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Abstract In the present study, nonlinear flutter and post-flutter behavior of a variable stiffness compositewing-
like plate is investigated. The variable stiffness is obtained by varying fiber angles continuously according to
a selected curvilinear fiber path function in the composite laminates. Flutter speed, limit cycle oscillations
and bifurcation diagrams of the composite plate are explored for three different fiber path functions using the
nonlinear structural model obtained based on the virtual work principle. The paper aims to exploit the ideal
fiber paths with enhanced aeroelastic flutter and post-flutter properties for a composite plate in supersonic
flow speed. First-order linear piston theory is applied to model the aerodynamics, and generalized differential
quadrature is employed to solve the governing equations. Von Karman nonlinear strain theory is used to
account for the geometric nonlinearities, and first-order shear deformation theory is employed to consider the
transverse shear effects in the structural model. Time integration of the equation of motion is carried out using
the Newmark average acceleration method. Different curvilinear fiber paths are introduced to enhance flutter
instabilities and post-flutter behavior of the composite plate. Results demonstrate that the fiber orientation has
a significant effect on the dynamic behavior of the plate and the asymmetric properties as well as the behavior
of the limit cycle oscillation.

1 Introduction

Fiber-reinforced composite plates are widely used in aerial vehicles especially as supersonic airfoils in lifting
surfaces due to their excellent properties of high stiffness and strength-to-weight ratio. At high aerodynamic
pressures, at a certain critical speed, the platemay suffer dynamical instability known as flutter. As in September
1997, when an F-117A fighter lost most of one wing and crashed at an air show due to large amplitude post-
flutter responses. Plate flutter is a self-excited oscillation caused by an instability that involves the interaction
of aerodynamic, elastic and inertial forces when the aeroelastic damping shifts from a positive to a negative
value [1,2].

Since nonlinear aeroelastic problems, especially in the supersonic and hypersonic regimes, play an impor-
tant role in the safety and flight envelope of aerial vehicles, several analytical and experimental researches
have been conducted in this field to explore or enhance the flutter phenomena [3–7]. Most of them, however,
focus on a four-edge clamped or simply supported plate undergoing supersonic flow [8]. The analysis methods
to carry out the discretization in the spatial domain can generally be categorized into three groups, namely the
finite element method (FEM), the Galerkin method and the Rayleigh–Ritz method [9]. Dowell [10] explored
the limit cycle oscillations (LCOs) through numerical integration of nonlinear plate flutter equations based
on a partial differential equation (PDE)/Galerkin approach. LCOs are a type of aeroelastic instability where
the amplitude of oscillations remains bounded and requires time-domain analysis. Reference [11] used the

T. Farsadi (B) · D. Asadi · H. Kurtaran
Department of Aerospace Engineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
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PDE/Rayleigh–Ritz method to explore the chaotic motions of a cantilever plate. Finite element analysis of
nonlinear flutter of composite plates was studied by Dixon [12]. Kouchakzadeh et al. [13] applied the classi-
cal plate theory along with the von Karman nonlinear strains in structural modeling to analyze the nonlinear
aeroelasticity of laminated composite plates in supersonic air flow.

Recently, there has been growing interest in applying curvilinear fibers in composites in order to enhance
mechanical properties of structures and to improve flutter boundary instabilities. Initially, the curved fiberswere
used byGurdal et al. [14] to vary stiffnesses of rectangular composite plates. Later, Gurdal et al. [15] studied the
effects of fiber path definitions on in-plane and out-of-plane response characteristics of flat rectangular variable
stiffness laminates. The concept of variable stiffness composites with curvilinear fibers was investigated in
several researches [16–20], as in [16–18] optimization of curvilinear fibers was investigated in designing the
composite thin-walled beamwith bi-convex cross section and [19,20] in composite plates.Kuo [21] investigated
the effect of variable stiffness via variable fiber spacing on the supersonic linear flutter of rectangular composite
plates using the finite element method (FEM) and quasi-steady aerodynamic Piston theory. Khalafi et al. [22]
analyzed free vibration and the linear flutter characteristics of laminated plates under the effects of different
changing parameters including boundary condition, skewness, flow direction and layup. Less static deflection,
higher buckling loads, failure resistance and natural frequencies, aswell as highly enriched nonlinear dynamics,
are all the main benefits mentioned in the literature as the advantages of variable stiffness composite laminates
(VSCLs) [23]. More recently, Akhavan and Ribeiro [24] investigated nonlinear flutter problem of variable
stiffness composite laminates (VSCLs) using p-version finite elementmethod. They considered three boundary
conditions types (cantilevered, clamped and simply supported) for one curvilinear fiber configuration.
The present paper examines the nonlinear plate flutter and LCO characteristics of composite plates with
curvilinear fiber paths in supersonic flow. Three different types of curvilinear fiber path configurations are
introduced here with the goal of improving the flutter and post-flutter behavior of the composite plate. The
LCO amplitude diagrams are plotted for the three configurations and compared for non-dimensional critical
dynamic pressure and LCO branch behaviors. This research extends the previous study of Akhavan and
Ribeiro [23] on aeroelastic analysis of composite plates for a wing-like plate cantilevered at its root. Critical
flutter speed is examined according to the variable stiffness concept and then post-flutter phenomena like
LCOs and bifurcations diagrams are observed by sweeping the control parameter. From the literature survey
on aeroelasticiy of composite plates, few researches have explored the effect of fiber path on the flutter
behavior of composite plates [23], and according to the best of the authors’ knowledge, this is the second
research beside Ref. [24] where the post-flutter behavior of composite plates with variable stiffness concept
subject to supersonic aerodynamic is investigated considering curvilinear fibers in the composite structural
model. Additionally, in this paper, the aeroelastic critical flutter dynamic pressure of the wing-like plate is
improved by exploiting the ideal composite fiber paths using three different layup configurations.
In this paper, the governing equation ofmotion of the composite plate is obtained utilizing the virtual work prin-
ciple along with the linear first-order aerodynamic piston theory which is used to simulate the loading effects of
the supersonic airflow on the plate. According to our previous works [25,26], spatial derivatives in the equation
of motion are expressed with the generalized differential quadrature (GDQ) method. Implementing elasticity
theory equations, geometric nonlinearity is considered through Von-Karman nonlinear strain–displacement
relations. The transverse shear effect is also considered in the equation by application of first-order shear
deformation theory. The aeroelastic response of the composite plate is obtained by means of the generalized
differential quadrature (GDQ) method. Time integration of the equation of motion is carried out using the
Newmark average acceleration method.

In the following, the structural model, underlying equations and simulation results are presented followed
by a brief concluding discussion.

2 Theoretical formulations

This section briefly reviews the derivation of the structural model equations, the aerodynamic model, and the
methodology for the introduced equations of motions.

2.1 Constitutive equations

The composite wing-like plate structural model presented in this study is similar to that developed in our
previous research [25,26]. According to Fig. 1, an orthogonal fixed coordinate system (x, y, z) is placed at the
root of a thin plate with a length of b, width of a and thickness of h.
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Fig. 1 Plate geometry and coordinate system

The linear displacements of any general point (x, y, z) at time t on the composite plate (u, v, w) are

u(x, y, z, t) = u0(x, y, t) + zθx (x, y, t),

v(x, y, z, t) = v0(x, y, t) + zθy(x, y, t),

w(x, y, z, t) = w0(x, y, t), (1)

where u0, v0 and w0 are the translations of mid-plane in the x , y and z direction, respectively, and θx , θy
are the rotations about the x , y axes. In this study, geometric nonlinearity is included through von Karman
strain–displacement relations [25]:
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In the present study, it is assumed that the strains aremoderately large; therefore, only the vonKarman nonlinear
terms are retained in the strain–displacement relations. In order to investigate very large strain deformations,
the whole nonlinear terms should be considered in strain formulations for accuracy in the results [27,28].
In-plane force and moment resultants for a laminated plate can be written as
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The equations for transverse shear in terms of the shear force resultant can be stated as
{
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}
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, (4)
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where Ai j , Bi j , Di j are stiffness coefficients of the laminate for in-plane, bending stretching coupling, bending
and transverse shear stiffness and are derived as

{
Ai j , Bi j , Di j

} =
n∑

k=1

∫ zk
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{
1, z, z2

}
Q̄(k)

i j dz, i, j = 1, 2, 6, (5)
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ki k j
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zk−1

Q̄(k)
i j dz, i, j = 4, 5, (6)

where k2i = 5/6 (i = 4, 5) are the shear correction factors and Q̄(k)
i j are the kth layer transformed stiffness

coefficients. Moment of inertia properties are stated as:
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}
ρ(k)dz, (7)

where the kth layer density is denoted by ρ(k).

2.2 Virtual work equation

According to the principle of virtual work, the summation of internal and inertial forces equals the virtual
work of external forces. In the absence of structural damping, the equation for laminated plate can be written
as [25]
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where the left-hand side terms in Eq. (8) are inertial forces due to stresses and accelerations, and the right-hand
side is the work of aerodynamic loads. Equation (9) is achieved by rewriting the above equation in terms of
force and moment resultants as well as mass inertias:

∫
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A geometric mapping based on our previous research [25,26] is applied for numerical integral calculations.
By implementing the proposed mapping, the Cartesian domain is transformed into a bi-unit square domain.
The readers are referred to Ref. [25,26] for the detailed information on the mapping equations.

The effect of structural damping on plates with large deformations was comprehensively investigated
previously by Alijani and Amibili [29,30]. Although it is clearly known that instability boundaries can be
effectively improved by considering structural damping, this paper investigates the flutter and post-flutter
characteristics by considering only the damping due to aerodynamic nature.
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2.3 Quasi-steady aerodynamic model

To study the flutter response of the composite plate, the quasi-steady first-order piston aerodynamic method is
applied. This method is based on the local motion of the plate that acts as a piston. The air which passes over
the plate is presumed to be ideal and isentropic and also has constant specific heat. As assumptions, the local
plate motion velocity is much smaller than the airflow velocity and the airflow is parallel to the surface. The
first-order piston theory is considered to be [31]

Pa = −2q

β

(
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∂x
+ M2 − 2

M2 − 1

1

U∞
∂w

∂t

)

, (10)

where Pa is the aerodynamic pressure,U∞ is the free stream velocity, M is the Mach number, q is the dynamic
pressure and β = √

M2 − 1.
The non-dimensional form of the first-order piston method can be introduced as
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where D0
11 is the bending stiffness matrix when all the fibers of plate are aligned in x-direction, a is the plate

width, λ is the non-dimensional dynamic pressure, ga is the non-dimensional aerodynamic damping, Ca is
aerodynamic damping coefficient and w0 is a reference frequency for a composite plate. The definitions of the
mentioned parameters are
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2.4 Generalized differential quadrature method

In order to calculate the derivatives of the field variable of Eq. (9), an improved version of the GDQ method is
implemented. BeforeGDQapplication, similar to finite differencemethods, the laminated plate is discretized to
grid points to indicate the points where the field variable values and derivatives are to be calculated. According
to the GDQ method, the r th-order derivative of a function f (ξ) with n discrete grid points can be given as

(
∂ f r (x)

∂ξ r

)

ξi

=
n∑

j=1

C (r)
i j f j , (13)

where ξi are discrete points in the variable domain and C (r)
i j , f j are weighting coefficients and function values

at these points, respectively. The explicit formula for the weight coefficients based on Lagrange polynomial
for first-order derivative, i.e., r = 1, is

C (1)
i j = Φ(ξi )

(ξi − ξ j )Φ(ξ j )
(i �= j), (14)

where

Φ(ξi ) =
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j=1
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Fig. 2 Grid geometry

The following recursive relations are applied for higher-order derivatives:

C (r)
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According to Fig. 2, partial derivatives at a point (ξi , η j ) can be defined as follows, where nξ and nη denote
grid numbers in ξ and η direction, respectively:
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where r and s denote derivative orders with respect to the variables ξ and η, respectively.
In Eqs. (21–22), the partial derivatives ∂ f /∂ξ and ∂ f /∂η are calculated applying DQM at a grid point:
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2.5 Solution method

Plate domain discretization with grid points, applying the GDQ method for calculating partial derivatives at
grid points, and using the Gauss–Lobatto quadrature rule to evaluate the integrals in the virtual work, result in
the matrix form of the equation of motion as
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MÜ + P = F, (23)

whereM indicates themassmatrix andF,P and Ü define external force, internal force and acceleration vectors,
respectively. The plate’s transient response is evaluated by applying the time integration scheme of implicit
Newmark constant average acceleration.

According to the Newmark approach, at the (n + 1)th time step, i.e., at time (n + 1)�t or tn + 1, the
equation of motion is stated as

MÜn+1 + Pn+1 = Fn+1. (24)

Then, replacing the velocity and acceleration terms as

Ün+1 = C0 (Un+1 − Un) − C1U̇n − Ün, (25)

U̇n+1 = U̇n + �tÜn + �t

2

(
U̇n+1 − Ün

)
, (26)

where C0 = 4/�t2,C1 = 4/�t and Un denotes the displacements at the nth time step, Eq. (24) can be
rewritten as:

C0MUn+1 + Pn+1 = Fn+1 + M(C0Un + C1U̇n + Ün). (27)

All the right-hand side expressions of Eq. (27) are known from the solution of this equation at the nth
time step. Since Eq. (27) is nonlinear in terms of unknown displacements Un + 1, an iterative method like
Newton–Raphson is applied for the solution. To achieve the solution of Eq. (27), it is expressed in terms of
residual forces or error function Rn + 1 as:

Rn+1 = Fn+1 + M
(
C0Un + C1U̇n + Ün

) − C0MUn+1 − Pn+1. (28)

If Ui
n+1 is an approximate trial solution at the i th iteration leading to error Ri

n+1, an improved solution Ui+1
n+1

can be obtained using linear Taylor series expansion of Ri+1
n+1 and equating it to zero as below:

Ri+1
n+1 ≈ Ri

n+1 + Ki
n+1(U

i+1
n+1 − Ui

n+1) = 0, (29)

where Ki
n+1 is referred to as tangent stiffness matrix. Equation (29) can be written in incremental form as

Ki
n+1�Ui

n+1 = −Ri
n+1, (30)

where �Ui
n+1 is the displacement increment in the current iteration given as:

�Ui
n+1 = Ui+1

n+1 − Ui
n+1. (31)

The improved solution at (i + 1)th iteration is defined as:

Ui+1
n+1 = Ui

n+1 + �Ui
n+1. (32)

The iterative solution procedure is repeated until the error function Ri+1
n+1 is sufficiently close to zero. To

start the Newton Raphson solution procedure, initial acceleration values Ü0 are computed by using initial
displacements U0 and velocities U̇0 at time zero (t = 0).

3 Description of variable stiffness

Advances in manufacturing techniques such as the tow placement machines make it possible to spatially vary
the fiber orientation within a single lamina. Figure 3a–c illustrates three different variable stiffness composite
laminates (VSCLs) defined by curvilinear fiber path functions of θ1, θ2, θ3. The curvilinear fiber path function
determines the ply angle measured from the positive x-axis at a point of the plate. In order to better categorize
the name of the configurations, here and after, variable stiffness composite laminates with fiber paths θ1, θ2, θ3
are labeled as VSCL_1, VSCL_2 and VSCL_3, respectively. The formulations of the fiber path variation for
each layup configuration are presented in Eqs. (33–35). The fibers start from a reference point with a fiber
orientation angle T0 and change along the x axis and y axis, until the fiber orientation angle reaches a value T1 at
a characteristic distance a and b from the reference point as the path definitions are formulated in Eqs. (33–35).
According to Fig. 3a–c and the related equations given in (33–35), θ1 is changing along the x axis, θ2 changes
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Fig. 3 Curvilinear fiber paths. a VSCL_1, b VSCL_2, c VSCL_3

Table 1 Comparison of natural frequencies of VSCL with curvilinear fibers

VSCL plate Method Mode

1 2 3

[〈0, 45〉 , 〈−45, 60〉 , 〈0, 45〉]
Simply supported Ref. [19] 358.488 589.9 960.361

Present study 351.622 581.41 954.14
Clamped Ref. [19] 579.398 821.532 1225.79

Present study 579.745 822.601 1227.56
[〈30, 0〉 , 〈45, 90〉 , 〈30, 0〉]
Simply supported Ref. [19] 308.799 503.799 845.509

Present study 307.62 504.11 846.79
Clamped Ref. [19] 667.177 862.919 1234.64

Present study 665.217 863.689 1238.5
[〈90, 45〉 , 〈60, 30〉 , 〈90, 45〉]
Simply supported Ref. [19] 329.688 539.407 886.392

Present study 323.99 533.1 880.587
Clamped Ref. [19] 710.77 912.183 1335.49

Present study 709.46 915.47 1340.98

Table 2 Geometric and material properties

a (m) b (m) h (m) E1 (GPa) E2 (GPa) G12 (GPa) G13 (Gpa) G23 (Gpa) υ12 ρ (kg/m3)

1 1 0.01 173 7.2 3.76 3.76 3.76 0.29 1540

Table 3 Material properties

Property Value

Isotropic (aluminum)
E 72.4GPa
υ 0.3
ρ 2700 kg/m3

Composite (graphite/epoxy)
E1 155.1GPa
E2 8.1GPa
G12 4.6GPa
G23 3.0GPa
υ12 0.22
ρ 1550 kg/m3
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Fig. 4 Comparison of LCO amplitudes of simply supported square plates

Table 4 Geometric and material properties

a (m) b (m) h (m) E1 (GPa) E2 (GPa) G12 (GPa) G13 (GPa) G23 (GPa) υ12 ρ (kg/m3)

0.6 0.6 0.006 126.3 8.76 3.76 3.35 3.35 0.334 1557

along the y axis, and θ3 changes from T0 to T1 symmetrically from the midpoint of each ply. Thus, the two
design variables T0 and T1 in each layer are required to determine the variation of the fiber orientation on the
surface of each layup.

For VSCL_1;

θ1 = T0 + (T1 − T0)
( x

a

)
(33)

For VSCL_2;

θ2 = T0 + (T1 − T0)
( y

b

)
(34)

And for VSCL_3;

θ3 = T0 + 2 (T1 − T0)

(∣
∣x − a

2

∣
∣

a

)

(35)

4 Numerical results

In this section, the above formulation is applied and numerical results are presented for the aeroelastic responses
of each curvilinear fiber path function (VSCL_1, VSCL_2 and VSCL_3) of the composite plate. In order to
verify the variable stiffness structural and aeroelastic model, the natural frequencies of our model is compared
with credible references and then the post-flutter behavior and the LCO are examined. To investigate the
effect of the fiber path function on the aeroelastic characteristics of the composite plate, the ideal fiber path
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Fig. 5 Time and frequency response qualifications of the vertical tip deflection of VSCL_1 case, fiber design parameters
〈T0 = 0, T1 = 0〉. a Subcritical (λ = 26), b critical (λcr = 26.875), c supercritical (λcr = 28)
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Table 5 Critical non-dimensional dynamic pressure for various angle sets of the VSCL_1 plate

T0 = 0 T0 = 20 T0 = 45

T1 = 0 T1 = 20 T1 = 45 T1 = 0 T1 = 20 T1 = 45 T1 = 0 T1 = 20 T1 = 45

λcr 26.9 30.5 39.85 23.2 26.45 36.35 14.6 17.1 21

is calculated in three different layup configurations named VSCL_1, VSCL_2 and VSCL_3. The goal here
is to find the ideal fiber path angle to reach the maximum flutter pressure and good post-flutter limit cycle
oscillation (LCO) behavior of the wing-like plate tip.

4.1 Structural model validation

The first three natural frequencies of VSCL plate with curvilinear fiber path are compared with the results
of Ref. [19] in Table 1. In Ref. [19], the p-version FEM and third-order shear deformation are employed.
Table 1 shows the comparison of frequencies for a three-layer simply supported and clamped VSCL and fiber
orientation angles defined by 〈T0, T1〉. The geometric and material properties are given in Table 2.

In order to verify the present nonlinear aeroelastic model and solution methodology, the results of Abdel-
Motagaly et al. [32] are used for comparison in two cases of isotropic and composite plates. The FEM time-
domain approach is presented in Ref. [32] for studying the nonlinear plate flutter characteristics. Isotropic and
composite material properties are given in Table 3.

The validation includes calculation of the LCO amplitude of plate flutter for simply supported square
(0.305, 0.305, 0.0013m) isotropic plate and (0.305, 0.305, 0.0012m) composite plate with eight layers
[0/45/ − 45/90]S . The aerodynamic damping coefficient Ca is set to 0.1 for both isotropic and compos-
ite plate structures. Figure 4 demonstrates good agreement between the present method and Ref. [32] for LCO
amplitudes of both isotropic and composite plates.

4.2 Time-domain analysis

For the variable stiffness composite plate, nonlinear aeroelastic analyses have been performed by the Newmark
constant average acceleration time integration scheme. The nonlinear transient response of a square laminated
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Fig. 7 Time and frequency response qualification of the vertical tip deflection of VSCL_1 case, fiber design parameters
〈T0 = 0, T1 = 0〉 at a λ = 1.002λcr b λ = 1.2λcr

composite plate with three layup configurations of VSCL_1, VSCL_2 and VSCL_3 is shown in Fig. 3. Can-
tilevered boundary condition with one side clamped and three side free edges has been considered. Square
plate dimensions along with material properties are given in Table 4. The stacking scheme for composite layers
is in the form of Ref. [23] given as:

[45 + 〈T0, T1〉 , −45 − 〈T0, T1〉 , 〈T0, T1〉 , − 〈T0, T1〉 , 90 + 〈T0, T1〉 , −90 − 〈T0, T1〉]sym , (36)

where 〈T0, T1〉 are reference fiber angles shown in Fig. 3 for curvilinear fiber paths of VSCL_1, VSCL_2 and
VSCL_3. The fiber angles 〈T0, T1〉 can also be considered as design parameters.

For transient analysis, a time step value of dt = 2ms is used. It is assumed that the composite plate is
initially at rest and the plate is given an initial disturbance to vertical displacement w. Due to the intrinsic
character of aeroelastic systems which fall in the category of self-excited vibrations, imposing a small variation
of initial condition may ultimately lead to attenuation or magnification of the response. In cases where the
steady-state aeroelastic response damps out, the system is stable. On the contrary, for unstable conditions, limit
cycle oscillations appear. In the following, time history plots are given for the maximum tip displacement of
the plate at η = 1, ξ = 0.75.

Figure 5a–c illustrates the time history of a nonlinear analysis of vertical plate displacement at the sub-
critical, critical and supercritical non-dimensional dynamic pressure λ given in Eq. (12) for the case VSCL_1
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Fig. 8 Time and frequency response qualification of the vertical tip deflection of the VSCL_1 case, fiber design parameters
〈T0 = 0, T1 = 45〉 at a λ = 1.002λcr b λ = 1.25λcr

(Fig. 3a and Eq. (33)) with 〈T0 = 0, T1 = 0〉). As depicted in Fig. 5a, in a nonlinear analysis of subcritical λ
value, disturbance generated by the imposed initial conditions is attenuated due to the aerodynamic damping.
With the increase in λ, LCO shown in Fig. 5b starts at the bifurcation pressure which corresponds to the critical
non-dimensional dynamic pressure λcr. As illustrated in Fig. 5c, beyond the λcr, in the supercritical region,
amplitude of LCO increases substantially and the magnitude of oscillations of tip vertical deflection is much
higher than the magnitude of the oscillations at the critical condition.

4.3 Fiber angle study

LCO amplitude diagrams of composite platewith θ1 configuration (VSCL_1 case) are presented in Fig. 6 for set
of fiber design angles of 〈T0 = {0, 20, 45} , T1 = {0, 20, 45}〉. Bifurcation points identified by the nonlinear
aeroelastic analysis as critical non-dimensional dynamic pressure (λcr) are given in Table 5. The highest
critical non-dimensional pressure is seen for 〈T0 = 0, T1 = 45〉 which is almost 33% higher than the closest
unidirectional fiber path with 〈T0 = 0, T1 = 0〉 as shown in red with square symbols in Fig. 6.

Figure 6 demonstrates that for the fiber design angle set of 〈T0 = 0, T1 = 45〉 and 〈T0 = 20, T1 = 45〉, not
only the instability occurs at a higher λ values, but the post-flutter response of the plate tip is also slightly well



728 T. Farsadi et al.

λ
20 25 30 35 40 45
0

0.005

0.01

0.015

0.02

0.025

0.03

θ

Fig. 9 The effect of fiber path on the LCO amplitude diagram of the VSCL_2 plate (branches in red are unidirectional cases)
(color figure online)

λ

m
ax

15 20 25 30 35 40 45 50 55 60 65 70
0

0.01

0.02

0.03

T0=0, T1=0
T0=0, T1=20
T0=0, T1=45
T0=20, T1=0
T0=20, T1=20
T0=20, T1=45
T0=45, T1=0
T0=45, T1=20
T0=45, T1=45

(Nondimensional Dynamic Pressure)

w

θ3 layup configuration
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behaved compared to the counterpart unidirectional fiber design sets, 〈T0 = 0, T1 = 0〉 and 〈T0 = 20, T1 = 20〉
as shown in red with square and triangular symbols, respectively.

In order to compare the time response of the unidirectional and curvilinear fiber paths in the post-flutter
range, beginning from low λ values to the highest values, two fiber design sets, 〈T0 = 0, T1 = 0〉 as unidirec-
tional set and 〈T0 = 0, T1 = 45〉 as curvilinear fiber set in the case VSCL_1 are studied. It should be noted that
at low λ values in the post-flutter range, responses are periodic and for values which are sufficiently higher than
the critical λ values, nonlinear aeroelastic responses may become chaotic. For the composite plate VSCL_1
of unidirectional fiber design set 〈T0 = 0, T1 = 0〉, Figs. 7 and 8 present the time response and frequency
plots for vertical displacement of the plate tip, for non-dimensional dynamic pressure ratios of 1.002 and 1.2,
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Table 6 Critical non-dimensional dynamic pressure for various angle sets of the VSCL_2 plate

T0 = 0 T0 = 20 T0 = 45

T1 = 0 T1 = 20 T1 = 45 T1 = 0 T1 = 20 T1 = 45 T1 = 0 T1 = 20 T1 = 45

λcr 26.9 28.7 31.9 25.85 26.45 26.75 24 22.2 21

Table 7 Critical non-dimensional dynamic pressure for various angle sets of the VSCL_3 plate

T0 = 0 T0 = 20 T0 = 45

T1 = 0 T1 = 20 T1 = 45 T1 = 0 T1 = 20 T1 = 45 T1 = 0 T1 = 20 T1 = 45

λcr 26.9 26.8 20.75 30 26.45 20.5 52.1 40 21
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Fig. 11 Time and frequency response qualification of the vertical tip deflection of VSCL_3 case, fiber design parameters
〈T0 = 45, T1 = 0〉 at a λ = 1.002λcr b λ = 1.2λcr

respectively. Figure 7a shows, at low post-critical pressure ratio of λ = 1.002λcr, that the nonlinear aeroelastic
response of the plate is purely periodic with distinct frequency in the FFT plot. For higher post-flutter pres-
sure ratio of λ = 1.2λcr, the nonlinear aeroelastic response of the plate is chaotic as seen from the time and
frequency responses in Fig. 7b.
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Figure 8 depicts the time response and frequency plot for the vertical tip displacements of the VSCL_1
configuration for curvilinear fiber set of 〈T0 = 0, T1 = 45〉, for values of λ = 1.002λcr and λ = 1.25λcr,
which is the final value of the post-flutter range, respectively. Comparing Figs. 7b and 8b clarifies that, chaotic
motion occur in higher ratios of pressure (l = 1.2 for 〈T0 = 0, T1 = 0〉 and l = 1.25 for 〈T0 = 0, T1 = 45〉)
for the curvilinear plate respecting unidirectional case.

Figures 9 and 10 illustrate the LCO diagrams which demonstrate the effect of the fiber improvement on the
flutter and post-flutter characteristics of the VSCL_2 and VSCL_3 plates, respectively. Figure 10 reveals that
for the design of unidirectional fiber set of 〈T0 = 0, T1 = 0〉, the bifurcation angle is wide and the amplitude
of the LCO increases abruptly with a slight increase in the dynamic pressure. In this design, the nonlinearity
is relatively weak and the amplitude curves are nearly vertical. On the other hand, for the curvilinear fiber sets
of 〈T0 = 45, T1 = 0〉 and 〈T0 = 45, T1 = 20〉, the bifurcation angle is slightly lower and the amplitude of the
LCO is confined within a band as the dynamic pressure increases. Such a supercritical post-flutter behavior,
which is a sign of strong nonlinearity, is actually a desirable nonlinear aeroelastic response. Tables 6 and 7
represent the critical dynamic pressure determined by the nonlinear aeroelastic solution.

Comparing flutter dynamic pressures given in Tables 5, 6 and 7 and LCO amplitude diagrams shown in
Figs. 6, 9 and 10 for the different plate configurations VSCL_1, VSCL_2 and VSCL_3, one can see that for
the curvilinear fiber design set 〈T0 = 45, T1 = 0〉 of the VSCL_3 configuration, the flutter dynamic pressure
is the highest and is 48.4% higher than for the closest unidirectional case. The highest curvilinear fiber set is
followed by the fiber sets of 〈T0 = 0, T1 = 45〉 for VSCL_1 and 〈T0 = 45, T1 = 20〉 for VSCL_3 as second
and third highest critical dynamic pressure with λcr = 39.85 and λcr = 40, respectively.

For the VSCL_3 configuration with curvilinear fiber set 〈T0 = 45, T1 = 0〉, which has the highest λcr
among the all fiber sets, Fig. 11 gives the time histories of the vertical displacements of the plate tip and its
respective frequency response plot at post-flutter λ values of λ = 1.002λcr and λ = 1.2λcr. From Fig. 11a, it
is inferred that for low post-flutter λ values (λ = 1.002λcr), the aeroelastic response is purely periodic and the
frequency response has a distinct frequency value. Finally, according to Fig. 11b, at the post-flutter dynamic
pressure ratio of λ = 1.2λcr, nonlinear aeroelastic response becomes chaotic and the frequency response plot
shows that a broadband range of dominant frequencies exists in the response.

It was shown that the curvilinear fiber placement can create a more efficient aeroelastic performance in
cantilevered rectangular plates; therefore, it can be considered in aeroelastic studies of composite panels with
different geometries and boundary conditions [33–35].

5 Conclusion

An advanced curvilinear fiber layup is utilized to enhance the aeroelastic performance of wing-like plates. For
this aim, a design tool is developed using the composite plate theory which considers the nonlinear strains
for the structural modeling of the cantilevered plate and the first-order piston theory for the supersonic quasi-
steady aerodynamicmodeling of the plate. Three curvilinear fiber layup configurations (VSCL_1, VSCL_2 and
VSCL_3) are considered to choose the best configuration of the fiber formaximum instability dynamic pressure
and post-flutter performance. The GDQ method was applied to obtain the nonlinear aeroelastic transient
response of laminated composite plates. It was shown that the different curvilinear fiber configurations and
ply angle with different design parameters have a major influence on the nonlinear aeroelastic characteristics
including the LCO and bifurcation diagrams. This can be explained by aeroelastic concepts such as wash-
in/wash-out and linear and nonlinear stiffness characteristics. Numerical results demonstrate the advantages of
variable stiffness composite laminates (VSCL) over the unidirectional fiber model in terms of instability and
LCO behavior. Additionally, the best VSCL configuration was introduced for improved post-flutter responses.
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