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Abstract In this study, frictionless continuous and discontinuous contact problems between an electrically
conducting rigid flat punch and a homogeneous layer are considered. The body force of the layer is considered,
and the layer is lying on the rigid substrate without bond. Thus, if the external load is smaller than a certain
critical value, the contact between the layer and substrate is continuous. However, when the external loads
exceed the critical value, there is a separation between the layer and substrate on the finite region, that is,
discontinuous contact. Using the Fourier integral transform technique, the general expressions of the stresses
and displacements are derived in the presence of body force. Using the boundary conditions, the singular
integral equations are obtained for both the continuous and discontinuous contact cases. TheGauss–Chebyshev
integration formulas are utilized to convert the singular integral equations into a set of nonlinear equationswhich
are solved using a suitable iterative algorithm to yield the lengths of the separation region and the associated
contact pressure and normal electric displacement. The singular integral equations are solved numerically
applying the appropriate Gauss–Chebyshev integration formulas. This is the first study that investigates the
contact problem of the piezoelectric materials in the presence of the body force.

1 Introduction

Piezoelectric materials exhibit what is known as piezoelectric effect, which is an electric polarization induced
in the material upon applying a mechanical load or vice-versa [1]. Thanks to this coupling phenomenon,
piezoelectric materials have been exploited in the design of a wide range of engineering applications including
transducers, actuators, and sensors [2].

Contact problems in homogeneous piezoelectricmaterials have attracted the attention of several researchers
over the past twenty-five years primarily because these materials somewhat loose their serviceability perfor-
mance when subjected to highly localized loading [3]. Matysiak [4] studied the contact problem between a
rigid conducting punch and a piezoelectroelastic half-plane. Fan et al. [5] obtained the stress and electrical
field distributions in a piezoelectric half-plane under a contact load using Stroh’s formalism. Giannakopoulos
and Suresh [6] proposed a general theory for solving axisymmetric piezoelectric contact problems. Sridhar et
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al. [7] investigated analytically and experimentally the mechanical and electrical responses of piezoelectric
solids to conical indentation. Ramirez and Heyliger [8] considered the contact of an arbitrarily multilay-
ered piezoelectric half-plane indented by a rigid frictionless parabolic punch. Wang and Han [9] studied the
axisymmetric contact of an insulating or conducting circular punch on a piezoelectric layer/half-plane. Ke et
al. [10] investigated the frictionless contact between a rigid punch and a graded piezoelectric layer bonded
to a homogeneous piezoelectric half-plane. Zhou and Lee [11] examined the thermal contact problem of a
piezoelectric layer under a sliding flat punch. Liu and Yang [12] utilized finite element analysis (FEA) to study
spherical indentation of transversely isotropic piezoelectric materials by a rigid spherical indenter. Wu et al.
[13] investigated the indentation response of a piezoelectric layered half-space. Zhou and Lee [3] considered
the frictional contact of anisotropic piezoelectric materials indented by flat and semi-parabolic stamps. Ma et
al. [14] studied the sliding frictional contact of a piezoelectric half-plane under a rigid conducting punch. In
a similar work, Li et al. [15] examined the frictional sliding contact of piezoelectric materials subjected to
flat or parabolic indenters. Zhou and Zhong [16] investigated the interaction of two rigid semi-cylinders over
anisotropic piezoelectric materials by the generalized Almansi theorem. Su et al. [17] examined the fretting
contact of a graded piezoelectric layered half-plane subjected to a conducting punch.

Few investigators considered the continuous and discontinuous contact problems in homogeneous and
graded materials. This paragraph summarizes few of these studies. Cakiroglu et al. [18] considered the contact
problem for two elastic layers resting on an elastic half-plane. Birinci and Erdol [19] investigated the contact
problem for a layered composite resting on simple supports. Ozsahin [20] studied the frictionless contact
problem for a layer on an elastic half-plane loaded by means of two dissimilar rigid punches. Ozsahin and
Taskiner [21] examined the continuous and discontinuous contact problems for an elastic layer on an elastic
half-plane loaded by means of three rigid flat punches. Birinci et al. [22] investigated both analytically and
numerically using the finite element method the continuous and discontinuous contact problems between two
homogeneous layers resting on aWinkler-type foundation.Adıyaman et al. [23] considered the contact problem
of a graded layer resting on a rigid foundation. Comez [24] investigated the contact of a graded layer pressed
by a rigid cylindrical punch.

To the best of our knowledge, the problem involving continuous and discontinuous contact problems in
a piezoelectric medium has not been investigated and reported in the published literature to date. To address
this gap in the literature, this paper considers the frictionless continuous and discontinuous nonlinear contact
problems between an electrically conducting rigid flat punch and a piezoelectric homogeneous layer, which is
in turn resting on a rigid substrate. The mixed-boundary value problem is converted analytically to a coupled
set of integral equations using suitable integral transforms which are in turn solved using appropriate numerical
and iterative techniques.

The remainder of this paper is organized as follows: The description and formulation of the contact problem
are provided in Sect. 2. The formulation of the continuous and discontinuous contact problems are, respectively,
further detailed in Sects. 3 and 4 resulting in the derivation of a coupled set of singular integral equations (SIEs).
In Sect. 5, the resulting SIEs are transformed into an equivalent system of algebraic equations using Gauss–
Chebyshev integration formulas, which is in turn solved numerically. In Sect. 6, the obtained results are first
validated based on published data, and then a parametric study is performed to investigate the influence of the
various input parameters. Finally, a summary along with the key findings of this study is provided in Sect. 7.

2 Formulation of the problem

Consider the plane strain frictionless contact problem, illustrated in Fig. 1, between an electrically conducting
rigid flat punch and a homogeneous piezoelectric layer, which is in turn resting on a rigid substrate. A Cartesian
coordinate system (x, z) with the abscissa positioned at the contact zone between the piezoelectric layer and
the rigid substrate is adopted as shown in Fig. 1. The layer of thickness h extends infinitely in the x direction.
The equilibrium equations of elastostatic and Maxwell electrostatic equation can be written as

∂σx

∂x
+ ∂τxz

∂z
= 0, (1.1)

∂τxz

∂x
+ ∂σz

∂z
− ρg = 0, (1.2)

∂Dx

∂X
+ ∂Dz

∂Z
= 0 (1.3)
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whereu andw are the x- and z-components of the displacement vector,Dx and Dz are the electric displacements,
and ρ is the mass density. For the plane contact problem, the constitutive equations of linear piezoelectricity
can be written as

σx = c11
∂u

∂x
+ c13

∂w

∂z
+ e31

∂φ

∂z
, (2.1)

σz = c13
∂u

∂x
+ c33

∂w

∂z
+ e33

∂φ

∂z
, (2.2)

τxz = c44

(
∂u

∂z
+ ∂w

∂x

)
+ e15

∂φ

∂x
, (2.3)

Dx = e15

(
∂u

∂z
+ ∂w

∂x

)
− ∈11

∂φ

∂x
, (2.4)

Dz = e31
∂u

∂x
+ e33

∂w

∂z
− ∈33

∂φ

∂z
(2.5)

where φ is the electric potential and ci j , ei j , ∈i j are the elastic, piezoelectric, and dielectric constants, respec-
tively. Substituting Eq. (2) into Eq. (1), the following electro-elastic partial differential equations can be
obtained:

c44
∂2u

∂z2
+ c11

∂2u

∂x2
+ (c13 + c44)

∂2w

∂x∂z
+ (e15 + e31)

∂2φ

∂x∂z
= 0, (3.1)

(c13 + c44)
∂2u

∂x∂z
+ c44

∂2w

∂x2
+ c33

∂2w

∂z2
+ e33

∂2φ

∂z2
+ e15

∂2φ

∂x2
− ρg = 0, (3.2)

(e15 + e31)
∂2u

∂x∂z
+ e15

∂2w

∂x2
+ e33

∂2w

∂z2
− ∈11

∂2φ

∂x2
− ∈33

∂2φ

∂z2
= 0. (3.3)

Using the Fourier integral transform technique, partial differential equations (3) can be reduced to the ordinary
differential equations. To use the Fourier transform, the following expressions may be written:

{ u(x, z), w(x, z), φ(x, z) } =
∞∫

−∞
{ ũ(ξ, z), w̃(ξ, z), φ̃(ξ, z) } e−I ξ xdξ (4)

where ũ(ξ, z), w̃(ξ, z), and φ̃(ξ, z) are Fourier transforms of u(x, z), w(x, z), and φ(x, z), respectively. ξ is
the transform variable and I = √−1. Substituting Eqs. (4) into (3) yields the following system of ordinary
differential equations:

−c44
d2ũ

dz2
+ ξ2c11ũ + I ξ(c13 + c44)

d2w̃

dz
+ I ξ(e15 + e31)

dφ̃

dz
= 0, (5.1)

−I (c13 + c44)ξ
dũ

dz
− ξ2c44w̃ + c33

d2w̃

dz
+ e33

d2φ̃

dz2
− e15ξ

2φ̃ − ρgδ(ξ) = 0, (5.2)

−I (e15 + e31)ξ
dũ

dz
− ξ2e15w̃ + e33

d2w̃

dz
− ∈33

d2φ̃

dz2
− ∈11ξ

2φ̃ = 0 (5.3)

where δ denotes the Dirac delta function.
The Fourier transform of the displacement field, ũ(ξ, z), w̃(ξ, z), and φ̃(ξ, z) can be obtained by solving

the system of Eqs. (5). Taking the inverse Fourier transform using Eq. (4) results in the displacements and the
electric potential that can be written as follows:

u(x, z) = 1

2π

∞∫
−∞

⎛
⎝ 6∑

j=1

A j e
n j ξ z

⎞
⎠e−I ξ xdξ, (6.1)

w(x, z) = 1

2π

∞∫
−∞

⎛
⎝ 6∑

j=1

k j A j e
n j ξ z − ρg∈11

c44ξ2(e215 + c44∈11)
δ(ξ)

⎞
⎠e−I ξ xdξ, (6.2)
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φ(x, z) = 1

2π

∞∫
−∞

⎛
⎝ 6∑

j=1

λ j A j e
n j ξ z − ρge15

c44ξ2(e215 + c44∈11)
δ(ξ)

⎞
⎠e−I ξ xdξ (6.3)

where

λ j = −e15k j − I (e15 + e31)n j + e33k jn2j
−∈11 + n2j∈33

j = 1, 2, . . . 6, (7.1)

k j = I n j (−(e15 + e31)(e15 − e33n2j ) − (c13 + c44)∈11 + (c13 + c44)n2j∈33

e215 − 2e15e33n2j + e233n
4
j + (c44 − c33n2j )(∈11 − n2j∈33)

. (7.2)

Note that n j are the roots of the following characteristic polynomials:

n6 + L1n
4 + L2n

2 + L3 = 0 (8)

where L j ( j = 1, 2, 3) can be expressed as follows:

L1 = e33(2c44e31 + 2c13(e15 + e31) − c11e33) + c13(c13 + 2c44)∈33 − c33((e15 + e31)
2 + c44∈11 + c11∈33))

c44(e
2
33 + c33∈33)

,

(9.1)

L2 = c44e
2
31 + 2c11e15e33 − c213∈11 + c11c33∈11 − 2c13(e15(e15 + e31) + c44∈11) + c11c44∈33

c44(e
2
33 + c33∈33)

, (9.2)

L3 = c11(e
2
15 + c44∈11)

c44(e
2
33 + c33∈33)

. (9.3)

Substituting Eqs. (6) into (1) gives the stress components and the electric displacements for the homoge-
neous piezoelectric layer that can be expressed as follows:

σx (x, z) = 1

2π

∞∫
−∞

ξ

⎡
⎣ 6∑

j=1

A j (−I c11 + n j (c13k j + e31λ j )) e
n j ξ z

⎤
⎦e−I ξ xdξ, (10.1)

σz(x, z) = 1

2π

∞∫
−∞

ξ

⎡
⎣ 6∑

j=1

A j (−I c13 + n j (c33k j + e33λ j ) )en j ξ z

⎤
⎦e−I ξ xdξ, (10.2)

τxz(x, z) = 1

2π

∞∫
−∞

ξ

⎡
⎣ 6∑

j=1

A j (c44(−I k j + n j ) − I e15λ j ) e
n j ξ z + I

ρg

ξ2
δ(ξ)

⎤
⎦e−I ξ xdξ, (10.3)

Dx (x, z) = 1

2π

∞∫
−∞

ξ

⎡
⎣ 6∑

j=1

A j (e15(−I k j + n j ) + I∈11λ j ) e
n j ξ z

⎤
⎦e−I ξ xdξ, (10.4)

Dz(x, z) = 1

2π

∞∫
−∞

ξ

⎡
⎣ 6∑

j=1

A j (−I e31 + n j (e33k j − ∈33λ j ) )en j ξ z

⎤
⎦e−I ξ xdξ (10.5)

where A j ( j = 1, 2, . . . , 6) are the unknowns, which will be determined from the mechanical and electrical
boundary conditions of the moving contact problem.

3 Continuous contact problem

If the external load P is sufficiently small, then the contact along the layer-substrate interfacewill be continuous,
and there is no separation between the layer and the substrate (see Fig. 1).
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Fig. 1 Geometry of the continuous contact problem

3.1 The boundary conditions and the singular integral equations

In the Cartesian coordinate system (x, z), the governing equations of the continuous contact problem are
subjected to the following boundary conditions:

σz(x, h) =
{−p(x) − a < x < a

0 |x | ≥ a , (11.1)

τxz(x, h) = 0 (−∞ < x < ∞) (11.2)

τxz(x, 0) = 0 (−∞ < x < ∞) (11.3)

w(x, 0) = 0 (−∞ < x < ∞), (11.4)

Dz(x, h) =
{−q(x) − a < x < a

0 |x | ≥ a (11.5)

φ(x, 0) = 0 (−∞ < x < ∞) (11.6)

where p(x) and q(x) are the unknown contact stress and the electric charge distributions on the contact area
(−a, a), respectively.

Using the boundary conditions given by Eq. (11), the unknowns A j ( j = 1, 2, . . . , 6) can be determined
depending on the unknown contact stress p(x) and the electric charge distributions q(x) in the following form:

A j =
a∫

−a

[
Ap
j p(t) + Aq

j q(t) + ρ0gA
ρ
j

]
eI ξ tdt. (12)

p(x) and q(x) can be found using the following boundary conditions:

∂w(x, h)

∂x
= 0 − a < x < a, (13.1)

φ(x, h) = φ0 or
∂φ(x, h)

∂x
= 0 − a < x < a. (13.2)

Substituting the unknowns A j into the boundary conditions (13), the following system of singular integral
equations may be obtained:

1

π

a∫
−a

p(t)dt

[
β11

t − x
+ k11(x, t)

]
+ 1

π

a∫
−a

q(t)dt

[
β12

t − x
+ k12(x, t)

]
= 0 (−a < x < a), (14.1)

1

π

a∫
−a

p(t)dt

[
β21

t − x
+ k21(x, t)

]
+ 1

π

a∫
−a

q(t)dt

[
β22

t − x
+ k22(x, t)

]
= 0 (−a < x < a). (14.2)
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The expressions of the Fredholm kernels, k11(x, t), k12(x, t), k21(x, t), k22(x, t), and the parameters β11, β12,
β21, and β22 are given in “Appendix A.”

Note that the following equilibrium conditions should be satisfied for a complete solution:

a∫
−a

p(t)dt = P, (15.1)

a∫
−a

q(t)dt = T (15.2)

where P is the applied load in units of [N/m] and T is the electric charge in units of [C/m].
Note that when the value of external load exceeds Pcr, the interface separation takes place between the

layer and the substrate. The solution of the continuous contact problem is only valid if the external load is less
than Pcr (0 < P < Pcr) which has not been determined yet. The contact stress on the interface σz(x, 0) should
be evaluated first to find the value of separation load and separation distance. Substituting A j into (10.2), the
contact stress between the layer and rigid substrate can be found as

σz(x, 0) = 1

π

a∫
−a

p(t)k31(x, t)dt + 1

π

a∫
−a

q(t)k32(x, t)dt + ρg

∞∫
−∞

M33(ξ)δ(ξ)e−I ξ xdx . (16)

Knowing that

lim
α→0

∞∫
−∞

M33(ξ)e−I ξ xdξ = −h, (17)

Eq. (16) becomes

σz(x, 0) = 1

π

a∫
−a

p(t)k31(x, t)dt + 1

π

a∫
−a

q(t)k32(x, t)dt − ρgh (18)

where

k31(x, t) =
∞∫
0

M31(ξ) cos ξ(t − x)dξ, (19.1)

k32(x, t) =
∞∫
0

M32(ξ) cos ξ(t − x)dξ, (19.2)

M31(ξ) = ξ

6∑
j=1

Ap
j (−I c13 + n j (c33k j + e33λ j )), (19.3)

M32(ξ) = ξ

6∑
j=1

Aq
j (−I c13 + n j (c33k j + e33λ j )), (19.4)

M33(ξ) = ξ

6∑
j=1

Aρ
j (−I c13 + n j (c33k j + e33λ j )). (19.5)
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3.2 On the solution of the singular integral equation

The singular integral equations (14) must be solved simultaneously to find the contact stress p(x) and the
electric charge distributions q(x). Introducing the following normalization:

t = ar, x = as (20)

the singular integral equations and σz(x, 0) may be expressed in the following form:

1

π

1∫
−1

p(r)dr

[
β11

r − s
+ ak11(s, r)

]
+ 1

π

1∫
−1

q(r)dr

[
β12

r − s
+ ak12(s, r)

]
= 0 (−1 < s < 1), (21.1)

1

π

1∫
−1

p(r)dr

[
β21

r − s
+ ak21(s, r)

]
+ 1

π

1∫
−1

q(r)dr

[
β22

r − s
+ ak22(s, r)

]
= 0 (−1 < s < 1), (21.2)

σz(x, 0) = 1

π

1∫
−1

p(t)ak31(x, t)dt + 1

π

1∫
−1

q(t)ak32(x, t)dt − ρgh. (21.3)

Similarly, the equilibrium conditions (15) become

a

1∫
−1

p(r)dr = P, (22.1)

a

1∫
−1

q(r)dr = T . (22.2)

p(r) and q(r) have a square root singularity at both ends r = ±1. Thus, both integral equations have the index
“+1.” The solution of the integral equations (21) may be expressed as

p(r) = g1(r)/
√
1 − r2, (23.1)

q(r) = g2(r)/
√
1 − r2. (23.2)

Using the Gauss–Chebyshev integration formulas [25], the integral equations (21) can be converted into a
system of algebraic equations as follows:

N∑
i=1

1

N
g1(ri )

[
β11

ri − sk
+ ak11(sk, ri )

]
+

N∑
i=1

1

N
g2(ri )

[
β12

ri − sk
+ ak12(sk, ri )

]
= 0 k = 1, 2, . . . , N − 1,

(24.1)
N∑
i=1

1

N
g1(ri )

[
β21

ri − sk
+ ak21(sk, ri )

]
+

N∑
i=1

1

N
g2(ri )

[
β22

ri − sk
+ ak22(sk, ri )

]
= 0 k = 1, 2, . . . , N − 1.

(24.2)

Similarly, the equilibrium conditions (22.1) and (22.2) become

a
N∑
i=1

1

N
g1(ri ) = 1

π
P, (25.1)
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a
N∑
i=1

1

N
g2(ri ) = 1

π
T (25.2)

where

ri = cos

(
2i − 1

2N
π

)
i = 1, 2, . . . , N , (26.1)

sk = cos

(
k

N
π

)
k = 1, 2, . . . , N − 1. (26.2)

In addition, Eq. (21.3) becomes

σz(x, 0) =
N∑
i=1

1

N
g1(ri )ak31(x, ri ) +

N∑
i=1

1

N
g2(ri )ak32(x, ri ) − ρgh. (27)

Equations (24) and (25) give 2N equations to determine 2N unknowns which are g1(ri ) and g2(ri ). Note that
the solutionmust also ensure that the contact stress between the layer-substrate (27) is compressive everywhere,
that is,

Max[σz(x, 0)] ≤ 0. (28)

If condition (28) is satisfied, the continuous contact is ensured. It is clear that every load satisfying condition
(28) is not critical. If the stress at the interface is equal to zero at a certain point x = xcr, that is σz (xcr, 0) = 0,
the corresponding load is referred to as the critical load Pcr, and xcr is the critical separation point. The system
of equations is linear in terms of g1 (ri ) and g2 (r2) but highly nonlinear in terms of the variable P . Thus, an
iteration procedure should be performed to obtain the critical load. In this method, the critical load is guessed at
first, then g1 (ri ) and g2 (r2) are computed from Eqs. (24) and (25). The condition (28) and σz (xcr, 0) = 0 are
checked by substituting g1 (ri ) and g2 (r2) into them. The iterations are continued until an acceptable accuracy
is achieved.

4 Discontinuous contact problem

If the external load P exceeds the critical value Pcr, then the contact along the layer–substrate interface will be
discontinuous, and there occurs separation between the layer and substrate as shown in Fig. 2. The separation
observed in this problemwill be closed after the separation length reaches a critical value (|x | = c). This is due
to the fact that when the body force is not neglected, the separation will be finite unlike the receding contact
problems.

Fig. 2 Geometry of the discontinuous contact problem
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4.1 The boundary conditions and the singular integral equations

The boundary conditions of the discontinuous contact problem can be written as follows:

σz(x, h) =
{−p(x) − a < x < a

0 |x | ≥ a , (29.1)

τxz(x, h) = 0 (−∞ < x < ∞), (29.2)

τxz(x, 0) = 0 (−∞ < x < ∞), (29.3)
∂w(x, 0)

∂x
=

{
f (x) (−c ≤ x < −b, b ≤ x < c)
0 |x | ≤ b, |x | ≥ c. (29.4)

Dz(x, h) =
{ −q(x) −a < x < a

0 |x | ≥ a.
(29.5)

φ(x, 0) = 0 (−∞ < x < ∞) (29.6)

where p(x) and q(x) are the unknown contact stress and the electric charge distributions on the contact area
(−a, a), respectively. f (x) is the derivative of the interface displacement on the separation region (−b,−c)
and (b, c). Note that since the friction between the contacting components is ignored and they are not bonded
to each other, the tangential tractions do not occur on the surfaces. Also, the vertical displacement outside the
separation region will be zero since the substrate is rigid.

Applying the boundary conditions given by (29), the unknowns A j ( j = 1, 2, . . . , 6) can be determined
depending on the unknown contact stress p(x), the electric charge distributions q(x), and the derivative of the
interface displacement f (x) as the following form:

A j =
a∫

−a

[
Ā p
j p(t) + Āq

j q(t) + Ā f
j f (t) + ρg Āρ

j

]
eI ξ tdt. (30)

To find the p(x), q(x), and f (x), the following boundary conditions can be written:

∂w(x, h)

∂x
= 0 − a < x < a, (31.1)

φ(x, h) = φ0 or
∂φ(x, h)

∂x
= 0 − a < x < a, (31.2)

σz(x, 0) = 0 − c < x < −b, b < x < c. (31.3)

Substituting the unknowns A j into the boundary condition (31), the following singular integral equations
system may be obtained:

1

π

a∫
−a

p(t1)dt1

[
β̄11

t1 − x1
+ k̄11(x1, t1)

]
+ 1

π

a∫
−a

q(t1)dt1

[
β̄12

t1 − x1
+ k̄12(x1, t1)

]

+ 1

π

c∫
b

f (t2)dt2
[
k̄13(x1, t2)

] = 0 (−a < x1 < a), (32.1)

1

π

a∫
−a

p(t1)dt1

[
β̄21

t1 − x1
+ k̄21(x1, t1)

]
+ 1

π

a∫
−a

q(t1)dt1

[
β̄22

t1 − x1
+ k̄22(x1, t1)

]

+ 1

π

c∫
b

f (t2)dt2
[
k̄23(x1, t2)

] = 0 (−a < x1 < a), (32.2)
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1

π

a∫
−a

p(t1)dt1
[
k̄31(x2, t1)

] + 1

π

a∫
−a

q(t1)dt1
[
k̄32(x2, t1)

]

+ 1

π

c∫
b

f (t2)dt2

[
β̄33

2

(
1

t2 − x2
+ 1

t2 + x2

)
+ k̄33(x2, t2)

]
= ρgh (b < x2 < c). (32.3)

The expressions of the k̄11(x1, t1), k̄12(x1, t1), k̄13(x1, t2), k̄21(x1, t1), k̄22(x1, t1), k̄23(x1, t2), k̄31(x2, t1),
k̄32(x2, t1), k̄33(x2, t2) and the parameters β̄11, β̄12, β̄21, β̄22, and β̄33 are provided in “Appendix B.”

In the singular integral equations (32), the following equilibrium and single-value conditions must be
satisfied:

a∫
−a

p(t1)dt1 = P, (33.1)

a∫
−a

q(t1)dt1 = T, (33.2)

c∫
b

f (t2)dt2 = 0. (33.3)

5 On the solution of the singular integral equations

Introducing the following normalizations:

t1 = ar1, x1 = as1, t2 = b − c

2
r2 + b + c

2
, x2 = b − c

2
s2 + b + c

2
, (34)

the singular integral equations (32) may be expressed as follows:

1

π

1∫
−1

p(r1)dr1

[
β̄11

r1 − s1
+ ak̄11(s1, r1)

]
+ 1

π

1∫
−1

q(r1)dr1

[
β̄12

r1 − s1
+ k̄12(s1, r1)

]

+ 1

π

1∫
−1

f (r2)dr2

[
c − b

2
k̄13(s1, r2)

]
= 0 (−1 < s1 < 1), (35.1)

1

π

1∫
−1

p(r1)dr1

[
β̄21

r1 − s1
+ ak̄21(s1, r1)

]
+ 1

π

1∫
−1

q(r1)dr1

[
β̄22

r1 − s1
+ k̄22(s1, r1)

]

+ 1

π

1∫
−1

f (r2)dr2

[
c − b

2
k̄23(s1, r2)

]
= 0 (−1 < s1 < 1), (35.2)

1

π

1∫
−1

p(r1)dr1
[
ak̄31(s2, r1)

] + 1

π

1∫
−1

q(r1)dr1
[
ak̄32(s2, r1)

]
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+ 1

π

1∫
−1

f (r2)dr2

[
β̄33

2

(
1

r2 − s2
+ 1

r2 + s2 + 2 c+b
c−b

)
+ k̄33(s2, r2)

]
= ρgh

(−1 < s2 < 1). (35.3)

The tractions p(r) and q(r) have a square root singularity at both ends of the contact r = ±1. Thus, the
index of the integral equations (32.1,2) is “+1.” However, the contact stress between the layer and substrate
vanishes at the ends of the contact region and the index of the integral equation (32.3) is “−1.” Therefore, the
solution of the integral equations may be expressed as

p(r1) = g1(r1)/
√
1 − r21 , (36.1)

q(r1) = g2(r1)/
√
1 − r21 , (36.2)

f (r2) = g3(r2)
√
1 − r22 , (36.3)

Using the Gauss–Chebyshev integration formulas [25], the integral equations (35) can be converted into a
system of algebraic equations as follows:

N∑
i=1

1

N
g1(r1i )

[
β̄11

r1i − s1k
+ ak̄11(s1k, r1i )

]
+

N∑
i=1

1

N
g2(r1i )

[
β̄12

r1i − s1k
+ ak̄12(s1k, r1i )

]

+
N∑
i=1

1 − r22i
N + 1

g3(r2i )

[
c − b

2
k̄13(s1k, r2i )

]
= 0, k = 1, 2, . . . , N − 1, (37.1)

N∑
i=1

1

N
g1(r1i )

[
β̄21

r1i − s1k
+ ak̄21(s1k, r1i )

]
+

N∑
i=1

1

N
g2(r1i )

[
β̄22

r1i − s1k
+ ak̄22(s1k, r1i )

]

+
N∑
i=1

1 − r22i
N + 1

g3(r2i )

[
c − b

2
k̄23(s1k, r2i )

]
= 0, k = 1, 2, . . . , N − 1, (37.2)

N∑
i=1

1

N
g1(r1i )

[
ak̄31(s2k, r1i )

] +
N∑
i=1

1

N
g2(r1i )

[
ak̄32(s2k, r1i )

] +
N∑
i=1

1 − r22i
N + 1

g3(r2i )

×
[

β̄33

2

(
1

r2i − s2k
+ 1

r2i + s2k + 2 c+b
c−b

)
+ k̄33(s2k, r2i )

]
= ρgh, k = 1, 2, . . . , N + 1. (37.3)

Similarly, the equilibrium and single-value conditions (33) become

a
N∑
i=1

1

N
g1(ri ) = 1

π
P, (38.1)

a
N∑
i=1

1

N
g2(ri ) = 1

π
T, (38.2)

c − b

2

N∑
i=1

1 − r22i
N + 1

g3(r2i ) = 0 (38.3)

where

r1i = cos

(
2i − 1

2N
π

)
, i = 1, 2, . . . , N , (39.1)
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Fig. 3 Comparison of the contact stress, p(x), and normal electric displacement, q(x), with [26] (h → ∞)

s1k = cos

(
k

N
π

)
, k = 1, 2, . . . , N − 1, (39.2)

r2i = cos

[
iπ

N + 1

]
, i = 1, 2, . . . , N , (39.3)

s2k = cos

[
π(2k − 1)

2(N + 1)

]
, k = 1, 2, . . . , N + 1. (39.4)

It is worth noting that Eqs. (37) and (38) provide 3N+2 equations to compute the 3N+2 unknowns, namely
g1 (r1i ), g2 (r1i ), g3 (r2i ), b, and c. Note that both in Eqs. (37.1) and (37.2), one equation is deficient, and the
equilibrium conditions (38.1) and (38.2), respectively, must be added to Eqs. (37.1) and (37.2). Conversely, the
additional equation in (37.3) is equivalent to the consistency condition and should be extracted from (37.3).
The system of equations is linear in terms of g1 (r1i ), g2 (r1i ), g3 (r2i ), but highly nonlinear in terms of the
variables b and c. Thus, to solve this problem, an efficient iterative method should be used. In this study, an
iterative method based on Newton–Raphson technique is performed with an acceptable accuracy of the order
of 10−10. The iterative method is started with an initial guess for b and c. With these values, g1 (r1i ), g2 (r1i ),
and g3 (r2i ) can be computed from Eqs. (37.1,2), (38.1), (37.2) and (37.3) with one extracted equation. The
single-value condition (38.3) and the extracted equation from (37.3) are checked afterward by substituting
g1 (r1i ), g2 (r1i ), and g3 (r2i ) into them. Iterations are carried on until acceptable accuracy is obtained.

6 Validation of results and parametric study

Before going ahead with the results of this work, a validation study has been performed with Zhou and Lee
[26]. These authors investigated the contact problem for magneto-electro-elastic materials under the action of
a moving punch where the magneto-electro-elastic medium is assumed to be infinitely long. The compared
quantities were the contact stress, p(x), and normal electric displacement, q(x), which were found to be in
excellent agreement with the results of Zhou and Lee [26] (see Fig. 3). Additionally, Table1 lists the critical
load factor λcr = Pcr/ρgh2 by comparing the results of this study and those of Civelek et al. [27].

For the parametric study, we used the material properties given in Table 2. Figure 4 shows the variations
of the critical load Pcr and critical separation point xcr with electric charge, T , and layer height, h. Note that
punch half length is taken to be a = 0.02m. The critical load, Pcr, and the critical separation point, xcr, have
almost linear relationship with the electric charge, T . As the electric charge increases, both critical load and the
critical separation length decrease, which is expected. However, both critical load and the critical separation
length increase when the layer height becomes higher. This result implies that, if the height of the layer is
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Table 1 Comparison of the critical load factor, λcr , with those from Ref. [27]

λcr = Pcr/ρgh2

a/h Reference [27] This study

0.5 58.88 58.888
1.0 92.40 92.404
2.0 169.57 169.581

Table 2 Material parameters used in the parametric study

Material constant Value Unit

c11 166 [GPa]
c13 78 [GPa]
c33 162 [GPa]
c43 43 [GPa]
e15 11.6 [C/m2]
e31 − 4.4 [C/m2]
ε11 11.2 ×10−9 [C2/Nm2]
ε33 12.6 ×10−9 [C2/Nm2]
ρg/c44 1 ×10−6

Fig. 4 Variations of the critical load, Pcr, and critical separation point, xcr, with electric charge, T , and layer height, h (a = 0.02m)

Table 3 Variations of the critical load Pcr and critical separation point xcr with punch length a (T = 1 × 10−4 C/m, h = 0.5m)

a (m) Pcr (kN/m) xcr (m)

0.02 489.1492 0.91063
0.1 514.5971 0.93025
0.2 590.4057 0.98575
0.5 1000.9825 1.2525

high enough, the layer turns to behave like a half-plane and the separation does not occur no matter how large
the load is. Table3 lists the critical load, Pcr, and critical separation point, xcr, with respect to the half punch
length, a, for a specific configuration of the parameters: T = 1 × 10−4 C/m and h = 0.5 m. As the punch
length increases, both critical load and critical separation length increase.

The effect of the applied load on the behavior of the contact stress, p(x), and normal electric displacement,
q(x), on the top surface of the layer, contact stress between the layer and the substrate, σz(x, 0), and derivative
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Fig. 5 Variations of the contact stress, p(x), and normal electric displacement, q(x), on the top surface of the layer, contact
stress between the layer and the substrate, σz(x, 0), and derivative of the interface displacement, f (x), versus mechanical load,
P . Pcr = 534.47 kN/m (T = 1 × 10−4 C/m, h = 0.5m a = 0.02m)

Table 4 Variations of the critical load Pcr and critical separation point xcr with electric charge T and layer height h (a = 0.02m)

h = 0.50 h = 0.75 h = 1.00

T (C/m) Pcr (kN/m) xcr (m) Pcr (kN/m) xcr (m) Pcr (kN/m) xcr (m)

0.0000 492.2915 0.91375 1106.3211 1.37000 1965.9621 1.82625
0.0001 489.1492 0.91063 1103.1826 1.36793 1962.8326 1.82475
0.0005 475.3355 0.89750 1090.1452 1.35925 1950.0467 1.81850
0.0010 455.1738 0.87975 1072.6990 1.34825 1933.4423 1.81025

of the interface displacement, f (x), was investigated next. As the load is increased, themagnitude of the contact
pressure increases; however, there is no effect of the applied load on the electric displacement (see Fig. 5). As
indicated in Ref. [26], the electric displacement is only affected by electrical properties. The interface contact
stress, σz(x, 0), is shown in Fig. 5c which clearly shows the discontinuous contact after increasing the load
P > Pcr. At P = Pcr, b = c = 0.91 m (see Table 5), and the magnitude of the contact stress at that point is
zero which means there is no separation. Note that for T = 0.0001 C/m and h = 0.5 m the critical separation
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Table 5 Variation of the separation region with mechanical load P (T = 1 × 10−4 C/m, h = 0.5m a = 0.02 m)

P (kN/m) b (m) c (m)

Pcr = 489.1492 0.91268 0.91268
1000 0.64658 1.53618
1500 0.60268 1.86264
2000 0.57984 2.11940
4000 0.54069 2.84328

Fig. 6 Variations of the contact stress, p(x), and normal electric displacement, q(x), on the top surface of the layer, contact
stress between the layer and the substrate, σz(x, 0), and derivative of the interface displacement, f (x), versus electric charge T
(P = 2000 kN/m, h = 0.5m a = 0.02m)

point is also xcr = 0.91 m (see Table 4) which agrees with the discontinuous contact result. After increasing
the load above Pcr, the contact pressure becomes negative, indicating separation at the interface. As the load
increasesmore, the separation length increases as shown in Fig. 5c. The derivative of the interface displacement
f (x) is shown in Fig. 5d. Note that f (x) = 0 at the critical load P = Pcr. As the applied load is increases, the
derivative of the displacement becomes positive to the left and negative to the right. When separation occurs,
there are two regions at the interface that looses contact between the substrate and the layer. These regions
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Fig. 7 Variations of the contact stress, p(x), and normal electric displacement, q(x), on the top surface of the layer, contact stress
between the layer and the substrate, σz(x, 0) versus mechanical punch length a (P = 2000 kN/m, T = 1×10−4 C/m, h = 0.5m)

extend from −c to −b and from b to c, and they are symmetric due to the frictionless contact of the punch
with the layer. As the applied load increased, the length of the separation region increases, i.e., c increases
and b decreases as shown in Table 5. After certain values of xcr, the effect of the applied load vanishes on the
interface contact stress σz(x, 0), and only the effect of body force remains as a constant, as expected

Figure 6 shows the variations of the contact stress, p(x), and normal electric displacement, q(x), on the top
surface of the layer, contact stress between the layer and the substrate, σz(x, 0), and derivative of the interface
displacement, f (x), versus electric charge, T . For this Figure, the parameters are set such that P = 2000kN/m,
h = 0.5 m, and a = 0.02 m. Since the parameter changed in this Figure is the electric charge T , the contact
stress p(x) was not affected by the variation; however, as opposed to Fig. 5b, there is a considerable effect on
the normal electric displacement field.

Figure 7 depicts the variations of the contact stress, p(x), and normal electric displacement, q(x), on the
top surface of the layer, contact stress between the layer and the substrate, σz(x, 0), versus punch length, a.
This time the constant parameters are the load, electric charge, and the thickness of the layer, and they are set
at P = 2000kN/m, T = 1 × 10−4 C/m, h = 0.5m), respectively.
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Fig. 8 Variations of the contact stress, p(x), and normal electric displacement, q(x), on the top surface of the layer, contact stress
between the layer and the substrate, σz(x, 0), versus layer height, h (P = 2000 kN/m, T = 1 × 10−4 C/m, a = 0.02m)

Finally, to observe the effect of varying the layer thickness on p(x), q(x), and σz(x, 0), the layer thickness
was varied by setting P = 2000kN/m, T = 1× 10−4 C/m, a = 0.02 m (see Fig. 8). Since there is no change
in both applied load and the electric charge, the contact stress and the electric displacement did not change;
however, the interface contact stress changes dramatically as shown in Fig. 8c.

7 Conclusions

The frictionless continuous and discontinuous contact problems between a rigid conducting flat punch and a
piezoelectric homogeneous layer resting on a rigid substrate are considered in this study in the presence of
the body force. The resulting mixed-boundary value problem is converted analytically using an appropriate
integral transform to one of singular integral equations. TheGauss–Chebyshev integration formulas are utilized
to convert the obtained integral equations into a set of nonlinear algebraic equations which are solved using
an appropriate iterative algorithm to obtain the dimensions of the separation region and the associated contact
pressure and normal electric displacement. Based on this investigation, the following conclusions can be drawn:
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• The critical load and critical separation point increase with increasing values of mechanical load, punch,
length, and layer height. However, they decrease slightly when the electric charge increases.

• The magnitude of the contact stress between the flat punch and the layer increases when the mechanical
load increases and the punch length decreases. However, it is insensitive to the change in the electric charge
and the layer height.

• The electric displacement between the flat punch and the layer is not influenced by the mechanical load and
the layer height. On the other hand, its magnitude increases when the electric charge is becoming bigger
and punch length is becoming smaller.

• Electric charge does not influence the separation region and the contact stress between the layer and the
substrate.
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Appendix A

Expressions of k11(x, t), k12(x, t), k21(x, t), k22(x, t), β11, β12, β21, and β22 appearing in (14) are given as
follows:

k11(x, t) =
∞∫
0

( I M11(t) − β11) sin ξ(t − x)dξ, (A.1)

k12(x, t) =
∞∫
0

( I M12(ξ) − β12) sin ξ(t − x)dξ, (A.2)

k21(x, t) =
∞∫
0

( I M21(ξ) − β21) sin ξ(t − x)dξ, (A.3)

k22(x, t) =
∞∫
0

( I M22(ξ) − β22) sin ξ(t − x)dξ (A.4)

where I = √−1 and

M11(ξ) = ξ

6∑
j=1

Ap
j k j , M12(ξ) = ξ

6∑
j=1

Aq
j k j , (A.5)

M21(ξ) = ξ

6∑
j=1

Ap
j λ j , M22(ξ) = ξ

6∑
j=1

Aq
jλ j , (A.6)

β11 = lim
ξ→∞ M11(ξ), β12 = lim

ξ→∞ M12(ξ), (A.7)

β21 = lim
ξ→∞ M21(ξ), β22 = lim

ξ→∞ M22(ξ). (A.8)

Appendix B

Expressions of k̄11(x1, t1), k̄12(x1, t1), k̄13(x1, t2), k̄21(x1, t1), k̄22(x1, t1), k̄23(x1, t2), k̄31(x2, t1), k̄32(x2, t1),
k̄33(x2, t2), β̄11, β̄12, β̄21, β̄22, and β̄33 appearing in (32) are given as follows:

k̄11(x1, t1) =
∞∫
0

( I M̄11(ξ) − β̄11) sin ξ(t1 − x1)dξ, (B.1)
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k̄12(x1, t1) =
∞∫
0

( I M̄12(ξ) − β̄12) sin ξ(t1 − x1)dξ, (B.2)

k̄13(x1, t1) = 2

∞∫
0

M̄13(ξ) sin ξ(x1) sin ξ(t2)dξ, (B.3)

k̄21(x1, t1) =
∞∫
0

( I M̄21(ξ) − β̄21) sin ξ(t1 − x1)dξ, (B.4)

k̄22(x1, t1) =
∞∫
0

( I M̄22(ξ) − β̄22) sin ξ(t1 − x1)dξ, (B.5)

k̄23(x1, t1) = 2

∞∫
0

M̄23(ξ) sin ξ(x1) sin ξ(t2)dξ, (B.6)

k̄31(x2, t1) =
∞∫
0

M̄31(ξ) cos ξ(t1 − x2)dξ, (B.7)

k̄32(x2, t1) =
∞∫
0

M̄32(ξ) cos ξ(t1 − x2)dξ, (B.8)

k̄33(x2, t2) =
∞∫
0

(2I M̄33(ξ) − β̄33) cos ξ(x2) sin ξ(t2)dξ (B.9)

where

M̄11(ξ) = ξ

6∑
j=1

Ā p
j k j , M̄12(ξ) = ξ

6∑
j=1

Āq
j k j , M̄13(ξ) = ξ

6∑
j=1

Ā f
j k j , (B.10)

M̄21(ξ) = ξ

6∑
j=1

Ā p
j λ j , M̄22(ξ) = ξ

6∑
j=1

Āq
jλ j , M̄23(ξ) = ξ

6∑
j=1

Ā f
j λ j , (B.11)

M̄31(ξ) = ξ

⎡
⎣ 6∑

j=1

Ā p
j (−I c11 + n j (c13k j + e31λ j ))

⎤
⎦ , (B.12)

M̄32(ξ) = ξ

⎡
⎣ 6∑

j=1

Āq
j (−I c11 + n j (c13k j + e31λ j ))

⎤
⎦ , (B.13)

M̄33(ξ) = ξ

⎡
⎣ 6∑

j=1

Ā f
j (−I c11 + n j (c13k j + e31λ j ))

⎤
⎦ , (B.14)

β̄11 = lim
ξ→∞ M̄11(ξ), β̄12 = lim

ξ→∞ M̄12(ξ), (B.15)

β̄21 = lim
ξ→∞ M̄21(ξ), β̄22 = lim

ξ→∞ M̄22(ξ), (B.16)

β̄33 = lim
ξ→∞ M̄33(ξ). (B.17)
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