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Abstract The perturbation to conformal invariance and the numerical algorithm of Hamiltonian systems with
disturbed forces under variational discretization are studied in this paper. Based on the discrete difference
variational principles, the discrete Hamiltonian equations (variational integrators) for dynamical systems are
obtained in the undisturbed and the disturbed cases, respectively. The determining equations of perturbation
to conformal invariance are established for disturbed Hamiltonian systems. The exact invariants of Noether
type led by conformal invariance for an undisturbed Hamiltonian system are derived. For disturbed discrete
Hamiltonian systems, the condition of perturbation to conformal invariance leading to adiabatic invariants is
proposed. Two examples are considered: a simple harmonic oscillator and the Kepler problem. The dynamical
analysis is given by using the numerical results.

1 Introduction

Explicit analytical solutions of differential equations of dynamical systems are the exception rather than
the rule. If there are no exact invariants in the systems, one looks for adiabatic ones, like in [1–3]. For a
mechanical system, there exists an intimate relation between the integrability of the system and the variations
of its symmetries [4–7]. The adiabatic invariants can be found by perturbation to symmetry, and the study of
symmetrical perturbation and adiabatic invariants proposes an effective way to obtain analytical solutions of
disturbed systems. In recent years, some progress has been made in the study of symmetrical perturbation,
such as Noether symmetrical perturbation [8], Lie symmetrical perturbation [9,10], and Mei symmetrical
perturbation [11], and they all can lead to adiabatic invariants. Conformal invariance is a modern method
for finding conserved quantities for dynamical systems; it is built on the scale invariance, the translation
invariance, rotational invariance and a variety of interactions [12]. Considerable progress has been made on
the application of conformal invariance to mechanical systems in decades [13–15]. Perturbation to conformal
invariance can also propose an effective method to get adiabatic invariants of disturbed Lagrangian systems
[16]. The theoretical and numerical results show that perturbation to conformal invariance is a feasible way to
solve disturbed dynamical systems.

Variational discretization is a structure-preserving discretization method for discrete conversion of contin-
uous dynamical systems [17,18]. The corresponding variational integrators approach the numerical integration
from a variational principle rather than a discretization of the corresponding ordinary differential equations. So
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the underlying geometric properties of motion are preserved based on variational discretization. This approach
is effective to analyze the stability and the optimal control of engineering devices [19,20], the stochastic sys-
tems [21,23], the dynamic behaviors of flexible multibody systems [23,24], and the systems with holonomic
[25] or nonholonomic constraints [26,27]. As a while, the variational discretization is the theoretically most
appealing method and, in addition, is numerically competitive.

Integrability of the continuous Hamiltonian systems is often identified with complete integrability, that is,
the existence of as many independent integrals of motion in involution as the dimension of the phase space.
By discretizing Hamilton’s variational principle, symmetries of the discrete Hamiltonian systems [28] and
the Hamiltonian systems with constraints [29,30] have been studied. However, the literature that is specially
related to the integrability of discrete disturbed Hamiltonian systems is very limited. In addition, the adiabatic
invariants of disturbed Hamiltonian systems have not been simulated by variational algorithm. To address
the lack of research on these aspects, this paper extends the perturbation of conformal invariance to discrete
Hamiltonian systems and gets the numerical integration and analytical solutions under the action of small dis-
turbance. After presenting the basic theory of undisturbed Hamiltonian systems, the variational discretization
of disturbed systems is constructed in Sect. 2; the corresponding structure-preserving algorithm is also intro-
duced in this Section. Section 3 derives the definitions of conformal invariance for undisturbed and disturbed
systems, respectively. Section 4 obtains exact invariants directly from the conformal invariance of undisturbed
Hamiltonian systems. For the disturbed ones, the adiabatic invariants are constructed based on symmetrical
transformations of initial systems. Two numerical examples are presented to demonstrate the application of
the proposed approach in Sect. 5.

2 Variational discretization of disturbed Hamiltonian systems

Historically Hamiltonian systems came from Lagrangian systems in classical mechanics. Consider a
Lagrangian system whose configuration is determined by n generalized coordinates qi (i = 1, . . ., n). Intro-
ducing the generalizedmomentum pi (i = 1, . . ., n) andHamiltonian function H = H (t , q, p), the continuous
canonical Hamiltonian equations are

q̇i = ∂H

∂pi
, (1)

ṗi = −∂H

∂qi
, i = 1, . . . , n. (2)

Consider the disturbed Hamiltonian difference equations at some lattice points (t , qk , pk). Suppose an n-
dimensional configuration manifold q = {q1, . . ., qn}, p = {p1, . . ., pn}. By an application of the discrete
Legendre transform to the discrete Euler–Lagrangian equations, the discrete Hamiltonian equations can be
obtained from a variational principle [28],

D+h
(qi,k) = qi,k+1 − qi,k

hk+1
= ∂HD,k

∂pi,k+1
, (3)

D+h
(pi,k) = pi,k+1 − pi,k

hk+1
= −∂HD,k

∂qi,k
, (4)

hk+1
∂HD,k

∂tk
− HD,k + hk−1

∂HD,k−1

∂tk−1
− HD,k−1 = 0, (5)

where hk+1 = tk+1 − tk and hk−1 = tk − tk−1 are the time steps, and HD,k = H (tk,tk+1, qk , pk+1) and
HD,k−1 = H (tk−1,tk , qk−1, pk) are the discrete Hamiltonian functions, D+h represents the left discrete
(finite-difference) differentiation operators. Equations (3)–(5) require the discrete equations of undisturbed
Hamiltonian systems.

In the following, the discrete disturbed Hamiltonian equations will be obtained from the variational dis-
cretization. The discrete Hamiltonian framework HD,k = H (tk,tk+1, qk , pk+1) is transformed from the
Lagrangian LD,k = L (tk,tk+1, qk , pk+1) based on discrete Legendre transformations. The discrete disturbed
forces are εWi,d = εW (tk , tk+1, qk , pk+1), where ε � 1 is the perturbed parameter. The finite-difference
functional is obtained on the n-dimensional mesh ω:

Hh =
∑

�

(
pi,k+1

(
qi,k+1 − qi,k

) − HD,khk+1
)
, i = 1, . . . , n (6)
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where the sum is taken over a finite or infinite domain � ⊂ ω. And the total variation of Hh is

�Hh = −
∑

�

εWi,dhk+1δqi,k (7)

where δqi,k is the discrete virtual placement satisfying

δqi,k = �qi,k − qi,k+1 − qi,k
hk+1

�t. (8)

The total variation of the function Hh along a curve qi = φi (t), pi = ψι(t) at some points (t , qk , pk) will
affect only two terms of the sum (6),

Hh = · · · + pi,k
(
qi,k − qi,k−1

) − HD,k−1hk−1 + pi,k+1
(
qi,k+1 − qi,k

) − HD,khk+1 + · · ·. (9)

So Eq. (7) can be rewritten as

�Hh = ∂Hh

∂pi,k
�pi,k + ∂Hh

∂qi,k
�qi,k + ∂Hh

∂tk
�tk = −

∑

�

εWi,dhk+1δqi,k . (10)

Substituting Eqs. (8) and (9) into (10) gives
(
qi,k − qi,k−1 − hk−1

∂HD,k−1

∂pi,k

)
�pi,k −

(
pi,k+1 − pi,k + hk+1

∂HD,k

∂qi,k
− εWi,dhk+1

)
�qi,k

−
(
hk+1

∂HD,k

∂tk
− HD,k + hk−1

∂HD,k−1

∂tk
+ HD,k−1+(qi,k+1 − qi,k)εWi,d

)
�t = 0. (11)

For the stationary value of the discrete Hamiltonian action, the systems of 2n + 1 equations can be derived:

D+h
(qi,k) = qi,k+1 − qi,k

hk+1
= ∂HD,k

∂pi,k+1
, (12)

D+h
(pi,k) = pi,k+1 − pi,k

hk+1
= −∂HD,k

∂qi,k
+ εWi,d , (13)

hk+1
∂HD,k

∂tk
− HD,k + hk−1

∂HD,k−1

∂tk−1
− HD,k−1 + D+h

(qi,k)εWi,dhk+1 = 0. (14)

Note that the first 2n Eqs. (12) and (13) are first-order difference equations, which correspond to the disturbed
Hamiltonian equations in the continuous limit. Equation (14) is of the second order; it defines the lattice on
which the disturbed Hamiltonian equations are discretized, which is the energy equation. In the continuous
limit, the lattice equation itself disappears. Equations (12)–(14) require the discrete equations of disturbed
Hamiltonian systems.

3 Conformal invariance of discrete Hamiltonian systems

3.1 The definition of conformal invariance of undisturbed systems

To consider the discrete Hamiltonian equations, we need three lattice points. The prolongation of the Lie group
operator to the neighboring points (tk−1, qk−1, pk−1) and (tk+1, qk+1, pk+1) is as follows:

pr Xα
0 = ξα

00,k
∂

∂tk
+ ξα

i0,k
∂

∂qi,k
+ ηα

i0,k
∂

∂pi,k
+ ξα

00,k−1
∂

∂tk−1
+ ξα

i0,k−1
∂

∂qi,k−1
+ ηα

i0,k−1
∂

∂pi,k−1

ξα
00,k+1

∂

∂tk+1
+ ξα

i0,k+1
∂

∂qi,k+1
+ ηα

i0,k+1
∂

∂pi,k+1
(15)

where ξα
00,k−1 = ξα

00,k−1(tk−1, qk−1, pk−1), ξ
α
i0,k−1 = ξα

i0,k−1(tk−1, qk−1, pk−1),η
α
i0,k−1 = ηα

i0,k−1(tk−1, qk−1,

pk−1), ξ
α
00,k+1 = ξα

00,k+1(tk+1, qk+1, pk+1), ξ
α
i0,k+1 = ξα

i0,k+1(tk+1, qk+1, pk+1) and ηα
i0,k+1 = ηα

i0,k+1(tk+1,
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qk+1, pk+1) are discrete infinitesimal integrators. For the undisturbed Hamiltonian systems, Eqs. (3) and (4)
can be expressed as follows:

Fi,d ≡
[
Fq
i,d

F p
i,d

]
=

⎡

⎣
qi,k+1−qi,k

hk+1
− ∂HD,k

∂pi,k+1

pi,k+1−pk
hk+1

+ ∂HD,k
∂qi,k

⎤

⎦ = 0. (16)

Definition 1 If there is a nonsingular matrix Hl
i,d satisfying the following condition:

pr Xα
0 (Fi,d) = Hl

i,d

(
Fl,d

)
, (17)

then this kind of invariance is called the conformal invariance of undisturbed Hamiltonian systems under
single-parameter infinitesimal transformations (15). Equation (17) is the determining equation of conformal
invariance of the undisturbed systems (3) and (4), where Hl

i,d is called conformal factor.

3.2 The definition of conformal invariance of disturbed systems

When the system is subjected to small disturbance forces εWi,d , whereWi,d = Wi,d(tk, qk , pk) and ε is a small
parameter, the original conformal invariance will change accordingly. Assume the variation is a perturbation
based on symmetrical transformation of the initial system, then ξα

0,k = ξα
0,k(tk, qk, pk), ξ

α
i,k = ξα

i,k(tk, qk, pk),
and ηα

i,k = ηα
i,k(tk, qk, pk) denote the new generators after being perturbed and can be expressed as

ξα
0,k = ξα

00 + εξα
01 + ε2ξα

02 + · · ·, (18)

ξα
i,k = ξα

i0 + εξα
i1 + ε2ξα

i2 + · · · , (19)

ηα
i,k = ηα

i0 + εηα
i1 + ε2ηα

i2 + · · · . (20)

The prolongation of the Lie group operators for a discrete disturbed system can be written as

pr X̃α = εm pr Xα
m, (21)

where

pr Xα
m = ξα

0m,k
∂

∂t
+ ξα

im,k
∂

∂qi,k
+ ηα

im,k
∂

∂pi,k
+ ξα

0m,k−1
∂

∂tk−1
+ ξα

im,k−1
∂

∂qi,k−1
+ ηα

im,k−1
∂

∂pi,k−1

+ξα
0m,k+1

∂

∂tk+1
+ ξα

im,k+1
∂

∂qi,k+1
+ ηα

im,k+1
∂

∂pi,k+1
. (22)

Expressions (12) and (13) become

F̃i,d ≡
[
F̃q
i,d

F̃ p
i,d

]
=

⎡

⎣
qi,k+1−qi,k

hk+1
− ∂HD,k

∂pi,k+1

pi,k+1−pk
hk+1

+ ∂HD,k
∂qi,k

− εWi,d

⎤

⎦ = 0. (23)

Definition 2 For the discrete disturbed Hamiltonian systems, if there exists a nonsingular matrix H̃l
i,d satis-

fying

pr X̃α(F̃i,d) = H̃l
i,d

(
F̃l,d

)
, (24)

then the Hamiltonian systems maintain the perturbation to conformal invariance under the expressions (18)–
(20). Equation (24) is called the determining equation of the perturbation to conformal invariance for disturbed
systems, and H̃l

i,d is called the conformal factor of discrete disturbed systems.
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4 Adiabatic invariants of discrete disturbed Hamiltonian systems

4.1 Exact invariants led by conformal invariance of discrete Hamiltonian systems

Theorem 3 For the undisturbed Hamiltonian (3) and (4), if there is a gauge function Gα
i0,d = Gα

i0,d(tk , tk+1,
qk , pk+1) that makes the infinitesimal generators ξα

00,k , ξ
α
i0,k and ηα

i0,k of conformal invariance of the systems
satisfy the following structural equation:

ηα
i0,k+1 D+h

(
qi,k

) + pi,k+1 D+h

(
ξα
i0,k

) − pr Xα
(
HD,k

) − HD,k D+h

(
ξα
00,k

) + D+h

(
Gα

i0,d

) = 0, (25)

then the undisturbed Hamiltonian systems possess discrete exact invariants

I0 = ηα
i0,k pi,k − ξα

00,k

(
HD,k−1 + hk−1

∂HD,k−1

∂tk

)
+ Gα

i0,d = const. (26)

The proof is identical to that in [28] and we will not reproduce it here. Equation (25) is called the discrete
version of generalized Noether-type identity for the systems. The discrete Eq. (26) is called the difference
version of Noether conservation laws associated continuous Hamiltonian systems.

4.2 Adiabatic invariants led by the conformal invariance of discrete disturbed Hamiltonian systems

The change slowly in parameters is the same as the role of small perturbations. For the disturbed Hamiltonian
systems, the following theorem gives the condition that the perturbation to conformal invariance under small
disturbance can lead to Noether adiabatic invariants.

According to the definition of adiabatic invariants in [31], the definition of discrete adiabatic invariants is
given as the following definition.

Definition 3 For the discrete Hamiltonian systems, if a physical quantity Iαzd = Iαzd (tk , tk+1, qk , pk+1, ε)
satisfies

D+h

(
I α
zd

) = O
(
εz+1) , (27)

where Iαzd = Iα0d + ε I α
1d + · · · + εzIαzd , then Iαzd is called a zth-order adiabatic invariant of the systems.

Based on Definition 3, the Noether theorem for discrete Hamiltonian systems subjected to perturbation
quantities is obtained below.

Theorem 4 For the discrete disturbed Hamiltonian systems, if a discrete gauge function Gα
im,d =

Gα
im,d(tk, tk+1, qk, pk+1) exists such that the infinitesimal transformationgenerators satisfy the discreteNoether

identity

ηα
im,k+1 D+h

(qi,k) + pi,k+1 D+h
(ξα

im,k) − pr Xα
m

(
HD,k

) − HD,k D+h
(ξα

0m,k)

+Wi,d

[
ξα
i(m−1),k − D+h

(qi,k)ξ
α
0(m−1),k

]
+ D+h

(Gα
im,d) = 0, (28)

then the following formula:

I α
zd =

z∑

m=0

εm
(

ξα
im,k pi − ξα

0m,k

(
HD,k−1 + hk−1

∂HD,k−1

∂t

)
+ Gα

im,d

)
(29)

is the zth-order adiabatic invariant of Noether type of discrete disturbed Hamiltonian systems.
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Proof After being perturbed, the gauge function comes into

Gα
i,d = Gα

i0,d + εGα
i1,d + ε2Gα

i2,d + · · · . (30)

Considering Eqs. (18)–(20) and (30), and computing the discrete derivative of Iαzd , one obtains

D+h

(
I α
zd

) = D+h

z∑

m=0

εm
{
ξα
im,k pi,k − ξα

0m,k

(
HD,k−1 + hk−1

∂HD,k−1

∂tk

)
+ Gα

im,d

}

=
z∑

m=0

εm
{
D+h

(
ξα
im,k pi,k − ξα

0m,k

(
HD,k−1 + hk−1

∂HD,k−1

∂tk

))
− ηα

im,k+1 D+h
(qi,k) − pi,k+1 D+h

(ξα
im,k)

+pr Xα
m

(
HD,k

) + HD,k D+h
(ξα

0m,k) − Wi,d

[
ξα
i(m−1),k − D+h

(qi,k)ξ
α
0(m−1),k

]}

=
z∑

m=0

εm
{
ξα
0m,k

(
D+h

(HD,k−1) − ∂HD,k

∂tk
− hk−1

hk+1

∂HD,k−1

∂tk
− εWi,d D+h

(qi,k)

)

−ξα
im,k

(
D+h

(pi,k) + ∂HD,k

∂qi,k
− εWi,d

)
+ ηα

im,k+1

(
D+h

(qi,k) − ∂HD,k

∂pi,k+1

)

−Wi,d

(
ξα
i(m−1),k − D+h

(
qi,k

)
ξα
0(m−1),k

)}
.

Making use of (12)–(14), after deduction, we have

D+h

(
I α
zd

) =
z∑

m=0

εm
{
εWi,d

(
ξα
im,k − D+h

(
qi,k

)
ξα
0m,k

)
− Wi,d

(
ξα
i(m−1),k − D+h

(
qi,k

)
ξα
0(m−1),k

)}

=
z∑

m=0

εm+1Wi,d

(
ξα
im,k − D+h

(
qi,k

)
ξα
0m,k

)
−

z∑

m=0

εmWi,d

(
ξα
i(m−1),k − D+h

(
qi,k

)
ξα
0(m−1),k

)

= εz+1Wi,d

(
ξα
i z,k − D+h

(
qi,k

)
ξα
0z,k

)
− ε0Wi,d

(
ξα
i(−1),k − D+h

(
qi,k

)
ξα
0(−1),k

)
,

the perturbations Wi,d = 0 hold when z = 0, so

D+h

(
I α
zd

) = εz+1Wi,d

(
ξα
i z,k − D+h

(
qi,k

)
ξα
0z,k

)
. (31)

It shows that Iαzd is in direct proportion to z+1, so Iαzd is the discrete analogue of zth-order adiabatic invariants
for discrete disturbed Hamiltonian systems. The theorem is proved. ��

5 Numerical examples

5.1 Simple harmonic oscillator

Consider the Lagrangian L = (
q̇2 − q2

)
/2 of a simple harmonic oscillator with an additional force F(q) =

−εq. For ε � 1, the system is amenable to solution using the methods from the previous Section. The discrete
Hamiltonian based on the variational discretization is given by HD,k = (p2k+1 + q2k )/2. Let the positive and
constant h be the time step. The discrete undisturbed Hamiltonian Eq. (16) is computed to be

Fi,d ≡
[
Fq
i,d

F p
i,d

]
=

⎡

⎣
qk+1−qk

h − pk+1
pk+1−pk

h + qk

⎤

⎦ = 0. (32)

The Lie group operators for the discrete system (32) with regard to the conformal invariance of the undisturbed
Hamiltonian equation are given by ξ00 = 1, ξ10 = qk and η10 = pk . The Noether identities (25) read
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Fig. 1 Error in the energy for free harmonic oscillator for the variational method

Fig. 2 Comparison about error in the energy between the variational method and the RK4

p2k+1 − q2k + D+h
(
G0,d

) = 0. The exact invariant is I0d = (p2k + q2k−1)/2 with the gauge function G0,d =
−pkqk .

The energy error of the harmonic oscillator is shown in Figs. 1 and 2. Figure 1 demonstrates numerical
energy conservation by the variational algorithm, and the energy error is to about 10−8 after 10,000 iterations as
well. Figure 2 demonstrates that the variational method is more precise than those from the standard RK4 under
the initial conditions (q1, b1) = (0.01, 0.01). It is obvious that the variational method has the advantage of
energy conservation in the long-time simulation. The relative error is stable of the order 10−8 for the variational
algorithm. Compared with the time step h = 10−1, 10−8 accuracy is rather small. Therefore, the algorithm
based on the variational discretization shows a huge advantage in the quantitative problems, especially in the
long-term tracking numerical simulation.

Suppose the systems are disturbed by the small perturbation εWd = εqk , then the disturbed Hamiltonian
Eq. (23) becomes

F̃i,d ≡
[
F̃q
i,d

F̃ p
i,d

]
=

[ qk+1−qk
h − pk+1

pk+1−pk
h + qk + εqk

]
= 0.

The prolongation of the Lie group operators for the discrete system is

pr X̃ = (qk + εqk)
∂

∂qk
+ (qk−1 + εqk−1)

∂

∂qk−1
+ (qk+1 + εqk+1)

∂

∂qk+1
, (33)

and the conformal factor is Hl
i,d =

(
1 0
0 1

)
. From Theorem 4, the adiabatic invariant is

I1d = (1 + ε)
(
p2k + q2k−1

)
/2 (34)

with the gauge function G1,d = −(1 + ε)pkqk .
Figure 3 displays the adiabatic invariant (34)with different coefficients of ε under the same initial conditions

(q1, b1) = (0.01, 0.01). As we go forward in time, the perturbed parameter ε keeps on increasing leading to
almost the same accuracy. It can be seen more obviously from Fig. 3 which shows the relative changes of the
adiabatic invariant (34) for different ε.
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Fig. 3 Error of adiabatic invariant (34) for the variational method

5.2 Kepler (two body) problem

The celestial mechanics often involves the Kepler problem, for example, satellites circle the earth, and the
planets move around the sun or binary star systems. The discrete Lagrangian of the Kepler problem is

LD,k = 1

2

((
�q1,k

)2 + (
�q2,k

)2) − K 2 (
q21,k + q22,k

)−1/2
. (35)

The discrete canonical conjugate momenta and the difference discrete Hamiltonian can be introduced by the
discrete Legendre transformation

pi,k+1 = ∂LD,k

∂�qi,k
, HD,k = pi,k+1�qi,k − LD,k, (i = 1, 2) . (36)

So the discrete Hamiltonian of the Kepler problem yields

HD,k = 1

2

(
p21,k+1 + p22,k+1

) + K 2 (
q21,k + q22,k

)−1/2
. (37)

The discrete Hamiltonian equations on the uniform mesh read

qi,k+1 − qi,k
h

= ∂HD,k

∂pi,k+1
, (38)

pi,k+1 − pi,k
h

= −∂HD,k

∂qi,k
. (39)

The conformal invariance of the undisturbed Hamiltonian Eq. (38) and (39) is

ξ100,k = 0, ξ110,k = −q2,k, ξ
1
20,k = q1,k, η

1
10,k = −p2,k, η

1
20,k = p1,k, (40)

ξ200,k = 1, ξ210,k = −q2,k, ξ
2
20,k = q1,k, η

2
10,k = −p2,k, η

2
20,k = p1,k . (41)

From Theorem 3 and solutions (40) and (41), the exact invariants are

I 10 = −q2,k p1,k + q1,k p2,k = const. (42)

I 20 = −q2,k p1,k + q1,k p2,k − Hk−1 = const. (43)

with the same gauge function G0,d = 0.
This Hamiltonian being autonomous, it is an invariant of the system. For simulations, we select the initial

conditions to be h = 0.1, q1(0) = 0, q2(0) = 1.2, p1(0) = −1, and p2(0) = −0.6. The comparison of phase
diagrams of undisturbed systems is demonstrated using the variational method and RK4 method in Fig. 4. It is
clearly shown that the calculating phase diagrams of the variational methods are overlapped closed curves, and
the numerical results are consistent with the known analytical results. The phase diagram of the RK4 method
is a closed loop with a certain width, which indicates that an obvious artificial dissipation phenomenon has
appeared during simulation and also reflects the disadvantages of non-variational algorithms.



Preservation of adiabatic invariants for disturbed Hamiltonian systems 791

Fig. 4 Phase diagrams a RK4 method; b variational methods

Suppose the perturbed forces are εW1,d = −εq1,k , and εW2,d = −εq2,k . The discrete equations of the
disturbed systems read

qi,k+1 − qi,k
h

= ∂HD,k

∂pi,k+1
, (44)

pi,k+1 − pi,k
h

= −∂HD,k

∂qi,k
− εWi,d . (45)

One can readily verify the invariance of the Hamiltonian functions and the perturbed forces, that is

pr X̃

⎛

⎜⎜⎝

F1
F2
F3
F4

⎞

⎟⎟⎠ = pr X̃

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1,k+1−q1,k
h − p1,k+1

q2,k+1−q2,k
h − p2,k+1

p1,k+1−p1,k
h + q1,k

(
q21,k + q22,k

)− 3
2 − εq1,k

p2,k+1−p2,k
h + q2,k

(
q21,k + q22,k

)− 3
2 − εq2k

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ1,k+1−ξ1,k
h − η1,k+1

ξ2,k+1−ξ2,k
h − η2,k+1

η1,k+1−η1,k
h + ξ1,k

[(
q21,k + q22,k

)− 3
2 − 3q21,k

(
q21,k + q22,k

)− 5
2
]

− 3ξ2,kq1,kq2,k
(
q21,k + q22,k

)− 5
2 − εξ1,k

η2,k+1−η2,k
h + ξ2,k

[(
q21,k + q22,k

)− 3
2 − 3q22,k

(
q21,k + q22,k

)− 5
2
]

− 3ξ1,kq1,kq2,k
(
q21,k + q22,k

)− 5
2 − εξ2k

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

and we have

pr X̃

⎛

⎜⎝

F1
F2
F3
F4

⎞

⎟⎠ =
⎛

⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞

⎟⎠

⎛

⎜⎝

F1
F2
F3
F4

⎞

⎟⎠

with the solutions of

ξ10,k = 0, ξ11,k = − (1 + ε) q2,k, ξ
1
2,k = (1 + ε) q1,k, η

1
1,k = − (1 + ε) p2,k, η

1
2,k = (1 + ε) p1,k, (46)

ξ20,k = 1, ξ21,k = − (1 + ε) q2,k, ξ
2
2,k = (1 + ε) q1,k, η

2
1,k = − (1 + ε) p2,k, η

2
2,k = (1 + ε) p1,k . (47)

The conformal factor reads

H̃l
i,d =

⎛

⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞

⎟⎠ . (48)
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Fig. 5 Adiabatic invariant (50) with time t for the variational method

From the Noether identities (28), one obtains

ηi,k+1 D+h

(
qi,k

) + pi,k+1 D+h

(
ξi,k

) − εqi,kξi,k + D+h

(
Gα

i,d

) = 0, (i = 1, 2) .

The adiabatic invariant of (46) then reads

I 11d = (1 + ε)
(−q2,k p1,k + q1,k p2,k

)
(49)

with the gauge function G1
1, d = 0. For solution (47), the adiabatic invariant of the system is computed to be

I 21d = (1 + ε)
(−q2,k p1,k + q1,k p2,k − Hk−1

) − ε
(
q21,k + q22,k

)
/2 (50)

with the gauge function G2
1,d = −ε

(
q21,k + q22,k

)
/2.

Figure 5 displays the adiabatic invariant with different coefficients of ε under the same initial conditions
in as Fig. 4. Similarly as for the adiabatic invariant presented in Fig. 3, the absolute value of the adiabatic
invariant (50) is almost constant.

6 Conclusions

This paper proposed a procedure for obtaining discrete adiabatic invariants of disturbed Hamiltonian systems.
This procedure is based on the perturbations to conformal invariance method approach to derive the adiabatic
invariants of the systems. The exact invariants and the adiabatic invariants are, respectively, constructed by the
discrete Noether theorems. Numerical tests prove that adiabatic invariants of disturbed Hamiltonian systems
have indeed almost constant values. It is demonstrated that algorithms defining the variational discretization
preserve the structure properties of the disturbed Hamiltonian systems.
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