂x
qw

∂2WT

∂x∂θ
d θ d x

−
∫ 1

0

∫ 2π

0
V

∂WT

∂θ
qw

(

a66λ2
∂2WT

∂x2
+ a22λ

2
1λ2

∂2WT

∂θ2

)

d θ d x;

K(2)
31 = −

∫ 1

0

∫ 2π

0
W

∂WT

∂x
qw

(

a11λ3
∂2UT

∂x2
+ a66λ1λ2

∂2UT

∂θ2

)

d θ d x

− (a12 + a66) λ1λ2

∫ 1

0

∫ 2π

0
W

∂WT

∂θ
qw

∂2UT

∂x∂θ
d θ d x

−
∫ 1

0

∫ 2π

0
W
(

a11λ3
∂2WT

∂x2
+ a12λ1λ2

∂2WT

∂θ2

)

qw

∂UT

∂x
d θ d x

− 2a66λ1λ2

∫ 1

0

∫ 2π

0
W

∂2WT

∂x∂θ
qw

∂UT

∂θ
d θ d x,

K(2)
32 = − (a12 + a66) λ2

∫ 1

0

∫ 2π

0
W

∂WT

∂x
qw

∂2VT

∂x∂θ
d θ d x

−
∫ 1

0

∫ 2π

0
W

∂WT

∂θ
qw

(

a66λ2
∂2VT

∂x2
+ a22λ

2
1λ2

∂2VT

∂θ2

)

d θ d x

− 2a66λ2

∫ 1

0

∫ 2π

0
W

∂2WT

∂x∂θ
qw

∂VT

∂x
d θ d x

−
∫ 1

0

∫ 2π

0
W
(

a12λ2
∂2WT

∂x2
+ a22λ

2
1λ2

∂2WT

∂θ2

)

qw

∂VT

∂θ
d θ d x,

K(2)
33 = −a12

2
λ2

∫ 1

0

∫ 2π

0
W

∂WT

∂x
qw

∂WT

∂x
d θ d x − a22

2
λ21λ2

∫ 1

0

∫ 2π

0
W

∂WT

∂θ
qw

∂WT

∂θ
d θ d x

−
∫ 1

0

∫ 2π

0
W
(

a12λ2
∂2WT

∂x2
+ a22λ

2
1λ2

∂2WT

∂θ2

)

qwWTd θ d x,

K(2)
34 = −

∫ 1

0

∫ 2π

0
W

∂WT

∂x
qw

(

b11λ3
∂2�T

x

∂x2
+ b66λ1λ2

∂2�T
x

∂θ2

)

d θ d x
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− (b12 + b66) λ1λ2

∫ 1

0

∫ 2π

0
W

∂WT

∂θ
qw

∂2�T
x

∂x∂θ
d θ d x

−
∫ 1

0

∫ 2π

0
W
(

b11λ3
∂2WT

∂x2
+ b12λ1λ2

∂2WT

∂θ2

)

qw

∂�T
x

∂x
d θ d x

− 2b66λ1λ2

∫ 1

0

∫ 2π

0
W

∂2WT

∂x∂θ
qw

∂�T
x

∂θ
d θ d x,

K(2)
35 = − (b12 + b66) λ2

∫ 1

0

∫ 2π

0
W

∂WT

∂x
qw

∂2�T
θ

∂x∂θ
d θ d x

−
∫ 1

0

∫ 2π

0
W

∂WT

∂θ
qw

(

b66λ2
∂2�T

θ

∂x2
+ b22λ

2
1λ2

∂2�T
θ

∂θ2

)

d θ d x

− 2b66λ2

∫ 1

0

∫ 2π

0
W

∂2WT

∂x∂θ
qw

∂�T
θ

∂x
d θ d x

−
∫ 1

0

∫ 2π

0
W
(

b12λ2
∂2WT

∂x2
+ b22λ

2
1λ2

∂2WT

∂θ2

)

qw

∂�T
θ

∂θ
d θ d x;

K(2)
43 = −

∫ 1

0

∫ 2π

0
�x

∂WT

∂x
qw

(

b11λ3
∂2WT

∂x2
+ b66λ1λ2

∂2WT

∂θ2

)

d θ d x

− (b12 + b66) λ1λ2

∫ 1

0

∫ 2π

0
�x

∂WT

∂θ
qw

∂2WT

∂x∂θ
d θ d x;

K(2)
53 = − (b12 + b66) λ2

∫ 1

0

∫ 2π

0
�θ

∂WT

∂x
qw

∂2WT

∂x∂θ
d θ d x

−
∫ 1

0

∫ 2π

0
�θ

∂WT

∂θ
qw

(

b66λ2
∂2WT

∂x2
+ b22λ

2
1λ2

∂2WT

∂θ2

)

d θ d x .

The elements of the matrix K(3) are

K(3)
33 = −

∫ 1

0

∫ 2π

0
W
(
3a11
2

λ23
∂2WT

∂x2
+ a12 + 2a66

2
λ22

∂2WT

∂θ2

)

qw

∂WT

∂x
qw

∂WT

∂x
d θ d x

−
∫ 1

0

∫ 2π

0
W
(
a12 + 2a66

2
λ22

∂2WT

∂x2
+ 3a22

2
λ21λ

2
2
∂2WT

∂θ2

)

qw

∂WT

∂θ
qw

∂WT

∂θ
d θ d x

− (2a12 + 4a66) λ22

∫ 1

0

∫ 2π

0
W

∂WT

∂x
qw

∂WT

∂θ
qw

∂2WT

∂x∂θ
d θ d x .
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