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Abstract Based on the modified couple stress theory and Gurtin–Murdoch surface elasticity theory, a size-
dependent Timoshenko beammodel is developed for investigating the nonlinear vibration response of function-
ally graded (FG) micro-/nanobeams. The model is capable of capturing the simultaneous effects of microstruc-
ture couple stress, surface energy, and von Kármán’s geometric nonlinearity. Sigmoid function and power law
homogenization schemes are used tomodel thematerial gradation of the beam.Hamilton’s principle is exploited
to establish the nonclassical nonlinear governing equations and corresponding higher-order boundary condi-
tions. To account for the nonhomogeneity in boundary conditions, the solution of the problem is split into two
parts: the nonlinear static response with the nonhomogeneous boundary conditions and the nonlinear dynamic
response. The resulting boundary conditions for the dynamic response are homogeneous, and so Galerkin’s
approach is applied to reduce the set of PDEs to a nonlinear system of ODEs. The generalized differential
quadrature method in terms of spatial variables is applied to obtain the static response and linear vibration
mode. Considering the nonlinear system of ODEs in terms of time-related variables, both pseudo-arclength
continuation and Runge–Kutta methods are used to obtain the nonlinear free vibration behavior of FG Timo-
shenko micro-/nanobeams with simply supported and clamped ends. Verification of the proposed model and
solution procedure is performed by comparing the obtained results with those available in the open literature.
The effects of the nonhomogeneous boundary conditions, surface elasticity modulus, surface residual stress,
material length scale parameter, gradient index, and thickness on the characteristics of linear and nonlinear
free vibrations of sigmoid function and power law FG micro-/nanobeams are discussed in detail.

1 Introduction

Functionally gradedmaterials (FGMs) are an advanced generation of compositematerials fabricated by varying
the volume fractions of the constituents along a specific spatial direction, usually over the thickness of a
structure. The gradation of material composition can create a nonhomogeneous composite with continuous and
smooth properties. Thus, the FGMs have some striking advantages over traditional composite structures such as
bearing high temperature gradients, reducing thermal and residual stresses, and eliminating the concentration
of stress that occurred in conventional laminated composites [1]. Nowadays, with the development of the
material technology, FGMs have been employed in micro-/nanoelectromechanical systems (MEMS/NEMS)
such as atomic force microscopes, thin films in the form of shape memory alloys and micro-sensors [2–4].
However, the size effect plays a major role in the mechanical behavior of such small-scale structures, and
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consequently, an accurate mathematical model of FGM structures is a key issue for successful analysis and
design of MEMs/NEMs. The effective mechanical properties of the FGMs can be obtained using different
homogenization techniques such as exponential, power law, Mori–Tanaka, symmetric power law, and sigmoid
function.

At the micro-/nanoscale, the classical continuum mechanics theories cannot correctly predict the experi-
mentally detected size-dependent behavior of structures. To capture this behavior, more general higher-order
continuum mechanics theories have been applied, which include strain gradient or couple stress theories that
contain additional material constants beside the classical Lamé constants. In the modified couple stress theory
(MCST), the stress tensor is symmetric, and only one material length scale parameter is involved to describe
the microstructure-dependent size effect, which makes theMCST easier to use than the other higher-order con-
tinuum mechanics theories. Since then, the MCST has been widespread applied to investigate the mechanical
behavior of micro-/nanoscale structures by researchers [5–14]. According to these microstructure–dependent
models, the couple stress effect leads to an increased stiffness of FG micro-/nanobeams.

In nanoscale structures, there is a significantly increased ratio of surface area to bulk volume, which is
considered one of their most important characteristics. In spite of ignoring the surface energy effect in classical
mechanics, as it is small compared to the bulk energy, the surface energy should not be neglected due to its
significant contribution to the total energy of nanostructures. The presence of surface stress (surface tension)
results in nonclassical boundary conditions, which have a significant effect in analyzing the nanostructures.
Gurtin and Murdoch [15,16] presented a surface elasticity model in which the surface energy effect on the
elastic behavior of materials is incorporated. Following the Gurtin and Murdoch model, many studies have
been developed to model and analyze the effect of size-dependent surface energy on linear/nonlinear bend-
ing, buckling, and vibration responses of elastic nanobeams [17–36], viscoelastic nanobeams [37,38], and
piezoelectric and cylindrical nanoshells [31,39–41].

Few models have been reported in the literature to investigate the simultaneous effects of couple stress
and surface energy on the mechanical behavior of homogeneous nanobeams [22,23,42–45] and nanoplates
[46–51]. Recently, Attia [20] and Shanab et al. [8] have developed nonclassical continuum models for FG
nanobeams considering the combined effects of couple stress and surface energy.

Various approaches exist for solving the governing equations of the nonlinear vibration of nanobeams.
Approximate solutions for the nonlinear free and forced vibration of Euler–Bernoulli FG nanobeams were
obtained using the multiple scale (MS) method [25,26,52,53], Hamiltonian approach [54], or Jacobi elliptic
functions [24,27]. On the other hand, numericalmethods such as FEM,GDQM, pseudo-arclength continuation,
and reduced order method are very efficient to obtain the linear and nonlinear responses of nanostructures.
For example, Kasirajan et al. [28] used FEM to obtain the nonlinear vibration of a nonlocal Timoshenko beam
considering surface effects. Nonlinear free vibration of a homogeneous Timoshenko beam was studied using
the pseudo-arclength method by Ansari et al. [18].

It is seen that the nonlinear vibration of sigmoid and power law functionally graded nanobeams incorpo-
rating the simultaneous effects of microstructure and surface energy has not been comprehensively studied.
Thus, this paper aims to develop a dynamic nonlinear nonclassical continuum model to study the linear and
nonlinear free vibration behaviors of sigmoid and power law FG nanobeams based on the von Kármán’s geo-
metric nonlinearity, modified couple stress theory, and surface elasticity theory. The nonlinear nonclassical
governing equations and corresponding boundary conditions are derived using Hamilton’s principle in the
framework of Timoshenko beam theory. Unlike most previous studies, the present model considers the non-
classical (nonideal) boundary conditions due to the presence of both residual surface stress and the material
nonhomogeneity. To solve the resulting equations, the solution is partitioned into static and dynamic responses.
The static response accounts for the nonhomogeneous boundary conditions such that the resulting boundary
conditions for the dynamic response are homogeneous, and so Galerkin’s approach can be applied. More-
over, a generalized differential quadrature method (GDQM) is used to discretize the developed model without
neglecting any of its nonlinearities in governing equations and boundary conditions. After applying Galerkin’s
approach, the resulting nonlinear second-order ODE system is solved by two methodologies, namely pseudo-
arclength continuation and Runge–Kutta method. The developed model is validated by comparing the present
results with the results from the available literature, and good agreement is found. A comprehensive paramet-
ric study is presented and discussed in detail to demonstrate the influences of the bulk modulus of elasticity
ratio, surface elasticity modulus, surface residual stress, material length scale parameter ratio, dimensionless
material length scale parameter, gradient index, nonclassical boundary conditions, and beam thickness on the
linear and nonlinear free vibrations of Timoshenko power law and sigmoid FG micro-/nanobeams.
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Fig. 1 Schematic of a functionally graded nanobeam with surface layer

2 Theoretical formulation

2.1 Functionally graded materials

One of the main tasks in material mechanics is to correctly predict the material behavior, which requires
estimating (homogenizing) the effective mechanical properties of FGMs. There are different homogeniza-
tion techniques for FGMs such as exponential, power law, Mori–Tanaka, symmetric power law, and sigmoid
function. In the present study, both power law (PL-FG) and sigmoid function (SIG-FG) are adopted as homog-
enization schemes for the FGM beam under consideration. Considering an FGM nanobeam with a rectangular
cross section of length L , width b, and thickness h, the nanobeam is assumed to be made of ceramic and metal.
The material at the bottom surface (z = −h/2) is pure ceramic and at the top surface (z = h/2) is pure metal,
as depicted in Fig. 1. Through the beam thickness, the proposed distributions of volume fractions of metal and
ceramic follow PL-FG and SIG-FG. Then, the effective local material property of bulk material (PB) such as
Young’s modulus (EB), Poisson’s ratio (νB), mass density (ρB), and microstructure material length scale (l)
of a PL-FG nanobeam can be described as follows:

PB (z) = PB
c +
(
PB
m − PB

c

)(1
2

+ z

h

)k
, −h

2
≤ z ≤ h

2
, (1)

and for SIG-FG nanobeam, the effective local material property of bulk material can be expressed by (Chi and
Chung [55]):

PB (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

PB
c + 1

2

(
PB
m − PB

c

)(
1+2z

h

)k
, −h

2
≤ z≤ 0, (2.1)

PB
m − 1

2

(
PB
m − PB

c

)(
1−2z

h

)k
, 0 ≤ z ≤ h

2
. (2.2)

In this study, the effective local material property of surface material (Ps) such as surface Lamé’s constants
(λs and μs), surface residual stress (τ s), and surface mass density (ρs) of the FG nanobeam is described in
terms of PL-FG law as follows:

Ps (z) = Ps
c + (Ps

m − Ps
c

) (1
2

+ z

h

)k
, −h

2
≤ z ≤ h

2
. (3)

In Eqs. (1–3), Pc and Pm are the corresponding material properties at the lower (ceramic) and upper (metal)
surfaces of the FG beam, respectively. In addition, superscripts “B” and “s” denote the bulk and surface
materials, respectively, and k stands for the gradient index which controls the material variation through the
beam thickness.

2.2 Kinematics and constitutive relations

According to Timoshenko beam theory (TBT), the displacement field for an arbitrary point can be defined as:

ux (x, z, t) = u (x, t) − zψ (x, t) , uy (x, z, t) = 0, uz (x, z, t) = w (x, t) (4)
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where u and w are the axial and lateral displacements of any point (x, z) on the mid-plane, ψ (x, t) is the
rotation of the beam cross section with respect to the vertical direction, and t denotes time.

The nonlinear Green–Lagrangian strain tensor (Ei j ) is defined as follows [56]:

Ei j = 1

2

[
ui, j + u j,i + uk,i uk, j

]
(5)

where ui are the displacement components given by Eq. (4) Throughout the paper, the summation convention
and standard index notation are used, with the Greek indices running from 1 to 2 and the Latin indices from 1
to 3 unless otherwise indicated.

On the basis of von Kármán geometric nonlinearity, i.e., only squares of the slopes u2z,x , u
2
z,y , and uz,xuz,y

are retained in the Green–Lagrange strain tensor (Ei j ), the only nonzero components of the von Kármán strain
tensor (εi j ) for the Timoshenko beam theory are as follows [8,56]:

εxx = u
′ + 1

2
w

′2 − zψ
′
, εxz = εzx = 1

2

[
w

′ − ψ
]
. (6)

Based on the linear elasticity, the nonzero components of the Cauchy force-stress tensor (σi j ) for the micro-
/nanobeam can be obtained in terms of displacements as [8,45,57–59]:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σxx = QB (z)
[
u

′ + 1
2w

′2 − zψ
′]

, QB (z) = 2μB (z) + λB (z) ,

σyy = σzz = λB (z)
[
u

′ + 1
2w

′2 − zψ
′]

,

σxz = σzx = ksμB (z)
[
w

′ − ψ
]
.

(7)

where ks denotes the shear correction coefficient which accounts for the nonuniformity of the shear strain over
the beam cross section [60], i.e., ks = 5(1 + νav)/(6 + 5νav), in which the average value of Poisson’s ratios
of the metal and ceramic phases is νav = 0.5(νm + νc). μ(z) and λ(z) are the Lamé constants in the classical
elasticity.

According to the modified couple stress theory (MCST) presented by Yang et al. [61] and in light of Eq. (4),
the nonzero components of the rotation vector (θi ), the symmetric curvature tensor (χi j ), and the corresponding
deviatoric part of the symmetric couple stress tensor (mi j ) can be, respectively, obtained as [8,45,57–59]:

θy = −1

2

[
w

′ + ψ
]
, (8)

χxy = χyx = −1

4

[
ψ

′ + w
′′]

, (9)

mxy = myx = −1

2
l2 (z) μ(z)

[
ψ

′ + w
′′]

, (10)

and l (z) refers to the material length scale parameter measuring the couple stress effect.
To this end, the surface energy effects are incorporated into the developed size-dependent model using the

Gurtin–Murdoch surface elasticity theory [15,16] inwhich surface stress–strain relations of theFGTimoshenko
nanobeam can be formulated as below [8,20,37],

τ s±xx = τ s±
[
1 − 1

2 w′2
]

+ Es±
[
u′ − zψ ′ + 1

2w
′2
]
, Es± = 2μs± + λs±,

τ s±xt = {(μs± − τ s±
)
w′ − μs±ψ

}
ny ≡ τ s±xz ny,

τ s±t x = {μs±w′ − (μs± − τ s±
)
ψ
}
ny ≡ τ s±zx ny,

τ s±nx = τ s±un,x = τ s±nzw′.

(11)

Here, τ s±xx , τ s±xt , τ s±t x , and τ s±nx are the only nonzero components of surface stress, Es± denotes the surface
elastic modulus, μs± and λs± are the surface Lamé constants, and τ s± is the surface residual stress. The
subscript n represents the outward unit normal n to the beam lateral surface, and ny and nz represent its y- and
z-components, respectively, i.e., ny = cos θ and nz = sin θ , where θ is the angle between the normal vector
n and the y-axis, as shown in Fig. 1. The subscript t denotes the direction of the unit tangent vector t on the
boundary of the beam cross section, i.e., at θ = 0, τ s±xz and τ s±zx are the values of τ s±xt and τ st x , respectively. The
indices “+” and “−” represent the upper and lower surfaces of the nanobeam, respectively.
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2.3 Size-dependent governing equations

Hamilton’s principle is employed to exactly derive the nonlinear size-dependent governing equations and the
associated nonclassical boundary conditions (NCBCs):

δ

∫ t2

t1
(T −U + W ) dt = 0 (12)

where U , T , and W are, respectively, the total strain energy, kinetic energy, and work done due to applied
external forces.

In the framework of the linear elasticity theory and in accordance with the surface elasticity theory and the
modified couple stress theory, the first variation of the total strain energy can be written as [8,56,62]:

δU = 1

2
δ

∫ L

0

∫

A

(
σi jεi j + mi jχi j

)
dAdx + 1

2
δ

∫ L

0

∮

∂A
τ si jεi jdSdx

= 1

2
δ

∫ L

0

⎧
⎨
⎩
∫

A

(
σxxεxx + 2σxzεxz + 2mxyχxy

)
dA

+
∮

∂A

(
τ sxxεxx + (τ sxs + τ ssx

)
εxs + 2τ snxεnx

)
dS

}
dx (13)

where

εxs = εsx = 1

2

(
w

′ − ψ
)
ny ≡ εzxny, εxn = εnx = 1

2
w

′
nz . (14)

Substituting Eqs. (6, 8–11, 14) into Eq. (13) yields

δ

∫ t2

t1
Udt = −

∫ t2

t1

∫ L

0

[{
N

′ + Ns′ + 1

2
C1w′

w
′′
}

δu

+
{
1

2

(
Qs′

1 + Qs′
2

)
+ Q′

xz + 1

2
Y

′′
xy

+ d

dx

([
N + N s + S1 − 1

2
C1
(
1 + u

′)+ 1

2
P1ψ

′
]

w
′
)}

δw

+
{
−M

′
x − 1

2
Y

′
xy − Ms′ + 1

2
(Qs1 + Qs2) + Qxz − 1

2
P1w

′
w

′′
}

δψ

]
dxdt

+
∫ t2

t1

[{
N + N s − 1

2
C1
(
1 − 1

2
w

′2
)}

δu

+
{{

1

2

(Qs
1 + Qs

2

)+ Qxz + 1

2
Y

′
xy

+
(
N + N s + S1 − 1

2
C1
(
1 + u

′)+ 1

2
P1ψ

′
)}

w
′
}

δw

−
{
1

2
Yxy

}
δw

′ −
{
Mx + 1

2
Yxy + Ms − 1

2
P1

(
1 − 1

2
w

′2
)}

δψ

]L
0
dt (15)

in which the stress and couple stress resultants on the beam cross section are expressed as:
{

N
Mx

}
≡
∫

A

{
1
z

}
σxxdA =

{
Axx

Bxx

}[
u

′ + 1

2
w

′2
]

−
{
Bxx

Dxx

}
ψ

′
, (16.1)

{
Qxz

Yxy

}
≡
∫

A

{
σxz
mxy

}
dA =

⎧⎨
⎩

ks Sxz
[
w

′ − ψ
]

− 1
2 Sxy
[
ψ

′ + w
′′]
⎫⎬
⎭ , (16.2)
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and the surface stress resultants along the perimeter of the beam cross section are defined as:
{
N s

Ms

}
≡
∮

∂A

{
1
z

}
τ sxxdS =

{ C1
P1

}
+
{ C2
P2

}
u

′ + 1

2

{ C2 − C1
P2 − P1

}
w

′2 −
{P2

IP

}
ψ

′
, (16.3)

{Qs
1

Qs
2

}
≡
∮

∂A
n2y

{
τ sxz

τ szx

}
dS =

{L2 − L1

L2

}
w

′ −
{ L2

L2 − L1

}
ψ (16.4)

in which
{
Axx Bxx Dxx Sxz Sxy

} =
∫

A

{
QB(z) zQB(z) z2QB(z) μB(z) l(z)2 μB(z)

}
dA (17.1)

{C1 C2 P1 P2 S1 IP L1 L2
}

=
∮

∂A

{
τ s(z) E s(z) zτ s(z) zE s(z) n2zτ

s(z) z2E s(z) n2yτ
s(z) n2yμ

s(z)
}
dS. (17.2)

The first variation of the kinetic energy of the FGM Timoshenko nanobeam accounting for the surface density
effect can be written in terms of displacements as:

δ

∫ t2

t1
T =
∫ t2

t1

1

2
δ

∫ L

0

{∫

A
ρB(z)

(
u̇2x + u̇2y + u̇2z

)
dA +

∮

∂A
ρs(z)

(
u̇2x + u̇2y + u̇2z

)
dS

}
dxdt

=
∫ t2

t1

[∫ L

0

{[
I0u̇ − I1ψ̇

]
δu̇ − [I1u̇ − I2ψ̇

]
δψ̇ + I0ẇδẇ

}
dx

]
dt (18)

where the mass inertia coefficients (I0, I1, and I2) including the effect of surface density are defined by:

{
I0 I1 I2

} =
∫

A

{
ρB(z) zρB(z) z2ρB(z)

}
dA +

∮

∂A

{
ρs(z) zρs(z) z2ρs(z)

}
dS. (19)

Additionally, the variational form of the work done by the external forces applied on the FG nanobeam is given
by:

δ

∫ t2

t1
Wdt =

∫ t2

t1

[∫ L

0

[
qδw + fcδθy

]
dx

]
dt +

∫ t2

t1

[
N̄δu + V̄ δw + M̄mδw

′ + M̄σ δψ
]L
0
dt

=
∫ t2

t1

∫ L

0

[(
q + 1

2
f

′
c

)
δw − 1

2
fcδψ

]
dxdt

+
∫ t2

t1

[
N̄δu +

(
V̄ − 1

2
fc

)
δw + M̄mδw

′ + M̄σ δψ

]L
0
dt (20)

where q is the z-component of body force per unit length along the x-axis and fc is the y-component of the
body couple imposed on the sections as couple per unit axial length (per unit volume along the x-axis). N̄ , V̄ ,
M̄σ , and M̄m denote, respectively, the applied axial resultant force of normal stresses, the transverse resultant
force of shear stresses, the resultant external bending moment of normal stresses, and the resultant external
bending moment around the y-axis due to couple stresses at the beam ends.

Substituting Eqs. (15, 18, 20) into Eq. (12), applying the fundamental lemma of calculus of variations, and
gathering the coefficients of δu, δw, and δψ , the nonlinear nonclassical governing differential equations of
motion of a FG Timoshenko nanobeam can be achieved as:

δu: I1ψ̈ − I0ü + N
′ + Ns′ + 1

2
C1w′

w
′′ = 0, (21.1)

δw: − I0ẅ + 1

2

(
Qs′

1 + Qs′
2

)
+ Q′

xz + 1

2
Y

′′
xy +
(
N

′ + Ns′ − 1

2
C1u ′′ + 1

2
P1ψ

′′
)

w
′

+
(
N + N s + S1 − 1

2
C1
(
1 + u

′)+ 1

2
P1ψ

′
)

w
′′ +
(
q + 1

2
f

′
c

)
= 0, (21.2)

δψ : I1ü − I2ψ̈ − M
′
x − 1

2
Y

′
xy − Ms′ + 1

2

(Qs
1 + Qs

2

)+ Qxz − 1

2
P1w

′
w

′′ − 1

2
fc = 0. (21.3)
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Moreover, the associated nonclassical boundary conditions (NCBCs) at the beam ends (x = 0, L) can be
expressed as:

δu: either u = ū or N + N s − 1

2
C1
(
1 − 1

2
w

′2
)

− N̄ = 0, (22.1)

δw: either w = w̄ or
1

2

(Qs
1 + Qs

2

)+ Qxz + 1

2
Y

′
xy

+
(
S1 + N + N s − 1

2
C1
(
1 + u

′)+ 1

2
P1ψ

′
)

w
′ + 1

2
fc − V̄ = 0, (22.2)

δψ : either ψ = ψ̄ or Mx + 1

2
Yxy + Ms − 1

2
P1

(
1 − 1

2
w

′2
)

+ M̄σ = 0, (22.3)

δw
′ : either w

′ = w̄
′ or

1

2
Yxy + M̄m = 0. (22.4)

By inserting the force and moment resultants introduced in Eq. (16.1) into Eqs. (21.1) and (22.1), the size-
dependent nonlinear governing equations and the corresponding NCBCs in terms of displacement components
can be, respectively, obtained as:

I1ψ̈ − I0ü + A11u
′′ − B11ψ

′′ + A22w
′
w

′′ = 0, (23.1)

−I0ẅ +
[
S11 + S1 + 1

2
C1 + A22u

′ + 3

2
A33w

′2 − B22ψ
′
]

w
′′ − 1

4
Sxyw

′′′′

−1

4
Sxyψ

′′′ − S11ψ
′ +
[
A22u

′′ − B22ψ
′′]

w
′ + q + 1

2
f

′
c = 0, (23.2)

I1ü − I2ψ̈ − B11u
′′ + 1

4
Sxyw

′′′ + S11w
′ + D11ψ

′′ − S11ψ − B22w
′
w

′′ − 1

2
fc = 0, (23.3)

and

u = ū or A11u
′ − B11ψ

′ + 1

2
A22w

′2 − N̄ + 1

2
C1 = 0, (24.1)

w = w̄ or − 1

4
Sxyw

′′′ − S11ψ − 1

4
Sxyψ

′′

+
[
S11 + S1 + 1

2
C1 + A22u

′ + 1

2
A22w

′2 − B22ψ
′
]

w
′ + 1

2
fc − V̄ = 0, (24.2)

ψ = ψ̄or B11u
′ − 1

4
Sxyw

′′ − D11ψ
′ + 1

2
B22w

′2 + 1

2
P1 + M̄σ = 0, (24.3)

w
′ = w̄

′or
1

4
Sxy
(
ψ

′ + w
′′)− M̄m = 0 (24.4)

where
{
D11 S11

}
=
{(

Sxy
4 + Dxx + IP

) (
ks Sxz + L2 − L1

2

)}
, (25.1)

{
A11 A22 A33 B11 B22

} =
{

(Axx + C2)
(
A11 − C1

2

)
(A11 − C1) (Bxx + P2)

(
B11 − P1

2

)}
. (25.2)

Up to here, a nonlinear nonclassical functionally graded Timoshenko nanobeam model is developed incor-
porating the simultaneous effect of microstructure, surface elasticity, surface mass density, surface residual
stress, and von Kármán geometric nonlinearity. It is important to mention that the linear equations of motion of
a homogeneous Timoshenko nanobeam with the effects of surface energy and modified coupled stress derived
by Gao [22] can be recovered from Eq. (23) by dropping the nonlinear terms and setting the gradient index
k = 0. Further, the homogeneous Timoshenko nanobeam model developed by Ansari et al. [18] considering
the surface energy effect and von Kármán geometric nonlinearity can be recovered from the present model by
setting k = l = 0, as there are some missed terms in their variation of surface strain energy.



1984 R. A. Shanab et al.

2.4 Dimensionless size-dependent governing equations

We introduce the following dimensionless parameters:

{
x∗ u∗ w∗ ψ∗ t∗ Ω

} = { x
L

u
h

w
h ψ t

τ
τω
}
, τ = L2

√
ρmA0

Em Im
(26)

where A0 = bh, Im = (bh3)/12.UsingEq. (26) and letting ξ = L/h, the nondimensional governing equations
for nonlinear free vibration, where all the external forces vanish in Eqs. (23.1) and (24.1), can be obtained as:

I ∗
1 ψ̈ − I ∗

0 ü + ξ2A∗
11u

′′ − ξ2B∗
11ψ

′′ + ξ A∗
22w

′
w

′′ = 0, (27.1)

−I ∗
0 ẅ + ξ2

(
S∗
11 + S∗

1 + 1

2
C∗
1

)
w

′′ − 1

4
S∗
xyw

′′′′ − 1

4
ξ S∗

xyψ
′′′ − ξ3S∗

11ψ
′ + ξ A∗

22

[
u

′′
w

′ + u
′
w

′′]

−ξ B∗
22

[
ψ

′′
w

′ + ψ
′
w

′′]+ 3

2
A∗
33w

′2w
′′ = 0, (27.2)

I ∗
1 ü − I ∗

2 ψ̈ − ξ2B∗
11u

′′ + ξ3S∗
11w

′ + 1

4
ξ S∗

xyw
′′′ − ξ4S∗

11ψ + ξ2D∗
11ψ

′′ − ξ B∗
22w

′
w

′′ = 0. (27.3)

(a) Simply supported end support

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A∗
11
ξ
u′ − B∗

11
ξ

ψ ′ + 1
2
A∗
22

ξ2
w

′2 + 1
2C∗

1 = 0,

w = 0,
B∗
11
ξ
u′ − 1

4
S∗
xy

ξ2
w′′ − D∗

11
ξ

ψ ′ + 1
2
B∗
22

ξ2
w

′2 + 1
2P∗

1 = 0,

1
ξ
w′′ + ψ ′ = 0.

(28.1)

(b) Clamped end support

u = w = 0, ψ = 0, w
′ = 0 (28.2)

with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
I ∗
0 I ∗

1 I ∗
2

} = 1
ρm A0

{
I0

I1
h

I2
h2

}
,

{
A∗
11 A∗

22 A∗
33 B∗

11 B∗
22

} = h
Em Im

{
hA11 hA22 hA33 B11 B22

}
,

{
S∗
xy S∗

11 D∗
11 S∗

1 C∗
1 P∗

1
} = 1

Em Im

{
Sxy h2S11 D11 h2S1 h2S1 hP1

}
.

(29)

After some mathematical manipulation, the explicit representation of the system given by Eq. (27.1) is as
follows:

k1ü + k2u
′′ + k3ψ

′′ + k4w
′
w

′′ + k5w
′ + k6w

′′′ + k7ψ = 0, (30.1)

Iwẅ + c0w
′′ + c1w

′′′′ + c2ψ
′′′

+c3ψ
′ + c4

[
u

′′
w

′ + u
′
w

′′]+ c5

[
ψ

′′
w

′ + ψ
′
w

′′]+ c6w
′2w

′′ = 0, (30.2)

p1ψ̈ + p2ψ
′′ + p3u

′′ + p4w
′
w

′′ + p5w
′ + p6w

′′′ + p7ψ = 0 (30.3)
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in which
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,

⎧⎨
⎩

r1
r2
Iw
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⎭ = −

⎧
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I ∗
1
I ∗
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I ∗
1
I ∗
0

I ∗
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. (31)

It is important to notice that, compared with the clamped end boundary conditions, the simply supported
boundary conditions given by Eq. (28.1) are not only nonlinear but also nonhomogeneous (nonideal) due to
the presence of the terms P∗

1 /2 and C∗
1/2. These terms are nonzero when including the effect of the surface

residual stress of the FGnanobeam, i.e., when τs �= 0 and k �= 0 as seen fromEq. (17.2). Some recentworks [20,
25,26,37] have studied FG nanostructures including surface effects and derived the mathematical models with
similar nonhomogeneous boundary conditions. However, they solved these models analytically and applied
the classical boundary conditions rather than the exact nonhomogeneous ones. In fact, these nonclassical
(nonhomogeneous) terms act as self-excitation loading and cause deformation of the microstructure at no
external load.

3 Solution strategy

In the present study, the nonlinear governing equations are solved employing the GDQM as one of the most
efficient numerical techniques.

3.1 Discretization in x-direction using GDQM

The normalized beam length 0 ≤ x ≤ 1 is discretized to n points: x1 = 0, x2 = δ, xn−1 = 1− δ, xn = 1, and
the other inner nodes xi are calculated using the Chebyshev–Gauss–Lobatto formula:

xi = 1

2

(
1 − cos

(i − 2)π

n − 3

)
i = 3, 4, . . . , n − 2. (32)

Here, δ is a small number and is taken in this study as δ = 0.04x3.
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GDQM is a polynomial-based discretization method that approximates derivatives of a function v(x) as
a weighted sum of its values at all discrete nodes in its domain. For a vector V = [v1, v2, . . . , vn]T of nodal

values of v(x), i.e.,vi = v(xi ), the first-order nodal derivative vector V
′ =
[
v

′
1, v

′
2, . . . , v

′
n

]T
, v

′
i = dv

dx

∣∣∣
xi
can

be computed as V
′ = AV , where A is the first-order derivative weighting coefficient matrix of dimension

n × n and is computed as [63],

Ai j =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
xi−x j

n∏
m=1

m �=i,m �= j

xi−xm
x j−xm

, i �= j

n∑
m �=i
m=1

1
xm−xi

, i = j.
(33)

Based on the GDQM, the unknown functions w (x) , u(x), and ψ(x) in Eq. (30) are discretized to three
vectors W,U , and Ψ where W = [w1, w2, . . . , wn]T ,U = [u1, u2, . . . , un]T, and Ψ = [ψ1, ψ2, . . . , ψn]T.
The associated derivative vectors are approximated as:

⎧
⎪⎨
⎪⎩

W ′
W ′′
W ′′′
W

′′′′

⎫
⎪⎬
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A
B
C
D

⎫
⎪⎬
⎪⎭
W,

⎧⎨
⎩

U ′
U ′′
U ′′′

⎫⎬
⎭ =

⎧⎨
⎩

A
B
C

⎫⎬
⎭U,

⎧⎨
⎩

� ′
� ′′
� ′′′

⎫⎬
⎭ =

⎧⎨
⎩

A
B
C

⎫⎬
⎭� (34)

where B = AA, C = AB, and D = AC.

3.2 Nonlinear vibration of an FG Timoshenko nanobeam

The difficulty encountered in the nonhomogeneous nonlinear boundary conditions (Eq. 28.2) is the fact that
in the Galerkin’s approach the solution of a dynamic system is assumed to be a finite sum of products of
two functions in space and time variables. The space functions must satisfy the boundary conditions that
necessarily should be homogeneous. In order to effectively handle such nonhomogeneous nonlinear boundary
conditions, the solution is assumed to consist of two parts, as shown in Eq. (35). The first part is the static
solution {ws, us, ψs}, in which the nonhomogeneous boundary conditions are considered during its evaluation.
The second part is the dynamic solution {wd , ud , ψd}

w (x, t) = ws (x) + wd(x, t),

u (x, t) = us (x) + ud(x, t),

ψ (x, t) = ψs (x) + ψd(x, t). (35)

3.2.1 Static solution

Dropping the inertia and time-dependent terms in Eq. (30) and substituting Eq. (35), the governing equation
for the static response of FG Timoshenko nanobeam can be achieved as:

k2u
′′
s + k3ψ

′′
s + k4w

′
sw

′′
s + k5w

′
s + k6w

′′′
s + k7ψs = 0, (36.1)

c0w
′′
s + c1w

′′′′
s + c2ψ

′′′
s + c3ψ

′
s + c4

[
u

′′
sw

′
s + u

′
sw

′′
s

]
+ c5

[
ψ

′′
s w

′
s + ψ

′
sw

′′
s

]
+ c6w

′2
s w

′′
s = 0, (36.2)

p2ψ
′′
s + p3u

′′
s + p4w

′
sw

′′
s + p5w

′
s + p6w

′′′
s + p7ψs = 0, (36.3)
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and the following nonhomogeneous boundary conditions of a simply supported nanobeam:
⎧⎪⎪⎪⎪⎨
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11
ξ
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′2
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2C∗
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4
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xy
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2P∗
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1
ξ
w

′′
s + ψ

′
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(37)

Discretization of the governing nonlinear system, Eq. (36), and the nonlinear nonclassical boundary con-
ditions, Eq. (37), by the GDQM result in a nonlinear system of algebraic equations. The Newton method is
implemented to approximate the static response {ws, us, ψs} of the nonlinear system. To improve accuracy
and run time, the Jacobian matrix is derived analytically. For more details, refer to the recent work of Shanab
et al. [8]

3.2.2 Dynamic solution

By inserting Eq. (35) into the nonlinear system (Eq. 30) and making use of Eq. (36), the nonlinear system of
PDEs in the time-dependent variables wd(x, t), ud(x, t), and ψd(x, t) that describe the dynamic response of
an FG Timoshenko nanobeam is obtained as:

k1üd + k2u
′′
d + k3ψ

′′
d + k4

(
w

′
sw

′′
d + w

′′
sw

′
d + w

′
dw

′′
d

)
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′′′
d + k7ψd = 0, (38.1)
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d + w
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p1ψ̈d + p2ψ
′′
d + p3u

′′
d + p4

(
w

′
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d + w

′′
sw

′
d + w

′
dw

′′
d

)
+ p5w

′
d + p6w

′′′
d + p7ψd = 0. (38.3)

Similarly, by substituting Eq. (35) into Eq. (28.1) andmaking use of Eq. (37), the nonlinear boundary conditions
at the simply supported end can be obtained as:
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(39)

3.3 Fundamental nonlinear frequency

For the nonlinear free vibration analysis, the single-mode and multi-mode Galerkin’s method can be used to
convert Eq. (38) to a system of nonlinear ordinary differential equations. At low amplitude ratios, it is found
that the number of modes has a minor effect on the nonlinear frequency ratios of nanobeams [64]. Thus, the
single-mode Galerkin’s method can provide the nonlinear frequency of nanobeams with good accuracy. Here,
the nonlinear dynamics of an FGTimoshenko nanobeam is studied to get the nonlinear free vibration frequency
ΩNL using the single-mode Galerkin method, such that

⎧⎨
⎩

wd(x, t)
ud(x, t)
ψd(x, t)

⎫⎬
⎭ =

⎧⎨
⎩

φw (x) qw(t)
φu(x)qu(t)
φψ(x)qψ(t)

⎫⎬
⎭ (40)

where qw(t), qu(t), and qψ(t) are the time response of the beam corresponding to w, u, and ψ , respectively.
The spatial functions φw(x), φu(x), and φψ(x) represent the linear first-mode shapes corresponding to w, u,
and ψ , respectively. These mode shapes are the eigenvectors of the linear eigenvalue problem, which results
from discretizing the linear problem obtained after dropping the nonlinear terms in Eqs. (38) and (39).
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Substituting Eq. (40) into Eq. (38), multiplying the resulting equations from Eqs. (38.1), (38.2), and (38.3)
by φu , φw, and φψ , respectively, then integrating with respect to x from 0 to 1, the following system of three
nonlinear differential equations can be obtained:

K1q̈u + K2qu + K3qw + K4qψ + K5q
2
w = 0, (41.1)

M1q̈w + M2qw + M3qψ + M4qu + M5quqw + M6qψqw+M7q
2
w+M8q

3
w = 0, (41.2)

P1q̈ψ + P2qψ + P3qu + P4qw + P5q
2
w = 0. (41.3)

The coefficients of Eq. (41) are provided in “Appendix A”. The nonlinear system of ordinary differential
equations Eq. (41) is solved using two different techniques. The first one is the Runge–Kutta method, which
is preferred to study the transient response of the problem. However, the steady-state nonlinear frequency can
be calculated from the three responses qw (t) , qu (t), and qψ(t) obtained after a sufficiently long time. It is
found that the three responses oscillate with the same frequency. The other technique composes discretizing
the differential equations in Eq. (41) by a spectral collocation method [65]; then, the solution is obtained using
the pseudo-arclength continuation method [66]; see “Appendix B”. The later technique is more suitable to
study the steady-state response of the problem under consideration, determine the nonlinear frequency, and
obtain the frequency–response relationship.

4 Model verification

First of all, let us verify the accuracy of the present model and convergence of the solution procedures by
comparing the degenerated results with those reported in the available open literature. For the purpose of
comparison with results based on the Euler–Bernoulli beam theory (EBBT), the present TBTmodel is reduced
to the EBBTmodel by replacing the rotation of the beam cross sectionψ in Eq. (4) withw

′
. On the other hand,

the comparison with the classical beam theory is obtained from the developed model by setting all nonclassical
parameters related to couple stress and surface energy equal to zero (i.e., τ s = E s = ρs = l = 0). In addition,
results for a homogeneous beam are produced from the present model by setting the gradient index equal to
zero (i.e., k = 0).

4.1 Comparison with the available literature

In Table 1, the first three fundamental linear frequencies of simply–simply supported (SS) and clamped–
clamped (CC) homogeneous micro-/nanobeams based on EBBT and the classical analysis are validated with
the results obtained in [67,68]. Additionally, the convergence of GDQM is also investigated using different
grid points n. It is observed that only nine grid points are sufficient for the convergence of GDQM in this
case. Based on the classical theory and EBBT, the dimensionless linear frequencies of a simply supported
power law and sigmoid FGM beam are summarized in Tables 2 and 3, respectively. The results are compared
with the available literature [20,69–71], and good agreement is found. Based on the fully nonclassical (with
the simultaneous effect of surface energy and couple stress) and classical analyses, the fundamental linear

Table 1 Convergence and validation of GDQM for the dimensionless fundamental linear frequencies of simply supported and
clamped–clamped homogeneous beams based on the classical analysis of EBBT (L = 10, L/h = 20, b = h, E = 30MPa,
ρ = 1, ν = 0.24)

Solution method Number of
grid points (n)

Simply supported Clamped–clamped

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

Present GDQM 7 9.8348 45.5596 83.0232 22.3420 62.3166 111.3495
9 9.8595 39.3674 84.5483 22.3447 61.3849 118.9361

11 9.8595 39.3181 87.9463 22.3447 61.3791 119.6679
15 9.8595 39.3171 88.0158 22.3447 61.3790 119.6766
21 9.8595 39.3171 88.0158 22.3447 61.3790 119.6766

Mohamed et al. [67] 9.8595 39.3171 88.0158 22.3447 61.3790 119.6760
Reddy [68] 9.8600 39.3200 88.0200 – – –
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Table 2 Comparison of dimensionless linear classical frequencies of a simply supported power law FG Euler–Bernoulli beam
based on the classical analysis (b = 1µm, L = 10µm, Em = 210GPa, Ec = 390GPa, k = 1)

L/h = 20 L/h = 50 L/h = 100

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

Present (GDQM) 6.9885 27.8602 62.3374 6.9951 27.9653 62.8655 6.9961 27.9804 62.9418
Ebrahimi and Salari [69] 6.9889 – – 6.9951 – – 6.9960 – –
Attia [20] 7.0964 28.2988 63.3502 7.1026 28.3963 63.8392 7.1034 28.4103 63.91
Eltaher et al. [70] 7.0904 28.091 63.6216 7.0852 28.0048 63.1454 7.0833 27.9902 63.0799

Table 3 Comparison of dimensionless linear classical frequencies of a simply supported sigmoid FG Euler–Bernoulli beam based
on the classical analysis (b = 1µm, h = 0.1µm, L = 10µm, Em = 70GPa, Ec = 380GPa, k = 1)

Mode 1 Mode 2 Mode 3

Present GDQM 14.6181 58.4645 131.5162
Hamed et al. [71] 15.7215 58.9333 136.4318

Table 4 Comparison of fundamental linear frequency (MHZ) of a simply supported homogeneous beam based on the classical
and fully nonclassical analyses (E = 90GPa, ρ = 2700, ν = 0.23, l = 6.58µm, λs = 3.4939N/m, μs = −5.4251N/m,
τ s = 0.5689N/m, L = 20 h and b = 2 h)

Beam theory Solution method Classical elasticity theory Couple stress-surface energy theory

h/ l = 1 h/ l = 6 h/ l = 11 h/ l = 16 h/ l = 1 h/ l = 6 h/ l = 11 h/ l = 16

EBBT Present GDQM 6.7222 1.1204 0.6111 0.4201 15.3425 1.1842 0.6217 0.4236
Gao [22] 6.7222 1.1204 0.6111 0.4201 15.3416 1.1841 0.6217 0.4236

TBT Present GDQM 6.6995 1.1166 0.6090 0.4187 15.2474 1.1801 0.6196 0.4222
Gao [22] 6.6995 1.1166 0.6090 0.4187 15.2465 1.1801 0.6196 0.4222

Table 5 Material properties of the constituents of an FGM micro-/nanobeam

Property Aluminum [100] Silicon [100]

Bulk properties
Young’s modulus (GPa) EB

Al = 90 EB
Si = 210

Poisson’s ratio νAl = 0.23 νSi = 0.24
Bulk density (kg/m3) ρB

Al = 2700 ρB
Si = 2331

Material length scale parameter (µm) lAl = 6.58 –
Surface properties
Surface density (kg/m2 × 107) ρs

Al = 5.46 ρs
Si = 3.1688

Surface residual stress (N/m) τ sAl = 0.5689 τ sSi = 0.6056
Surface Lamé modulus (N/m) μs

Al = −5.4251 μs
Si = −2.7779

Surface Lamé modulus (N/m) λsAl = 3.4939 λsSi = −4.4939
Surface elastic modulus (N/m) E s

Al = −7.3563 E s
Si = −10.0497

frequency of simply supported homogeneous nanobeams is obtained using EBBT and TBT and compared
with Gao [22] as reported in Table 4 showing an excellent agreement.

4.2 Comparison of Pseudo-arclength and Runge–Kutta methods

In contrast to the linear frequency response of a dynamic system, the nonlinear frequency response depends
on the nonlinear amplitude. The solution of the nonlinear system of ordinary differential equations (Eq. (41))
provides the frequency–response relationship of the nonclassical nonlinear free vibration of FG nanobeams. As
mentioned in the previous Sect. 3.3, twomethodologies have been employed for solving Eq. (41): Runge–Kutta
method and pseudo-arclength continuation technique.

Based on the developed integrated model that incorporates the simultaneous effects of couple stress and
surface energy (CSSER) and considering the material properties provided in Table 5, the first vibration mode
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Solid lines: Continuation method
Circle marker: Runge-Kutta 

Fig. 2 Comparison of solution methodologies for the frequency response of a simply supported FG nanobeam (k = 1, lm =
6.58µm, lc/lm = 1.5, b = h, L/h = 15, h/ lm = 2)

Solid lines: Continuation method 
Circle marker: Runge-Kutta method 

Fig. 3 Convergence of GDQMwith pseudo-arclength and Runge–Kutta methods for the nonlinear frequency of simply supported
FG nanobeam based on the CSSER model (k = 1, lm = 6.58µm, lc/lm = 1.5, b = h, L/h = 15, h/ lm = 2)

for a simply supported FG Timoshenko beam using Runge–Kutta and pseudo-arclength continuation methods
is illustrated in Fig. 2. These results are obtained at k = 1, lc/lm = 1.5, b = h, L/h = 15, and h/ lm = 2.
It is seen that both methods agree with each other for CSSER as well as the classical analyses. Despite this
agreement, the computational time of the Runge–Kutta method is larger than that of the pseudo-arclength
continuation method. The pseudo-arclength continuation method is only suitable for steady-state responses,
as in this study, while the Runge–Kutta method is sufficient for both transient and steady-state responses.

It should be mentioned that although Eq. (41) governs the response as a function of time (or equivalently,
nonlinear frequency), the coefficients of this equation depend on the computed static responses and the linear
vibration modes. Thus, the effect of the number of grid points n along the beam length on the convergence of
the nonlinear frequency is investigated. Figure 3 shows the dimensionless nonlinear frequency of the simply
supported FG Timoshenko nanobeam at different numbers of grid points and nonlinear amplitudes based on
the CSSER model. It is clear that the present solution methodologies are well converged for n ≥ 11. From
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Table 1 and Fig. 3, it can be concluded that using a considerably smaller number of grid points, GDQM can
obtain very accurate numerical results for linear and nonlinear frequencies.

5 Parametric study

In this Section, the proposed model is utilized to figure out the effect of the various bulk and surface material
parameters on the frequency response of FG Timoshenko micro-/nanobeams, such as the bulk modulus of
elasticity ratio (Er = EB

c /EB
m), dimensionless material length scale parameter (h/ lm, lc/ lm), surface elastic

modulus
(
E s
c, E

s
m

)
, surface residual stress

(
τ sc , τ

s
m

)
, gradient index (k), and beam thickness (h). Also, the

influence of the nonclassical boundary conditions (NCBCs) is investigated for simply supported beams. More-
over, to explore the effect of the homogenization technique of the functionally graded materials, the results
are obtained using power law and sigmoid function schemes.

For this purpose, consider an FGM beammade of aluminum (Al) and silicon (Si) with the bulk and surface
material properties tabulated in Table 5 [22,25,49,62,72,73]. However, there are no available data of the
material length scale parameter for silicon (lSi) or functionally graded materials l(z) in the open literature. In
addition, the relation between the bulk and surface material properties and dimensions needs an experimental
work, which is also not reported in the open literature. Several studies have been performed to investigate the
effect of the material length scale parameter on the response of micro /nanostructures by supposing a range of
h/ l for homogeneous or FGM beams and plates [9,74,75]. To overcome the problem of the unknown value
of lSi, it can be assumed as a ratio of lAL [5,76–78]. In all of the preceding numerical results, the length and
width are selected as the ratios of, respectively, L/h = 15 and b/h = 1, unless other values of the material or
geometrical parameters are mentioned.

5.1 Effect of the bulk modulus of the elasticity ratio

In this study, the effect of the bulk modulus of the elasticity ratio, i.e., Er = EB
c /EB

m, on the linear and
nonlinear vibration responses of FG beams based on the classical analysis is investigated, considering both
sigmoid function and power law for the material gradation. The following results are obtained by keeping the
elastic modulus of the metallic bulk material EB

m constant at 90GPa, while that of the ceramic bulk material
EB
c is controlled by the variation of Er. The dimensions are as follows: h = 2lm = 13.16µm, b = h, and

L = 15 h. It is seen from Fig. 4 that increasing the ratio Er increases the bulk equivalent stiffness Dxx , defined
in Eq. (17.1), of both SIG-FG and PL-FG beams. On the other hand, as the gradient index increases, Dxx
is slightly decreased for SIG-FG and increased for PL-FG beam. However, employing SIG-FG or PL-FG

Fig. 4 Variation of the bulk equivalent stiffness Dxx of an FGmicrobeamwith the bulk modulus of elasticity ratio and the gradient
index, a SIG-FG and b PL-FG



1992 R. A. Shanab et al.

Fig. 5 Variation of the dimensionless fundamental linear frequency of a simply supported FG microbeam with Er and k based
on the classical analysis, a SIG-FG and b PL-FG

(a) SIG-FG

Solid lines: k=0.5
Circle marker: k=1
Square marker: k=2

(b) PL-FG

Solid lines: k=0.5
Circle marker: k=1
Square marker: k=2

Fig. 6 Variation of the dimensionless fundamental nonlinear frequency versus the maximum nonlinear amplitude of a simply
supported FG microbeam at different values of Er and k based on the classical analysis, a SIG-FG and b PL-FG

homogenization technique leads to the same beam stiffness at k = 1, and consequently, they yield an identical
vibration response.

Based on the results shown in Fig. 4, increasing the ratio Er noticeably increases the dimensionless
fundamental linear and nonlinear frequencies of the simply supported FG beam, as figured out in Figs. 5 and
6, respectively. Table 6 tabulates the dimensionless fundamental linear and nonlinear frequencies of the simply
supported and clamped–clamped beams for different values of Er and k. From these results, it is seen that
the effects of Er and k on the fundamental linear and nonlinear frequencies show a similar trend as the linear
frequency is the starting value for estimating the nonlinear frequency. The fundamental frequencies of the
simply supported and clamped–clamped beams are influenced by Er and k in a similar way, except that the
frequencies of the clamped–clamped beam are larger than those of the simply supported due to the additional
stiffness induced by the clamped end. In addition, increasing the gradient index significantly decreases or
increases the effect of the ratio Er in the case of SIG-FG and PL-FG beams, respectively. For a simply
supported beam at Qw = 0.2, changing Er from 1.5 to 4.744, i.e., EB

c changes from 135 to 427GPa (SiC),
respectively, the fundamental nonlinear frequency of simply supported microbeam is increased by 47.6, 43.2,
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Table 6 Dimensionless fundamental linear and nonlinear frequencies of simply supported and clamped–clamped SIG-FG and
PL-FG microbeams based on the classical analysis (h = 2lm, b = h, L/h = 15)

Er k Simply supported Clamped–clamped

ΩL ΩNL ΩL ΩNL

Qw = 0.1 0.2 0.3 Qw = 0.1 0.2 0.3

Sigmoid FG material distribution
1.50 0.5 12.2222 12.5304 13.4004 14.7291 27.0636 27.1967 27.4790 28.0105

1 12.1804 12.4899 13.3647 14.7080 26.9752 27.0781 27.4171 27.9111
2 12.1331 12.4410 13.3207 14.675 26.8748 26.9784 27.3158 27.8147

2.333 0.5 13.9727 14.3217 15.3511 16.9029 30.9536 31.0615 31.4677 32.0601
1 13.7782 14.1556 15.1707 16.7503 30.5413 30.6597 31.0489 31.6824
2 13.5568 13.9233 14.9779 16.5523 30.0711 30.1979 30.6022 31.2050

4.744 0.5 17.9299 18.4100 19.7796 21.8335 39.7591 39.9432 40.4446 41.2259
1 17.2297 17.7279 19.1364 21.2711 38.2686 38.4808 38.9552 39.8249
2 16.4115 16.9443 18.4063 20.6199 36.5178 36.7089 37.2744 38.1371

Power law FG material distribution
1.50 0.5 11.7307 12.0177 12.8519 14.1242 25.9695 26.075 26.3145 26.8832

1 12.1804 12.4899 13.3647 14.7080 26.9752 27.0781 27.4171 27.9111
2 12.5970 12.9290 13.8581 15.2739 27.9108 28.007 28.3544 28.9563

2.333 0.5 12.9431 13.2737 14.2038 15.6167 28.6641 28.7865 29.0932 29.6993
1 13.7782 14.1556 15.1707 16.7503 30.5413 30.6597 31.0489 31.6824
2 14.5882 14.9914 16.1156 17.8273 32.3608 32.4674 32.9261 33.6366

4.744 0.5 15.5332 15.9628 17.1574 18.9666 34.4578 34.6668 35.0684 35.7621
1 17.2297 17.7279 19.1364 21.2711 38.2686 38.4808 38.9552 39.8249
2 18.9837 19.5603 21.1560 23.5567 42.1870 42.4171 42.9649 43.9465

and 38.2% (SIG-FG) and 33.5, 43.2, and 52.7% (PL-FG) for k of 0.5, 1, and 2, respectively. The effect of the
ratio Er on the linear vibration response is found to be slightly lower than on the nonlinear response.

Moreover, as the vibration amplitude increases, the fundamental nonlinear frequency of the FG beams
increases. In addition, incorporating the geometrical nonlinearity due to von Kármán’s strain increases the
frequencies as the beambecomes stiffer. However, the influence of the geometrical nonlinearity on the vibration
response of a simply supported beam is higher than that of a clamped–clamped beam as its contribution depends
on the structure degree of freedom, i.e., the degree of freedom of a simply supported end is higher than for the
clamped–clamped end type.

5.2 Effect of the material length scale parameter

The microstructure length scale parameter introduced in MCST is an inherent material parameter, and thus, it
may have different values for differentmaterials. The length scale parameter for specificmaterials is determined
experimentally [79,80] or using the atomistic simulations method [81]. Since the material length scale param-
eter is not experimentally determined for all different materials, some developed formulations of functionally
graded microbeams were based on the assumption of constant material length scale parameter [9,74,75]. The
present model treats the material length scale parameter as a variable according to the proposed gradation
schemes. The material length scale parameter of the metallic constituent is held constant at lm = 6.58µm, as
provided in Table 5, and that of the ceramic constituent is taken as a ratio of lm as (lc/ lm) [5,76–78]. The results
in this parametric study are obtained based on incorporating the effect of microstructure only (CS analysis).

Figure 7 demonstrates the variation of the dimensionless fundamental linear frequency of the simply
supported FG microbeams versus the material length scale parameter ratio (lc/ lm) and the gradient index (k).
It is depicted that increasing the ratio lc/ lm increases the stiffness–hardening of the microbeam, and hence, the
fundamental linear frequency increases. For the same ratio lc/ lm, employing the SIG-FG law yields a higher
linear frequency compared with PL-FG lawwhen k < 1, whereas an opposite behavior is detected when k > 1.
Such behavior can be explained in light of the fact that the in-plane shear stiffness coefficient (Sxy) is the only
quantity that depends on l(z), as shown in Eq. (17.1). It is noticed from Fig. 8 that for a certain value of the ratio
lc/ lm, Sxy of SIG-FG is higher than that of PL-FG microbeam for k less than unity and vice versa for k larger
than unity. In Fig. 9, the dimensionless fundamental linear frequency of the simply supported FG microbeam
is presented as a function of the ratio lc/ lm and h/ lm at k = 0.5. For a better illustration, selected numerical
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Fig. 7 Variation of the dimensionless fundamental linear frequency of a simply supported FG microbeam with lc/ lm and k based
on the CS analysis (lm = 6.58µm, b = h, L/h = 15, h/ lm = 2), a SIG-FG and b PL-FG

Fig. 8 Variation of the in-plane shear stiffness coefficient Sxy of an FG microbeam with lc/ lm and k (lm = 6.58µm, b = h,
L/h = 15, h/ lm = 2), a SIG-FG and b PL-FG

values of the dimensionless fundamental linear frequency of the simply supported and clamped–clamped FG
nanobeams are tabulated in Tables 7 and 8 for different values of lc/ lm, h/ lm, and k, considering SIG-FG and
PL-FG laws. The results show that the dimensionless linear frequencies predicted by the classical microbeam
model are independent of the material length scale parameters, and their values are lower than those computed
based on the couple stress analysis. This is attributed to that incorporating the effect of couple stress makes a
microbeam stiffer and consequently leads to an increase in the vibration frequencies. Generally, this effect can
be ignored when h/ lm becomes large as demonstrated in Fig. 9. Additionally, it is noticed that as the material
length scale parameter of the ceramic component becomes larger compared to that of the metallic component
(lc/ lm), the vibration frequency of the FG microbeam becomes larger significantly.

In addition, based on the results in Figs. 8 and 9 and Tables 7 and 8, it is observed that the values of the
fundamental linear frequencies based on a position-independent material length scale parameter, i.e., lc = lm,
are distinctly different from those predicted based on a position-dependent material length scale parameter,
i.e., lc �= lm, especially with the growth of lc/ lm or lm/h. With the increase in h/ lm, the effect of the material
length scale parameter ratio becomes inconspicuous. Also, the effect of the material length scale parameter
ratio on increasing the fundamental linear frequency of both SIG-FG and PL-FG microbeams becomes more
notable as the gradient index increases. For the simply supported FG microbeam with h/ lm = 2, increasing
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Fig. 9 Variation of the dimensionless fundamental linear frequency of a simply supported FG microbeam with lc/ lm and h/ lm
based on the CS analysis (lm = 6.58µm, b = h, L/h = 15, k = 0.5), a SIG-FG and b PL-FG

Table 7 Dimensionless fundamental linear frequency of simply supported SIG-FG and PL-FGmicrobeams based on CS analysis
(lm = 6.58µm, b = h, L/h = 15)

lc
lm

h/ lm = 1 h/ lm = 2 h/ lm = 5

Gradient index k

0.5 1 2 10 0.5 1 2 10 0.5 1 2 10

Sigmoid FG material distribution
1/2 25.4712 25.1341 24.7274 24.1036 17.5841 17.3453 17.0651 16.6886 14.6116 14.4093 14.1775 13.9041
1.0 31.9120 31.8263 31.7296 31.6197 20.0732 19.9379 19.7849 19.6129 15.1181 14.9384 14.7343 14.5043
3/2 38.9180 39.3682 39.9156 40.8471 23.0221 23.1320 23.2764 23.5849 15.7807 15.6627 15.5347 15.4283
2.0 46.1709 47.2752 48.5871 50.7138 26.2693 26.7034 27.2321 28.1468 16.5803 16.5563 16.5428 16.6212
CL 20.2534 20.2933 20.3542 20.5358 15.7832 15.6676 15.5423 15.4403 14.2781 14.0978 13.8939 13.6710
Power law FG material distribution
1/2 25.1978 25.1341 24.8815 24.6137 16.8848 17.3453 17.7422 18.7219 13.6517 14.4093 15.1377 16.6964
1.0 29.4069 31.8263 34.1779 37.7377 18.5321 19.9379 21.3040 23.6124 13.9908 14.9384 15.8583 17.6637
3/2 34.1081 39.3682 44.6042 52.2470 20.4887 23.1320 25.7823 29.8923 14.4235 15.6627 16.8961 19.1366
2.0 39.0976 47.2752 55.3695 66.9458 22.6716 26.7034 30.7605 36.8208 14.9414 16.5563 18.1960 21.0074
CL 21.8114 20.2933 18.8265 17.3603 15.6489 15.6676 15.7566 16.5579 13.4133 14.0978 14.7815 16.3262

Table 8 Dimensionless fundamental linear frequency of clamped–clamped SIG-FG and PL-FGmicrobeams based on CS analysis
(lm = 6.58µm, b = h, L/h = 15)

lc
lm

h/ lm = 1 h/ lm = 2 h/ lm = 5

Gradient index k

0.5 1 2 10 0.5 1 2 10 0.5 1 2 10

Sigmoid FG material distribution
1/2 56.0205 55.3198 54.4711 53.1571 38.9371 38.4309 37.8350 37.0286 32.3726 31.9431 31.4498 30.8658
1.0 69.5689 69.4113 69.2331 69.0291 44.3813 44.1050 43.7921 43.4392 33.4964 33.1176 32.6865 32.1995
3/2 83.8204 84.7378 85.8477 87.7140 50.7694 51.0249 51.3567 52.0429 34.9630 34.7213 34.4593 34.2466
2.0 97.9681 100.0840 102.5752 106.5512 57.7203 58.6619 59.8043 61.7614 36.7282 36.6940 36.6849 36.8802
CL 44.7737 44.8789 45.0320 45.4492 34.9686 34.7321 34.4761 34.2732 31.6308 31.2501 30.8187 30.3467
Power law FG material distribution
1/2 55.2798 55.3198 54.9105 54.4210 37.3658 38.4309 39.3478 41.5093 30.2378 31.9431 33.5812 37.0177
1.0 64.0949 69.4113 74.5777 82.3139 40.9638 44.1050 47.1570 52.2420 30.9900 33.1176 35.1820 39.1667
3/2 73.7057 84.7378 95.6496 111.4061 45.2076 51.0249 56.8478 65.7953 31.9479 34.7213 37.4800 42.4254
2.0 83.6071 100.0840 116.1171 138.6084 49.9025 58.6619 67.4353 80.4094 33.0922 36.6940 40.3477 46.5438
CL 48.0574 44.8789 41.7343 38.4935 34.6516 34.7321 34.9564 36.7092 29.7082 31.2501 32.7879 36.1922
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(a) SIG-FG (b) PL-FG

Fig. 10 Variation of the dimensionless fundamental nonlinear frequency versus the maximum nonlinear amplitude of a simply
supported FG microbeam at different values of lc/ lm and h/ lm based on the CS analysis (lm = 6.58µm, b = h, L/h = 15,
k = 0.5), a SIG-FG and b PL-FG. Solid lines: at h/ lm = 2; circle markers: at h/ lm = 5

Table 9 Combined effects of lm/ lc and h/ lm on the dimensionless fundamental nonlinear frequency of simply supported SIG-FG
and PL-FG microbeams based on CS analysis (lm = 6.58µm, b = h, L/h = 15)

Qw
lc
lm

h/ lm = 1 h/ lm = 2 h/ lm = 5

Gradient index k

0.5 1 2 10 0.5 1 2 10 0.5 1 2 10

Sigmoid FG material distribution
0.1 1/2 25.6847 25.3546 24.9529 24.3170 17.8673 17.6401 17.3579 16.9928 14.9541 14.7581 14.5389 14.2573

1.0 32.0979 31.9935 31.8872 31.8052 20.3247 20.1906 20.0393 19.8658 15.4557 15.2740 15.0735 14.8471
3/2 39.0261 39.5575 40.0774 40.9666 23.2481 23.3577 23.5080 23.8117 16.0885 15.9908 15.8715 15.7530
2.0 46.2714 47.3732 48.7372 50.7870 26.4696 26.9129 27.4451 28.3693 16.8759 16.8569 16.8543 16.9253
CL 20.5054 20.5416 20.5868 20.7782 16.0941 15.9923 15.8567 15.7593 14.6332 14.4561 14.2642 14.0370

0.2 1/2 26.2328 25.9325 25.5417 24.9199 18.6893 18.4827 18.2006 17.8789 15.9361 15.7499 15.5248 15.2964
1.0 32.5497 32.4625 32.3417 32.2863 21.0673 20.9315 20.7777 20.6149 16.3942 16.2301 16.0448 15.8345
3/2 39.4800 39.9539 40.4210 41.4053 23.8580 23.9825 24.1288 24.4152 17.0235 16.9012 16.8017 16.6758
2.0 46.6088 47.7007 48.9851 51.1175 27.0263 27.4702 27.9414 28.8581 17.7608 17.7282 17.7247 17.8089
CL 21.2224 21.2683 21.3352 21.5142 17.0130 16.9078 16.7800 16.7099 15.6319 15.4710 15.2802 15.0878

0.3 1/2 27.2439 26.8781 26.5004 25.9280 20.0161 19.7833 19.5408 19.2229 17.4358 17.2673 17.0844 16.8329
1.0 33.3818 33.1921 33.1202 33.0594 22.2140 22.1092 21.9575 21.8267 17.8463 17.7037 17.5421 17.3462
3/2 40.0719 40.4973 41.0253 41.9328 24.9505 24.9966 25.1682 25.4989 18.4315 18.3403 18.2200 18.1444
2.0 47.2811 48.2769 49.4401 51.6084 27.9449 28.3611 28.8680 29.7388 19.1057 19.1079 19.0826 19.1640
CL 22.3840 22.4247 22.4698 22.6707 18.4430 18.3508 18.2348 18.1351 17.1549 17.0073 16.8460 16.6480

Power law FG material distribution
0.1 1/2 25.3950 25.3546 25.1374 24.9154 17.1312 17.6401 18.0613 19.0993 13.9531 14.7581 15.5208 17.1232

1.0 29.5603 31.9935 34.3453 37.9057 18.7723 20.1906 21.5668 23.9119 14.2947 15.2740 16.2259 18.0750
3/2 34.2267 39.5575 44.7688 52.3156 20.6925 23.3577 26.0353 30.1218 14.7094 15.9908 17.2433 19.5071
2.0 39.2112 47.3732 55.5088 66.9282 22.8715 26.9129 30.9556 37.0318 15.2304 16.8569 18.5124 21.3482
CL 21.9875 20.5416 19.1405 17.7731 15.9133 15.9923 16.1206 16.9908 13.7340 14.4561 15.1745 16.7621

0.2 1/2 25.8590 25.9325 25.8258 25.7399 17.8630 18.4827 19.0337 20.1998 14.8367 15.7499 16.6248 18.3257
1.0 30.0110 32.4625 34.8631 38.4732 19.4289 20.9315 22.3804 24.8112 15.1685 16.2301 17.2768 19.2171
3/2 34.6127 39.9539 45.0569 52.9138 21.3096 23.9825 26.6802 30.8561 15.5690 16.9012 18.2241 20.5945
2.0 39.5562 47.7007 55.6216 67.2833 23.4023 27.4702 31.5546 37.6293 16.0330 17.7282 19.4547 22.3299
CL 22.5668 21.2683 20.0322 18.9264 16.6946 16.9078 17.1907 18.2076 14.6303 15.4710 16.2965 17.9948

0.3 1/2 26.6628 26.8781 26.9205 27.1325 19.0296 19.7833 20.4983 21.8735 16.2117 17.2673 18.2772 20.1939
1.0 30.6557 33.1921 35.6690 39.4603 20.5043 22.1092 23.6521 26.2043 16.5029 17.7037 18.9002 20.9833
3/2 35.2319 40.4973 45.7937 53.4221 22.3094 24.9966 27.7504 31.9725 16.8712 18.3403 19.7677 22.2636
2.0 40.1145 48.2769 56.3905 68.0568 24.3347 28.3611 32.4663 38.4916 17.3273 19.1079 20.9087 23.8761
CL 23.4937 22.4247 21.4404 20.7400 17.9310 18.3508 18.8037 20.0769 16.0187 17.0073 17.9894 19.8704
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Table 10 Combined effects of lm/ lc and h/ lm on the dimensionless fundamental nonlinear frequency of clamped–clamped
SIG-FG and PL-FG microbeams based on CS analysis (lm = 6.58µm, b = h, L/h = 15)

Qw
lc
lm

h/ lm = 1 h/ lm = 2 h/ lm = 5

Gradient index k

0.5 1 2 10 0.5 1 2 10 0.5 1 2 10

Sigmoid FG material distribution
0.1 1/2 56.1318 55.4722 54.4243 53.2278 39.0852 38.5029 37.9265 37.1340 32.5015 32.0973 31.5506 30.9879

1.0 69.9449 69.4016 69.2129 69.1096 44.4406 44.2813 43.9362 43.4949 33.6082 33.2397 32.8184 32.2597
3/2 83.4346 84.5114 86.2404 87.5991 50.9004 51.1732 51.4631 52.1387 35.1250 34.8477 34.6071 34.3437
2.0 98.0608 100.2685 102.9438 106.6455 57.7926 58.7170 59.7213 61.8256 36.8726 36.7871 36.8034 37.0209
CL 44.9190 44.9227 45.2226 45.6211 35.0585 34.8743 34.5971 34.4114 31.7955 31.3987 30.9664 30.5025

0.2 1/2 56.1564 55.5897 54.6612 53.3943 39.3397 38.8177 38.2865 37.4764 32.8298 32.4661 31.9502 31.3977
1.0 69.6648 69.6579 69.3172 69.3628 44.7986 44.4850 44.2409 43.9324 34.0001 33.6162 33.1275 32.6769
3/2 84.2303 84.6345 86.3403 87.9538 51.0266 51.2495 51.6237 52.3896 35.3958 35.1316 34.9288 34.7103
2.0 98.3963 100.5292 102.7992 106.7250 58.0578 59.0873 60.0221 61.9719 37.1132 37.1319 37.1507 37.2968
CL 45.1444 45.2348 45.4261 45.7413 35.4453 35.2190 34.9793 34.7641 32.1404 31.7353 31.2933 30.7922

0.3 1/2 56.7146 55.8709 55.2513 53.8603 39.8510 39.3156 38.7457 38.0284 33.4748 33.0167 32.6028 32.0245
1.0 69.9685 69.9151 69.9638 69.6583 45.1368 44.9278 44.5772 44.2274 34.5089 34.1773 33.7955 33.2938
3/2 84.5056 85.4650 86.1174 88.1129 51.4524 51.7400 52.1092 52.6845 35.9648 35.7288 35.5096 35.3094
2.0 98.3678 100.5876 103.1445 106.6069 58.3316 59.1097 60.2965 62.4401 37.6751 37.6777 37.6063 37.8683
CL 45.4790 45.6916 45.7997 46.1226 35.9547 35.7583 35.4574 35.2952 32.7310 32.3629 31.9593 31.5545

Power law FG material distribution
0.1 1/2 55.1481 55.4722 55.0410 54.5088 37.5013 38.5029 39.5259 41.7150 30.3601 32.0973 33.7094 37.1752

1.0 64.3301 69.4016 74.7415 82.6563 40.9998 44.2813 47.2811 52.3756 31.0722 33.2397 35.3480 39.3342
3/2 73.7354 84.5114 95.8253 111.3791 45.3217 51.1732 56.9717 65.8834 32.0388 34.8477 37.5959 42.5740
2.0 83.3120 100.2685 115.8341 138.9459 49.9111 58.7170 67.5889 80.6374 33.2227 36.7871 40.4416 46.6443
CL 48.0578 44.9227 41.8271 38.6160 34.7123 34.8743 35.0492 36.8645 29.8333 31.3987 32.8974 36.3317

0.2 1/2 55.5554 55.5897 55.2090 54.8579 37.7365 38.8177 39.8612 42.0934 30.6486 32.4661 34.1178 37.6381
1.0 64.1769 69.6579 74.6252 82.5946 41.2955 44.4850 47.5763 52.7331 31.4225 33.6162 35.7042 39.7764
3/2 73.8740 84.6345 95.5707 111.2685 45.4909 51.2495 57.1973 65.9776 32.3686 35.1316 38.0063 43.0235
2.0 84.0862 100.5292 116.1699 138.4749 50.2016 59.0873 67.6864 80.8686 33.5227 37.1319 40.7872 46.9709
CL 48.3154 45.2348 42.2417 39.1117 35.0421 35.2190 35.5081 37.2916 30.1821 31.7353 33.2971 36.7139

0.3 1/2 55.7669 55.8709 55.7296 55.3663 38.1656 39.3156 40.3796 42.7086 31.2107 33.0167 34.7860 38.3627
1.0 64.5728 69.9151 75.1013 83.1697 41.7323 44.9278 48.0346 53.1556 31.8875 34.1773 36.3257 40.4887
3/2 74.1538 85.4650 95.8211 111.9751 45.9003 51.7400 57.6725 66.5387 32.8640 35.7288 38.6136 43.5397
2.0 84.1065 100.5876 117.1220 138.2415 50.5682 59.1097 67.9540 80.9957 34.0228 37.6777 41.3641 47.5672
CL 48.6424 45.6916 42.7470 39.7931 35.4923 35.7583 36.1331 38.0173 30.7181 32.3629 34.0484 37.5595

lc/ lm from 0.5 to 2 shows an increase in the dimensionless linear frequency by about 49.4, 54, 68.7% (SIG-FG)
and 34.3, 54, 96.7% (PL-FG) for a gradient index k of 0.5, 1, 10, respectively. In addition, as the dimensionless
material length scale parameter h/ lm increases from 1 to 5 and at k = 0.5, the dimensionless linear frequency
is decreased by about 42.6, 52.6, 64.1% (SIG-FG) and 45.8, 52.4, 61.8% (PL-FG) for lc/ lm of 0.5, 1, and 2,
respectively. In addition, it is noticeable that the effect of the ratio lc/ lm on the fundamental linear frequency
of the simply supported and clamped–clamped FG microbeams is similar to a negligible difference.

Considering the nonlinear vibration response, the dimensionless fundamental nonlinear frequency ΩNL
versus themaximumnonlinear vibration amplitude Qw is plotted in Fig. 10 for various values of the ratio lc/ lm,
two different values of h/ lm of 2 and 5, and k = 0.5. Tables 9 and 10 include the values of ΩNL at different
Qw, lc/ lm, h/ lm, and k. It is noticed that the combined effects of geometric nonlinearity and couple stress
result in more hardening for the simply supported FG microbeam when compared with the clamped–clamped
one. Also, the influences of lc/ lm and h/ lm on ΩNL of the clamped–clamped FG microbeam are slightly
larger than those for a simply supported microbeam, and these influences are much more significant when the
gradient index increases. As mentioned before, this is attributed to that the microbeam becomes stiffer as lc
becomes larger than lm or lm is smaller than h. One can notice that the dimensionless nonlinear frequency is
considerably increased by increasing lc/ lm and significantly reduced by decreasing h/ lm. For Qw = 0.2 and
h/ lm = 2, as lc/ lm increases from 0.5 to 2, ΩNL increases by about 44.6, 48.6, and 61.4% (SS SIG-FG), 31,
48.6, and 86.3% (SS PL-FG), 47.6, 52.2, and 65.4% (CC SIG-FG), and 33, 52.2, and 92.1% (CC PL-FG) for k
of 0.5, 1, and 10, respectively. Also, ΩNL of the clamped–clamped FGmicrobeam changes slightly by varying
Qw. In addition, comparing the results in Tables 7 , 8, 9, and 10, it is depicted that the effects of lc/ lm and
h/ lm on the nonlinear frequency response are less significant than those on the linear response.
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Fig. 11 Variation of the dimensionless fundamental linear frequency of SIG-FGandPL-FGnanobeamswith E s
m and E s

c (k = 0.5),
a simply supported with NCBCs, b simply supported with CBCs, and c clamped–clamped

However, the obtained results reveal that the dimensionless linear and nonlinear frequencies are very sen-
sitive to the variations in the ratio lc/ lm, especially at h/ lm = 1. In addition, the effect of h/ lm is considerably
influenced by lc/ lm. At k = 0.5 and Qw = 0.2, increasing h/ lm of a simply supported microbeam from 1 to
5 reduces ΩNL by about 39.9, 49.6, and 61.9% (SS SIG-FG), 42.6, 49.5, and 59.5% (SS PL-FG), 41.5, 51.2,
and 62.3% (CC SIG-FG), and 44.8, 51, and 60.1% (CC PL-FG) for lc/ lm of 0.5, 1, and 2, respectively. It
can be generally concluded that the material length scale parameter should be considered as spatial-dependent
function (l(z)) in either a linear or nonlinear analysis of small-scale FG beams, as proposed in the present
study.

5.3 Effect of surface energy

The effect of surface parameters, surface elasticity modulus (E s(z)), and surface residual stress (τ s(z)), on the
linear and nonlinear vibration responses is explored for FG simply supported and clamped–clamped nanobeams
with h = 20 nm, b = h, and L/h = 15. Both sigmoid and power law gradation schemes are investigated
using the bulk and surface material properties provided in Table 5, in the absence of a microstructure effect.
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Fig. 12 Variation of the dimensionless fundamental nonlinear frequency versus the maximum nonlinear amplitude of a simply
supported FG nanobeam at different values of E s

m and E s
c (k = 0.5), a SIG-FG and b PL-FG

5.3.1 Effect of surface elastic modulus

The influence of the surface elasticity modulus of the metallic and ceramic constituents, E s
m and E s

c, respec-
tively, on the dimensionless linear frequency of FG nanobeams at k = 0.5 is demonstrated in Fig. 11 when
the surface residual stress is ignored. Figure 12 shows the variation of the dimensionless nonlinear frequency
of the simply supported FG nanobeams versus the nonlinear amplitude at different values of E s

m and E s
c. The

dimensionless fundamental linear and nonlinear frequencies in this study are tabulated in Tables 11 and 12.
From these results, it can be easily found that the positive surface modulus of elasticity of the metallic (E s

m) or
the ceramic material (E s

c) increases the first-mode linear frequencies. The main trend is that the fundamental
linear and nonlinear frequencies are slightly increased by increasing E s

m and E s
c simultaneously or individually.

The effects of E s
m and E s

c, when the bulkmaterial follows SIG-FG, are lower than thosewhen following PL-FG.
Also, the surface elasticity moduli have a slight impact on the fundamental nonlinear frequency compared with
the linear frequency. Generally, it can be concluded that the positive surface elasticity moduli add stiffness to
the system and thus result in larger linear and nonlinear frequencies, whereas an opposite effect is noticed for
negative values.

5.3.2 Effect of surface residual stress

The dimensionless fundamental linear frequency of FG nanobeams versus the surface residual stresses (τ sm
and τ sc ) is shown in Fig. 13 at k= 0.5 and E s

c = E s
m= 0, while the variation of the dimensionless fundamental

nonlinear frequency versus the amplitude of nonlinearity is depicted in Fig. 14 for various values of τ sm and τ sc .
The values of the dimensionless linear and nonlinear frequencies of the simply supported and clamped–clamped
FG nanobeams are provided in Tables 13 and 14 for different values of τ sm, τ sc , k, and nonlinear amplitude.
In view of these results, it can be seen that the positive values of the surface residual stresses increase the
fundamental linear and nonlinear frequencies, and negative values tend to decrease the frequencies. Like the
effect of surface elasticity moduli, positive surface residual stresses stiffen the FG nanobeam and in turn lead
to higher linear and nonlinear frequencies. The presence of the surface residual stresses dependent terms in
simply supported boundary conditions (NCBCs), i.e., P∗

1 /2 and C∗
1/2 in Eq. (28.1) acts as self-excitation

loading and causes deformation of the FG nanobeam at no external load. As a consequence, the impact of the
surface residual stress on the linear and nonlinear frequencies of simply supported FG nanobeams is larger
than that of clamped–clamped ends. Comparing between Figs. 11 and 13 as well as Figs. 12 and 14 shows that
the effect of the surface residual stress on the frequency response is considerably more pronounced than that
of the surface elasticity modulus.
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Table 11 Combined effects of E s
m, E

s
c, and k on the dimensionless fundamental linear frequency of FG nanobeams (h = 20 nm,

b = h, L/h = 15, E s
m0 = −7.3563N/m, E s

c0 = −10.0497N/m)

Es
c

Es
c0

Es
m

Es
m0

Simply supported Clamped–clamped

Gradient index k

0.5 1 2 0.5 1 2

Sigmoid FG material distribution
1 1 13.5927 13.4078 13.1954 30.1248 29.7333 29.2824

0 13.6668 13.4855 13.2761 30.2817 29.8980 29.4540
−1 13.7401 13.5622 13.3558 30.4367 30.0606 29.6233

0 1 13.6542 13.4693 13.2584 30.2549 29.8638 29.4164
0 13.7283 13.5470 13.3391 30.4119 30.0285 29.5878
−1 13.8017 13.6238 13.4188 30.5670 30.1912 29.7570

−1 1 13.7149 13.5301 13.3208 30.3835 29.9927 29.5489
0 13.7892 13.6079 13.4015 30.5405 30.1575 29.7203
−1 13.8626 13.6848 13.4812 30.6957 30.3202 29.8894

Power law FG material distribution
1 1 12.5969 13.4078 14.2124 27.9097 29.7333 31.5396

0 12.6793 13.4855 14.2823 28.0841 29.8980 31.6883
−1 12.7607 13.5622 14.3515 28.2560 30.0606 31.8353

0 1 12.6574 13.4693 14.2783 28.0375 29.8638 31.6796
0 12.7399 13.5470 14.3482 28.2121 30.0285 31.8282
−1 12.8214 13.6238 14.4175 28.3841 30.1912 31.9752

−1 1 12.7171 13.5301 14.3436 28.1637 29.9927 31.8182
0 12.7997 13.6079 14.4135 28.3383 30.1575 31.9668
−1 12.8813 13.6848 14.4828 28.5105 30.3202 32.1137

Table 12 Combined effects of E s
m, E

s
c, and k on the dimensionless fundamental nonlinear frequencyofFGnanobeams (h = 20 nm,

b = h, L/h = 15, E s
m0 = −7.3563N/m, E s

c0 = −10.0497N/m)

Es
c

Es
c0

Es
m

Es
m0

Simply supported Clamped–clamped

k = 0.5 k = 2.0 k = 0.5 k = 2.0

Qw = 0.1 0.2 0.3 Qw = 0.1 0.2 0.3 Qw = 0.1 0.2 0.3 Qw = 0.1 0.2 0.3

Sigmoid FG material distribution
1 1 13.9437 14.9495 16.4684 13.5529 14.5881 16.1358 30.2612 30.6640 31.1988 29.3844 29.8084 30.4099

0 14.0116 15.0204 16.5424 13.6277 14.6676 16.2175 30.3869 30.8206 31.4475 29.5478 29.9878 30.5947
−1 14.0941 15.0859 16.6039 13.7150 14.7355 16.3183 30.5668 30.8731 31.5436 29.7554 30.1576 30.7185

0 1 14.0065 15.0063 16.5208 13.6261 14.6619 16.2217 30.4101 30.7134 31.3623 29.5375 29.9319 30.5370
0 14.0857 15.0711 16.5973 13.6946 14.7275 16.2926 30.4875 30.9264 31.5056 29.6979 30.1137 30.7226
−1 14.1584 15.1600 16.6903 13.7817 14.8062 16.3801 30.6612 31.0880 31.6625 29.8601 30.2558 30.8863

−1 1 14.0672 15.0852 16.5807 13.6857 14.7176 16.2911 30.5039 30.9001 31.4495 29.6864 30.0878 30.6779
0 14.1415 15.1476 16.6752 13.7597 14.8011 16.3674 30.6647 31.0362 31.6787 29.8845 30.1948 30.8920
−1 14.2107 15.2126 16.7384 13.8309 14.8697 16.4480 30.8145 31.1503 31.7435 30.0276 30.3813 30.9927

Power law FG material distribution
1 1 12.9138 13.8302 15.2223 14.6148 15.7220 17.4020 28.0558 28.3686 28.8752 31.6706 32.0816 32.7553

0 13.0080 13.9156 15.2981 14.6770 15.7892 17.4575 28.2047 28.5120 29.0641 31.8417 32.2512 32.8861
−1 13.0791 13.9935 15.3826 14.7432 15.8690 17.5333 28.3828 28.7199 29.2439 31.9748 32.4217 33.0657

0 1 12.9717 13.8889 15.2819 14.6756 15.7915 17.4584 28.1634 28.4720 29.0132 31.7870 32.2018 32.9379
0 13.0690 13.9723 15.3611 14.7313 15.8433 17.5549 28.3601 28.6437 29.2145 31.9347 32.3444 33.0629
−1 13.1472 14.0562 15.4560 14.8080 15.9269 17.6167 28.4673 28.8665 29.3600 32.1588 32.5002 33.2058

−1 1 13.0305 13.9539 15.3496 14.7394 15.8591 17.5412 28.2761 28.5829 29.1416 31.9891 32.3615 33.0338
0 13.1102 14.0288 15.4274 14.8173 15.9223 17.6005 28.4063 28.7957 29.3075 32.0932 32.5156 33.2407
−1 13.2127 14.1156 15.5039 14.8712 15.9889 17.6834 28.6069 28.9722 29.5041 32.2536 32.6894 33.3397
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Fig. 13 Variation of the dimensionless fundamental linear frequency for SIG-FG and PL-FG nanobeamswith τ sm and τ sc (k = 0.5),
a simply supported with NCBCs, b simply supported with CBCs, and c clamped–clamped

5.4 Effect of the nonclassical boundary conditions

One of the contributions in the developed model and proposed solution procedure is applying the nonclassical
(nonideal) boundary conditions (NCBCs) for simply supported FG nanobeams, represented by Eq. (28.1).
In NCBCs besides, the nonlinearity in the boundaries’ equations, there is a part of surface energy effect
which contributes as an internal excited loading in the case of simply supported FG nanobeams. The effect of
NCBCs on the dimensionless linear frequency of simply supported FG nanobeams is presented in Figs. 11a,
b and 13a, b based on SE analysis. Also, a comparison between values of the dimensionless linear and
nonlinear frequencies employing NCBCs and CBCs is presented in Tables 15 and 16, considering both sur-
face energy (SE) and integrated couple stress-surface energy (CSSER) models. From these results, it can be
extracted that for both SIG-FG and PL-FG nanobeams using NCBCs results in linear and nonlinear frequen-
cies lower than those using CBCs for positive τ s, whereas negative τ s leads to an opposite effect. Varying
E s from a negative to a positive value has a significant effect on the contribution of NCBCs for negative
τ s, and this effect becomes very small to be negligible for positive τ s. Also, the impact of NCBCs on the
vibration response increases as the gradient index increases. Moreover, it can be concluded that NCBCs
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Fig. 14 Variation of the dimensionless fundamental nonlinear frequency versus the maximum nonlinear amplitude of a simply
supported FG nanobeam at different values of τ sm and τ sc (k = 0.5), a SIG-FG and b PL-FG

(a) SIG-FG (b) PL-FG

Fig. 15 Variation of the dimensionless fundamental linear frequency with the thickness of a simply supported FG nanobeam
using different analyses (k = 0.5, lm = 0.2 h, lc = 1.5lm, L/h = 15), a SIG-FG and b PL-FG

should not be neglected in the formulation of linear and nonlinear vibration problems of simply supported FG
nanobeams.

5.5 Effect of nanobeam thickness

The variation of the dimensionless fundamental linear and nonlinear frequencies for the simply supported
nanobeam at different thicknesses is considered in Figs. 15 and 16, respectively, based on the various analyses
of SIG-FG and PL-FG distributions. The material parameters are those provided in Table 5 with k = 0.5,
lm = 0.2 h, lc = 1.5lm, and L = 15 h. Some values of the dimensionless fundamental linear and nonlin-
ear frequencies, respectively, are reported in Tables 15 and 16 at different thicknesses of the simply sup-
ported FG nanobeam. It is noticeable that the dimensionless linear and nonlinear frequencies obtained by the
classical elasticity (CL) and couple stress (CS) models are unaffected by varying the nanobeam thickness.
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Table 13 Combined effects of τ sm, τ
s
c , and k on the dimensionless fundamental linear frequency of FG nanobeams (h = 20 nm,

b = h, L/h = 15, τ sm0 = 0.5689N/m, τ sc0 = 0.6056N/m)

τ sc
τ sc0

τ sm
τ sm0

Simply supported Clamped–clamped

Gradient index k

0.5 1 2 0.5 1 2

Sigmoid FG material distribution
1 1 14.3692 14.1996 14.0059 31.1214 30.7501 30.3231

0 14.0892 13.9121 13.7054 30.7505 30.4030 30.0000
−1 13.9070 13.7453 13.5362 30.3744 30.0514 29.6728

0 1 14.0868 13.9209 13.7238 30.7874 30.3804 29.9160
0 13.7283 13.5470 13.3391 30.4119 30.0285 29.5878
−1 13.4636 13.2910 13.0847 30.0310 29.6719 29.2555

−1 1 13.8694 13.7080 13.4986 30.4493 30.0057 29.5026
0 13.4226 13.2358 13.0167 30.0690 29.6487 29.1691
−1 13.0612 12.8737 12.6595 29.6831 29.2869 28.8313

Power law FG material distribution
1 1 13.4148 14.1996 14.9803 28.9578 30.7501 32.5296

0 13.1192 13.9121 14.7007 28.5683 30.4030 32.2211
−1 12.9485 13.7453 14.5227 28.1726 30.0514 31.9092

0 1 13.1266 13.9209 14.7039 28.6071 30.3804 32.1410
0 12.7399 13.5470 14.3482 28.2121 30.0285 31.8282
−1 12.4746 13.2910 14.0913 27.8107 29.6719 31.5120

−1 1 12.9099 13.7080 14.4860 28.2514 30.0057 31.7471
0 12.4185 13.2358 14.0447 27.8507 29.6487 31.4299
−1 12.0388 12.8737 13.6956 27.4433 29.2869 31.1090

Table 14 Combined effects of τ sm, τ
s
c , and k on the dimensionless fundamental nonlinear frequency of FG nanobeams (h = 20 nm,

b = h, L/h = 15, τ sm0 = 0.5689N/m, τ sc0 = 0.6056N/m)

τ sc
τ sc0

τ sm
τ sm0

Simply supported Clamped–clamped

k = 0.5 k = 2.0 k = 0.5 k = 2.0

Qw = 0.1 0.2 0.3 Qw = 0.1 0.2 0.3 Qw = 0.1 0.2 0.3 Qw = 0.1 0.2 0.3

Sigmoid FG material distribution
1 1 14.7087 15.6760 17.1873 14.3473 15.3187 16.7944 31.2459 31.5674 32.1718 30.4330 30.7803 31.4114

0 14.4255 15.4299 16.9806 14.0539 15.0161 16.4708 30.9152 31.2783 31.8005 30.1350 30.5195 31.1475
−1 14.1912 15.0230 16.3352 13.8709 14.9056 16.5977 30.4919 30.9041 31.4810 29.8087 30.1994 30.7876

0 1 14.4097 15.3528 16.8013 14.0869 15.1305 16.7856 30.9441 31.2859 31.8520 30.0749 30.4233 31.0162
0 14.0857 15.0711 16.5973 13.6946 14.7275 16.2926 30.4875 30.9264 31.5056 29.6979 30.1137 30.7226
−1 13.8240 14.8614 16.4866 13.4178 14.3650 15.8097 30.1380 30.5165 31.1568 29.3632 29.7770 30.3925

−1 1 14.1673 15.0693 16.5105 13.8409 14.9364 16.6868 30.5517 30.8966 31.5276 29.6573 29.9925 30.6209
0 13.7922 14.8711 16.5143 13.3916 14.4941 16.1644 30.2131 30.5813 31.1775 29.3071 29.6951 30.2948
−1 13.4327 14.4487 16.0172 13.0369 14.1503 15.8076 29.7857 30.1647 30.7783 28.9600 29.3399 30.0062

Power law FG material distribution
1 1 13.7322 14.6095 15.9670 15.3565 16.4184 18.0261 29.0436 29.3739 29.9295 32.6201 33.0554 33.7234

0 13.4203 14.2529 15.5487 15.0818 16.1919 17.9194 28.6764 28.9888 29.5331 32.3830 32.7922 33.4253
−1 13.2423 14.1456 15.6514 14.8894 16.0297 17.8213 28.2893 28.6353 29.1942 32.0507 32.4290 33.1525

0 1 13.4373 14.3828 15.8595 15.0651 16.0971 17.6817 28.7133 29.0671 29.6119 32.2718 32.7198 33.3374
0 13.0690 13.9723 15.3611 14.7313 15.8433 17.5549 28.3601 28.6437 29.2145 31.9347 32.3444 33.0629
−1 12.7828 13.6020 14.8803 14.4927 15.6531 17.4513 27.9357 28.2631 28.8141 31.6728 32.0536 32.7517

−1 1 13.2300 14.2488 15.8811 14.8802 16.1021 18.0211 28.3785 28.6919 29.2514 31.8898 32.2956 32.9795
0 12.7368 13.6274 14.9731 14.4491 15.6422 17.4530 27.9944 28.3184 28.8522 31.5627 31.9869 32.7362
−1 12.3738 13.3008 14.7245 14.1081 15.2849 17.0492 27.5462 27.9453 28.4437 31.2611 31.6768 32.4073
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Table 15 Effect of the thickness on the dimensionless fundamental linear frequency of a simply supported FG nanobeam using
different analyses with NCBCs and CBCs at various values of k and h/ lm(lc/ lm = 1.5, L/h = 15)

k h (nm) Dimensionless length scale parameter h/ lm = 0.2 Dimensionless length scale parameter h/ lm = 0.5

CL SE CS CSSER CL SE CS CSSER

CBCs NCBCs CBCs NCBCs CBCs NCBCs CBCs NCBCs

Sigmoid FG material distribution
0.5 5 13.9728 16.9387 14.9281 15.7807 18.275 16.4229 13.9728 16.9387 14.9281 23.0221 24.0777 22.6983

10 13.9728 15.6255 14.486 15.7807 17.1567 16.1236 13.9728 15.6255 14.486 23.0221 23.5912 22.849
30 13.9728 14.5708 14.1525 15.7807 16.274 15.9003 13.9728 14.5708 14.1525 23.0221 23.2222 22.9616

1 5 13.7783 16.8485 14.8301 15.6627 18.2391 16.3777 13.7783 16.8485 14.8301 23.132 24.2376 22.8558
10 13.7783 15.4883 14.3377 15.6627 17.0824 16.0411 13.7783 15.4883 14.3377 23.132 23.7269 22.9839
30 13.7783 14.397 13.9722 15.6627 16.1713 15.7936 13.7783 14.397 13.9722 23.132 23.3409 23.0802

2 5 13.5569 16.7382 14.7188 15.5347 18.1946 16.3272 13.5569 16.7382 14.7188 23.2764 24.427 23.0447
10 13.5569 15.3284 14.1679 15.5347 16.9988 15.9499 13.5569 15.3284 14.1679 23.2764 23.8942 23.1515
30 13.5569 14.1979 13.7661 15.5347 16.0589 15.6769 13.5569 14.1979 13.7661 23.2764 23.493 23.2325

Power law FG material distribution
0.5 5 12.9615 16.1587 14.1056 14.4454 17.2276 15.3067 12.9615 16.1587 14.1056 20.524 21.9834 20.4997

10 12.9615 14.7515 13.5744 14.4454 15.9881 14.9046 12.9615 14.7515 13.5744 20.524 21.314 20.5092
30 12.9615 13.6122 13.1752 14.4454 15.0012 14.6051 12.9615 13.6122 13.1752 20.524 20.8027 20.5183

2 5 14.5883 17.5500 15.5429 16.8961 19.2889 17.4705 14.5883 17.5500 15.5429 25.7823 26.5773 25.2792
10 14.5883 16.2302 15.0958 16.8961 18.2073 17.1996 14.5883 16.2302 15.0958 25.7823 26.208 25.5151
30 14.5883 15.1798 14.7644 16.8961 17.3636 17.001 14.5883 15.1798 14.7644 25.7823 25.9312 25.6894

Table 16 Effect of the thickness on the dimensionless fundamental nonlinear frequency of a simply supported FG nanobeam
using different analyses with NCBCs and CBCs at various values of k and Qw (h/ lm = 0.2, lc/ lm = 1.5, L/h = 15)

Qw h(nm) Gradient index k = 05 Gradient index k = 2

CL SE CS CSSER CL SE CS CSSER

CBCs NCBCs CBCs NCBCs CBCs NCBCs CBCs NCBCs

Sigmoid FG material distribution
0.1 5 14.3290 17.1883 15.2078 16.1062 18.5162 16.6742 13.9351 16.9800 14.9919 15.8451 18.4404 16.5805

10 14.3290 15.9203 14.8131 16.1062 17.4355 16.4211 13.9351 15.6297 14.4762 15.8451 17.2736 16.2350
30 14.3312 14.9152 14.5025 16.0989 16.5755 16.2059 13.9248 14.5444 14.1083 15.8612 16.3585 15.9824

0.2 5 15.3524 17.9146 16.0595 17.0116 19.2156 17.4129 14.9745 17.7379 15.7404 16.7849 19.100 17.3055
10 15.3524 16.7533 15.7328 17.0116 18.2079 17.2479 14.9745 16.4977 15.3796 16.7849 18.0616 17.0392
30 15.3512 15.8462 15.4915 17.0140 17.4334 17.0917 14.9640 15.5120 15.1183 16.7959 17.2400 16.8959

0.3 5 16.8986 19.0387 17.3728 18.4419 20.2638 18.5726 16.5476 18.8912 16.9218 18.2052 20.2023 18.4214
10 16.8986 18.0765 17.1703 18.4419 19.4028 18.5644 16.5476 17.8362 16.7451 18.2052 19.3058 18.3109
30 16.9014 17.3306 16.9947 18.4349 18.7798 18.4814 16.5542 17.0195 16.6266 18.2113 18.6128 18.2889

Power law FG material distribution
0.1 5 13.2860 16.3875 14.3516 14.7396 17.4476 15.5478 14.988 17.8442 15.8703 17.2311 19.5303 17.7563

10 13.2869 14.9998 13.8592 14.7259 16.2254 15.1598 14.9829 16.5652 15.4651 17.2498 18.4989 17.5188
30 13.2904 13.9163 13.4895 14.7371 15.2861 14.8966 14.9849 15.5531 15.1555 17.2484 17.6842 17.3282

0.2 5 14.2045 17.0367 15.0343 15.5909 18.0591 16.1744 16.1196 18.6610 16.8054 18.2340 20.3060 18.5584
10 14.2199 15.7628 14.6479 15.5842 16.9519 15.9066 16.1178 17.5126 16.5091 18.2564 19.3511 18.3977
30 14.2146 14.7819 14.3951 15.5774 16.0601 15.706 16.1287 16.6089 16.2325 18.2290 18.6296 18.3098

0.3 5 15.6211 18.0372 16.1204 16.8894 18.9761 17.2315 17.8190 19.9313 18.3032 19.7773 21.4974 19.8128
10 15.6193 16.9467 15.8718 16.8832 18.0512 17.0649 17.8202 18.9958 18.1055 19.7776 20.7145 19.8013
30 15.6127 16.1019 15.7697 16.8973 17.2741 16.9862 17.8209 18.2419 17.8657 19.7856 20.1119 19.8177

Also, it is obvious that for surface energy (SE) and integrated couple stress-surface energy (CSSER) mod-
els increasing the thickness increases the dimensionless linear and nonlinear frequencies, and their values
approach those obtained by the classical elasticity model. Such behavior is due to that the surface layer area-
to-the bulk volume ratio is reduced by increasing thickness, and thus, a reduction in surface energy effect is
detected.

In addition, the inclusion of NCBCs decreases the contribution of surface energy to the linear and
nonlinear responses, especially at large values of the nanobeam thickness, and this effect is decreased
by increasing the gradient index or nanobeam thickness. Moreover, increasing the gradient index of SIG-
FG and PL-FG nanobeams, respectively, reduces and increases the surface energy effect in both SE and
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Fig. 16 Variation of the dimensionless fundamental nonlinear frequency versus the maximum nonlinear amplitude of a simply
supported FG nanobeam using different analyses (k = 0.5, lm = 0.2h, lc = 1.5lmL/h = 15), a SIG-FG and b PL-FG

CSSER models. This is observed for all nonlinear vibration amplitudes regardless of employing NCBCs or
CBCs.

6 Conclusions

In this article, a continuum mechanics model is developed to study the nonlinear vibration response of FG
Timoshenko nanobeams considering the nonlinear von Kármán strains. In order to account for the size-
dependent effects, modified couple stress and Gurtin–Murdoch surface elasticity theories are employed. All
the bulk and surface properties of the FG nanobeammaterial are assumed to vary across the thickness based on
sigmoid and power law distribution functions. The nonlinear governing equations and corresponding nonideal
boundary conditions are exactly derived according to Hamilton’s principle, and then, GDQMwas employed to
discretize them in the spatial domainwith an exact implementation of the nonideal boundary conditions.Runge–
Kutta and pseudo-arclength continuation methods are used to obtain the nonlinear free vibration responses.
By a comprehensive parametric study, the effects of bulk modulus of elasticity, surface energy, material length
scale, and small-scale parameters are investigated for both sigmoid and power law FGmicro-/nanobeams. The
following main conclusions can be extracted from this study as below.

Consideration of classical boundary conditions (CBCs) tends to overestimate the fundamental natural
frequencies ΩL and ΩNL for the simply supported FG nanobeams having positive surface residual stress,
while for negative surface residual stress, the natural frequency is underestimated. This effect is increased
by increasing or decreasing the gradient index of, respectively, SIG-FG or PL-FG nanobeams. Moreover, the
natural frequencies increase with the increase in surface elasticity theory parameters, surface residual stresses,
and surface elasticity moduli, due to the induced stiffness-hardening effect, especially for very thin beams.
The influence of surface parameters becomes more significant by decreasing or increasing the gradient index
of SIG-FG or PL-FG nanobeams, respectively.

The dimensionless material length scale parameter h/ lm and material length scale parameter ratio lc/ lm
have opposite effects; increasing lc/ lm results in the stiffness-hardening effect, while increasing h/ lm limits
the local-microstructure effect. Depending on h/ lm and the gradient index, lc/ lm can display a dominant
or ignored effect for both SIG-FG and PL-FG micro-/nanobeams. Also, spatial variation of the material
length scale parameter should be considered in the analysis of FG beams. In addition, the combined effect
of nonlinearity, couple stress, and positive surface parameters results in more stiffness-hardening for the
FG nanobeam, especially with simply supported ends. For CSSER analysis, the local-microstructure effect
becomes the dominant one at larger thicknesses whereas by decreasing the thickness the influence of the
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surface energy becomes dominant. The effects of the couple stress and surface parameters on the nonlinear
vibration response of FG small-scale beams are slightly lower than those on the linear response.

Additionally, increasing the bulk modulus of elasticity ratio Er increases the natural frequencies of FG
micro-/nanobeams, and this effect is increased as the gradient index of SIG-FG or PL-FG is, respectively,
decreases or increases. For all analyses, the frequency of SIG-FG nanobeams is higher than that of PL-FG
nanobeams with k < 1, while the opposite is noticed with k > 1. Finally, neglecting any of the geometric
nonlinearity, local microstructure, surface residual stress, surface elastic modulus, surface mass density, or
nonclassical boundary conditions may result in an inaccurate analysis of FG micro-/nanobeams. Also, the
vibration response of FG nanobeams can be controlled and optimized by the appropriate selection of the
material distribution, i.e., SIG-FG or PL-FG functions, as well as the gradient index.

Appendix A: Coefficients of Eq. (41.1)

The coefficients K1 : K5,P1 : P5, andM1 : M8 that appear in Eq. (41.1) are defined as follows:
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Appendix B: Pseudo-arclength continuation

The pseudo-arclength continuation is used to find the steady-state periodic response of a Timoshenko
nanobeam, Eq. (41), in a time period T = 2π/ΩNL. In order to obtain this response, we define τ̄ = t/T ;
afterward using a spectral collocation method, the system is discretized over the time domain τ̄ into an even
number of periodic grid points (Nt ) given by Eq. (B.1),

τ̄ = i

Nt
, 0 < i < 1, i = 1, 2, . . . , Nt. (B.1)

Then, the discretized system will be
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(
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2π
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K1D
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t Qu + K2Qu + K3Qw + K4Qψ + K5 (Qw)◦2 = 0, (B.2)

(
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M1D
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+M6
(
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t Qψ + P2Qψ + P3Qu + P4Qw + P5 (Qw)◦2 = 0 (B.4)

where (◦) is the Hadamard product operator, ΩNL is the nonlinear frequency to be calculated, the column
vectors

{
Qw, Qu, Qψ

}
are defined as:

Qu = [qu1, qu2 , . . . quNt
]T

, Qw = [qw1, qw2 , . . . qwNt

]T
, Qψ = [qψ1, qψ2 , . . . qψNt

]T
, (B.5)

and D(2)
t is spectral differentiation matrix operator [65].

Equations (B.2–B.4) can be rewritten in the form

F (Q, ΩNL) = 0 (B.6)

where Q = [Qu,Qw,Qψ ]3Nt×1. In order to employ the pseudo-arclength continuation method, Eq. (B.6) is
parameterized by the arclength s, such that

F (Q(s), ΩNL(s)) = 0. (B.7)

To obtain a new, fully determined system for the two-vector (Q, ΩNL), a restriction is added such that

∥∥Q̇∥∥2 + ∥∥Ω̇2
NL

∥∥2 = 1 (B.8)

where Q̇ = dQ
ds and Ω̇NL = dΩ

ds . With this restriction, we obtain a new, fully determined system for the
two-vector (Q, ΩNL), as a function of s,

{
FQQ̇ + FΩNLΩ̇NL = 0,∥∥Q̇∥∥2 + ∥∥Ω̇2

NL

∥∥2 = 1.
(B.9)

Then, Eq. (B.9) can be solved by a predictor–corrector method, where the Newton-type iterations in the
corrector are typically restricted to be perpendicular to the solution curve being continued. Afterward, the
frequency response curves, i.e., nonlinear frequency ΩNL versus nonlinear amplitude Qw, are obtained.
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