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Abstract In this paper, the generalized Noether’s theorem for mechanical systems is extended to the classical
fields with variable mass, i.e., to the corresponding continuous systems. Noether’s theorem is based on the
modified Lagrangian, which, besides time derivatives of the field function, contains its partial derivatives
with respect to the space coordinates. The generalized Noether’s theorem for the classical fields systems with
variable mass enables us to find transformations of field functions and independent variables for which there
are some integrals of motion. In the paper, Noether’s theorem is adopted for non-conservative fields, and energy
integrals in a broader sense are determined. In the case of non-conservative fields, a complementary approach
to the problem is introduced by applying so-called pseudo-conservative fields. It has been demonstrated that
the pseudo-conservative systems have the same energy laws as the non-conservative fields where the laws are
obtained by means of this generalized Noether’s theorem. As the special case, the natural classical fields with
standard Lagrangian are considered.

1 Introduction

As is well known, Noether [1] gave a general algorithm for finding a complete set of invariants for any
physical system formulated in terms of the Lagrangian and the Hamiltonian formalism. Noether’s theorem
has been adjusted to the field theory [2] and to analytical mechanics [3]. Later, a large number of studies have
been dedicated to the generalization of Noether’s theorem (see [4]). In addition, numerous applications and a
formulation in modern mathematical language [5] concerning Noether’s theorem have been developed.

A special generalization of Noether’s theorem was done by Vujanovic and Djukic [6–8] in an indirect way
by applying the transformed d’Alembert–Lagrange principle. The aim of the so-formulated Noether’s theorem
is to find such transformations of generalized coordinates and time for the systemwith Lagrangian and possibly
non-potential forces, for which some integrals (or constants) of motion, including the energy integrals, exist.

Noether’s theorem is applicable to non-conservative fields, and the integrals of motion and energy integrals
in a broader sense are obtained, representing in certain cases the generalization of the usual energy conservation
laws. The generalized Noether’s theorem was also extended to systems with variable mass [9,10].

In this paper, the generalized Noether’s theorem, developed for mechanical continuous systems [11–13], is
further extended to classical fields with variable mass. It is proved that the suggested procedure is appropriate
for consideration of non-conservative fields. Using the suggested procedure, constants and energy integrals of
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the non-conservative fields are obtained. In the paper, the complementary approach, given in [14], is adopted for
obtaining energy functions in non-conservative fields. Two types of pseudo-conservative systems are analyzed,
and for both fields, the energy impact integrals are determined. It is shown that there is an analogy between the
pseudo-conservative fields and the non-conservative systems considered in analytical mechanics. As a special
case, using the procedure which is convenient for pseudo-conservative fields, the natural classical fields are
studied. The paper concludes with an example.

2 Lagrangian equations for mechanical continuous systems with variable mass

2.1 Formulation of problem

Let us consider a physical classical field determined by a set of field functions ηi (t, x, y, z) (i = 1, 2, . . . , n).
Suppose that this field can be described by a Lagrangian in the form

L =
∫
V
L

(
ηi , ηiα, xα

)
dV, (2.1)

where L is the Lagrangian density and

xα = {
x0 = t, x1 = x, x2 = y, x3 = z

}
, ηiα = ∂ηi

∂xα
. (2.2)

The field defined with (2.1) is usually named ‘classical field with Lagrangian.’ This field is a continuous
system which represents a generalization of the usual, natural continuous system.

For further consideration, let us introduce the relationship between the mechanics of particles and the
classical field theory, i.e., the corresponding continuous system.The position of the particle in the field is defined
with space coordinates (x, y, z),whichbecome the independent variables additional to time t . Therefore, instead
of time t , which is the only independent variable in the mechanics of particles, in the field theory we have
four independent variables xα = xα(t, x, y, z). As a consequence of this, the Lagrangian obtains the form∫ LdV , and instead of any quantity f concerning this system (e.g., Q∗ and Pi ), in the field theory we have
integral of the similar form

∫
f̃ dV . In addition, instead of the mass of the νth particle mν in the mechanics of

particle, in the field theory we concern the mass dm of the elementary volume dV , i.e., dm = ρdV . Instead
of the generalized coordinates qi (t) in mechanics of particles, in the field theory we have the field functions
ηi (t, x, y, z), since their set

{
ηi

}
similar to the set

{
qi

}
determines the considered system. Thus, instead of

the time derivatives dqi/dt in the mechanics of particles, in the field theory we have the partial derivatives
∂ηi

∂xα = ηiα . Therefore, between the mechanics of particles and the classical field theory there is the following
relation:

t → xα = xα(t, x, y, z), L →
∫
V
LdV , f →

∫
V

f̃ dV ,

mν → dm = �dV, qi (t) → ηi (t, x, y, z),
dqi

dt
→ ∂ηi

∂xα
= η̇iα. (2.3)

In the system with mass variation, besides the influence of any force which acts on the considered field,
there is a simultaneous process of separation and annexation of certain mass. For that reason, elements of
the considered system are varying in time but they are dependent on space coordinates, too. This process of
separation and annexation is described by so-called Meshchersky’s force [15] whose formulation is extended
to classical fields.

2.2 General Lagrangian equation

In order to formulate equations of motion in the Lagrangian form, let us consider the mechanics of particles
with variable mass (see [15])

d

dt

∂L

∂q̇ i
− ∂L

∂qi
= Q∗

i + Pi (i = 1, 2, . . . , n), (2.4)
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where Q∗
i is the non-potential part of the generalized force, while Pi specifies the influence of mass variation

Pi = dmνσ

dt
uνσ

∂r

∂qi
, (2.5)

in which dmν1/dt and dmν2/dt represent change in the mass of the νth particle per time due to mass separation
(for σ = 1) and annexation (for σ = 2) with corresponding velocities, uν1 and uν2. One can demonstrate that
these Lagrangian equations can be obtained from Hamilton’s principle in form [16]∫ t1

t0

{
δL + (

Q∗
i + Pi

)
δqi

}
dt = 0. (2.6)

Remark 1. In Eq. (2.6) instead of Q∗
i , which is the only non-potential generalized force, the sum of forces

(Q∗
i + Pi ) acts. Namely, the term Pi takes into consideration the mass variation.

2. Expression (2.6) can be obtained using Hamilton’s principle for classical fields.
Introducing the variables of the field and the relations [17]

L →
∫
V
LdV , Q∗

i →
∫
V
Q̃∗

i dV , Pi →
∫
V
P̃idV δqi → δηi (2.7)

into (2.6) yields ∫ t1

t0

{
δ

∫
V
LdV +

(∫
V
Q̃∗

i dV +
∫
V
P̃idV

)
δηi

}
dt = 0,

i.e., ∫ t1

t0

∫
V

{
δL +

(
Q∗

i + P̃i
)

δηi
}
dV dt = 0. (2.8)

Let us specify the mass variation term in the field theory. According to (2.5) and (2.3), the force dPi is
substituted with P̃i dV , while the mass dmνσ

dt and position ∂rν/∂qi with
dρσ dV
dxα and ∂rν/∂ηi , respectively. r

is the position vector of the center of masses of the element of continuous system. Using the aforementioned
transformation (2.5) gives

P̃i = d�i
dxα

uσ

∂r

∂ηi
. (2.9)

It has to be mentioned that this relation depends on time and space coordinates.
Using the variation of L (2.1), expression (2.8) is∫ t0

t1

∫
V

{
∂L
∂ηi

δηi + ∂L
∂ηiα

δηiα +
(
Q∗

i + P̃i
)

δηi
}
dV dt = 0.

For the mathematical transformation

∂L
∂ηiα

δηiα = ∂L
∂ηiα

d

dxα

(
δηi

)
= d

dxα

(
∂L
∂ηiα

δηi
)

− δηi
d

dxα

∂L
∂ηiα

,

we have
∫ t0

t1

∫
V

(
∂L
∂ηi

+ Q∗
i + P̃i − d

dxα

∂L
∂ηiα

)
δηidV dt + ∂L

∂ηiα
δηi

∣∣∣∣
ηi1

ηi0

= 0, (2.10)

i.e., ∫ t0

t1

∫
V

(
∂L
∂ηi

+ Q∗
i + P̃i − d

dxα

∂L
∂ηiα

)
δηidV dt = 0. (2.11)

For arbitrary values δηi , the Lagrangian equations for classical fields with variable mass follow as

d

dxα

∂L
∂ηiα

− ∂L
∂ηi

= Q∗
i + P̃i i = 1, 2, . . . , n. (2.12)
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2.3 Natural classical fields

The fields which represent the real ones in nature (e.g., the fluid field, the elastic body) are named the ‘natural
classical fields.’ They are determined by a Lagrangian density function L which is the difference between the
kinetic T and potential energy U of the system, i.e., L = T − U . In these fields, the partial derivatives of field
functions with respect to the space coordinates do not appear and the Lagrangian has the form

L
(
ηi , ηiα, xα

)
= 1

2
aik η̇

i η̇k − U
(
ηi , ηik, x

α
) (

ηik = ∂ηi

∂xk

)
, (2.13)

where aik are independent and constant values. However, the space coordinates may appear in the potential
energy (e.g., in the oscillating elastic wire). In this case, the first term in the Lagrangian equations (2.12) is
reduced only to the first part for xα = t and the equations of motion are

d

dt

∂L
∂η̇i

− ∂L
∂ηi

= Q∗
i + P̃i (i = 1, 2, . . . , n), (2.14)

which have the similar form as the corresponding equation in the mechanics of particles.

3 Total variation of action

The total variation of Hamilton action on which Noether’s theorem is based is


W =
∫ t0

t1

∫
V
L

(
η̃i , η̃iα, x̃α

)
dṼ dt̃ −

∫ t0

t1

∫
V
L

(
ηi , ηiα, xα

)
dV dt, (3.1)

where

η̃i = ηi + 
ηi , η̃iα = ηiα + 
ηiα, t̃ = t + 
t. (3.2)

Let us denote the set of initial values at the instant t0 and domain V0 as R0 = {t0, V0} and the set of their final
values by R1 = {t1, V1} and d4x = dV dt . Introducing the notation into (3.1) and after some simplification,
the approximate value of the total variation of Hamiltonian action is obtained as

∫ R1+
R1

R0+
R0

Ld4 x̃ ≈
∫ R1

R0

Ld4 x̃,

i.e., according to (3.1) and (3.2) it is


W ≈
∫ R1

R0

L
(
ηi + 
ηi , ηiα + 
ηiα, xα + 
xα

)
d4 x̃ −

∫ R1

R0

L
(
ηi , ηiα, xα

)
d4x . (3.3)

For computational reasons, the simplification of relation (3.3) is introduced. Using the Taylor series expan-
sion of the Lagrangian, substituting d4 x̃ ≈ [1+ d

dxα (
xα)]d4x (see [12]) into (3.3) and neglecting the terms
of the higher order than the first, we obtain


W ≈
∫ R1

R0

[
∂L
∂ηi


ηi + ∂L
∂ηiα


ηiα + ∂L
∂xα


xα + L d

dxα

(

xα

)]
d4x . (3.4)

Using the relations 
ηi = δηi + ηiα
xα and 
ηiα = δηiα + ηiαβ
xβ suggested by Musicki [13], we have


W =
∫ R1

R0

[
L d

dxα

(

xα

) +
(

∂L
∂ηi

ηiα + ∂L
∂ηiβ

ηiαβ + ∂L
∂xα

)

xα + ∂L

∂ηi
δηi + ∂L

∂ηiα
δηiα

]
d4x .

If the system depends on the mass variable function, the derivative of Lagrangian has an additional term
connected with mass variation [18]. Assuming that the mass variation depends on time and space coordinates,
the general form of the Lagrangian is

dL
dxα

= ∂L
∂ηi

ηiα + ∂L
∂ηiβ

ηiαβ + ∂L
∂xα

+ ∂L
∂m

dm

dxα
. (3.5)
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It has been said that expression (3.5) is the key point of our investigation. Namely, using relation (3.5)
which corresponds to the field with variable mass, expression (3.4) transforms into


W =
∫ R1

R0

[
L d

dxα

(

xα

) +
(

∂L
∂xα

− ∂L
∂m

dm

dxα

)

xα + ∂L

∂ηi
δηi + ∂L

∂ηiα
δηiα

]
d4x .

Transforming the last term in the equation

∂L
∂ηiα

δηiα = ∂L
∂ηiα

d

dxα

(
δηi

)
= d

dxα

(
∂L
∂ηiα

δηi
)

− δηi
d

dxα

(
∂L
∂ηiα

)
,

the previous relation becomes


W =
∫ R1

R0

{
d

dxα

(
L
xα + ∂L

∂ηiα
δηi

)
+ δηi

(
∂L
∂ηi

− d

dxα

∂L
∂ηiα

)
− ∂L

∂m

dm

dxα

xα

}
d4x . (3.6)

Transformation of the expression in the first parenthesis

L
xα + ∂L
∂ηiα

δηi = L
xα + ∂L
∂ηiα

(

ηi − ηiβ
xβ

)
= ∂L

∂ηiα

ηi +

(
Lδα

β − ∂L
∂ηiα

ηiβ

)

xβ

modifies relation (3.6) into


W =
∫ R1

R0

{
d

dxα

[
∂L
∂ηiα


ηi +
(
Lδα

β − ∂L
∂ηiα

ηiβ

)

xβ

]
+

(
∂L
∂ηi

− d

dxα

∂L
∂ηiα

) (

ηi−ηiα
xα

)

− ∂L
∂m

dm

dxα

xα

}
d4x, (3.7)

where δα
β is Kronecker’s symbol.

Relation (3.7) represents the total variation of the considered continuous system with variable mass,
expressed consequently by means of total variations 
ηi and 
xα . The relation is valid quite generally,
independently from the nature of considered problem.

4 Generalized Emmy Noether’s theorem

Theorem The proper transformation of field functions 
ηi and independent variables 
xα maintains the
Hamiltonian’s action of change (3.7) up to so-called calibration term


W =
∫ R1

R0

d

dxα
�α

(
ηi , ηiα, xα

)
d4x, (4.1)

where �α (α = 1, 2, 3) is the calibration or gauge function. The gauge function can be an arbitrary function
of variables ηi , ηiα and xα .

4.1 Proof of the generalized Noether’s theorem

Let us suppose that for the considered field the Lagrangian density, non-conservative forces (if this field is
non-conservative) and mass change law are given in advance. Let us now start from condition (4.1) where
W
from expression (3.7) is substituted,

∫ R1

R0

{
d

dxα

[
∂L
∂ηiα


ηi +
(
Lδα

β − ∂L
∂ηiα

ηiβ

)

xβ

]
+

(
∂L
∂ηi

− ∂

∂xα

∂L
∂ηiα

) (

ηi − ηiα
xα

)
− ∂L

∂m

dm

dxα

xα

}
d4x

=
∫ R1

R0

d

dxα
�α

(
ηi , ηiα, xα

)
d4x . (4.2)
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If we substitute the expression from the Lagrangian equations (2.12) and write the relation in the form of
one integral, we obtain

∫ R1

R0

{
d

dxα

[
∂L
∂ηiα


ηi +
(
Lδα

β − ∂L
∂ηiα

ηiβ

)

xβ − �α

]
−

(
Q̃∗

i + P̃i
) (


ηi − ηiα
xα
)

− ∂L
∂m

dm

dxα

xα

}
d4x = 0. (4.3)

On the other hand, let us transform the total variation of motion in the following way:


W =
∫ R1

R0



(Ld4x) =

∫ R1

R0

(

Ld4x + L
d4x

)
.

The expression 
d4x actually represents a relationship between the initial and the final value of the d4x
in the process of calculation of the total variation of action (see Hill [2] and Musicki [12]):


d4x = d4 x̄ − d4x =
[
1 + d

dxα

(

xα

)]
d4x − d4x = d

dxα

(

xα

)
d4x .

The previous relation becomes


W =
∫ R1

R0

[

L + L d

dxα

(

xα

)]
d4x . (4.4)

If we insert the expression in the second condition (4.2), it can be written in the form

∫ R1

R0

[

L + L d

dxα

(

xα

) − d�α

dxα

]
d4x = 0. (4.5)

Subtracting (4.5) from relation (4.3) and substituting the term with
(
Q̃∗

i + P̃i
)
and ∂L

∂m into the second

part, we have

∫ R1

R0

{
d

dxα

[
∂L
∂ηiα


ηi +
(
Lδα

β − ∂L
∂ηiα

ηiβ

)

xβ − �α

]
−

[

L + L d

dxα

(

xα

) +
(
Q̃∗

i + P̃i
) (


ηi

−ηiα
xα
)

− ∂L
∂m

dm

dxα

xα − d�α

dxα

]}
d4x = 0. (4.6)

Substituting 
ηiα = d(
ηi )
dxα − ηiβ

d(
xβ)
dxα (see [12]) into the term 
L(ηi , ηiα, xα) and bearing in mind that

the mass of the continuous system is not varied, we obtain


L = ∂L
∂ηi


ηi + ∂L
∂ηiα

[
d

dxα

(

ηi

)
− ηiβ

d

dxα

(

xβ

)] + ∂L
∂xα


xα.

The previous relation by certain regrouping can be written in the form

∫ R1

R0

{
d

dxα

[
∂L
∂ηiα


ηi +
(
Lδα

β − ∂L
∂ηiα

ηiβ

)

xβ − �α

]
−

[
∂L
∂ηi


ηi + ∂L
∂ηiα

d

dxα

(

ηi

)
+ ∂L

∂xα

xα

+
(
Lδα

β − ∂L
∂ηiα

ηiβ

)
d

dxα

(

xβ

) +
(
Q̃∗

i + P̃i
) (


ηi − ηiα
xα
)

− ∂L
∂m

dm

dxα

xα − d�α

dxα

]}
d4x = 0.

(4.7)

The relation is the so-called energy–impulse tensor [19] described as

T α
β = ∂L

∂ηiα
ηiβ − Lδα

β , (4.8)
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where δα
β is the Kronecker symbol. This quantity represents an extension of the generalized energy in the

analytical mechanics to the field theory, but it applies to generalized impulse as well. Namely, for α = β it is
equivalent to the Hamiltonian density T 0

ν = H = ∂L
∂η̇i

η̇i − L, i.e., to the energy density in a border sense, and
for α �= β, it is T α

β = ∂L
∂ηiα

ηiβ , i.e., a quantity proportional to the impulse density pα
i = ∂L

∂ηiα
in a broader sense,

and only for xα = I , the real dynamic quantities are obtained.
Let us introduce the quantities 
ηi and 
xα in the form of r infinitesimal parameters εm (m =1,2,…,r),


ηi = η̄i
(
xα + 
xα

) − ηi
(
xα

) = εmξ im

(
ηi , ηiα, xα

)
,


xα = x̄α − xα = εmξ im

(
ηi , ηiα, xα

)
. (4.9)

Substituting �α = εm�α
m into (4.7), the relation obtains the form

∫ R1

R0

εm

{
d

dxα

[
∂L
∂ηiα

ξ im − T α
ξ ξαβ

m − �α
m

]
−

[
∂L
∂ηi

ξ im + ∂L
∂ηiα

dξ im
dxα

+ ∂L
∂xα

ξ0αm − T α
β

dξαβ
m

dxα

+
(
Q̃∗

i + P̃i
) (

ξ im − ηiαξαα
m

)
+ ∂L

∂m

dm

dxα
ξ0αm − d�α

m

dxα

]}
d4x = 0. (4.10)

4.2 Conclusion and analysis of obtained results

If the following condition is satisfied:

∂L
∂ηi

ξ im + ∂L
∂ηiα

dξ im
dxα

+ ∂L
∂xα

ξ0αm − T α
β

dξ0βm
dxα

+
(
Q̃∗

i + P̃i
) (

ξ im − ηiαξ0αm

)
+ ∂L

∂m

dm

dxα
ξ0αm − d�α

m

dxα
= 0,

(4.11)

relation (4.10) reduces to
∫ R1

R0

εm
{

d

dxα

[
∂L
∂ηiα

ξ im − T α
ξ ξ0βm − �α

m

]}
d4x = 0.

Using the arbitrariness of the parameter εm and integrating the previous relation, the relations for the
existence of the integrals of motion follow:

I = d

dxα

[
∂L
∂ηiα

ξ im − T α
ξ ξ0βm − �α

m

]
= 0 m = 1, 2, . . . , r. (4.12)

Accordingly, for each transformation of field functions ηi and independent variables xα given in form (4.9),
for which there exists at least one set of particular solutions (ξ im, ξ0αm , �α

m) which satisfies condition (4.10),
there are r independent integrals (or constants) of motion in form (4.12).

Introducing the function

�α
m = ∂L

∂ηiα
ξ im − T α

ξ ξ0βm − �α
m, (4.13)

the integrals of motion (4.11) have the following explicit form

d�α
m

dxα
= d�0

m

dt
+ d�1

m

dx
+ d�2

m

dy
+ d�3

m

dz
= 0. (4.14)

It has been noted that if (4.14) occurs, then the essential meaning of a conservation law disappears. In this
case, one would have that all terms in Eq. (4.14) are zero. An expression which is not associated with the
fundamental concept that a constant of motion is intimately related to a function which equals a constant (its
derivative vanishes) particularly along the solution of the considered problem.
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The integral of motion (4.14) can be satisfied if each of its members is equal to zero, i.e.,

d�0
m

dt
= 0,

d�k
m

dxk
= 0, k = 1, 2, 3. (4.15)

Relation (4.15) represents a special but very important case of the general solution (4.14). The first of these
particular solutions represents an integral of motion of temporal type, and there are integrals of motion of
space type. Namely, calculation of the integrals of motion is reduced to finding at least one set of particular
solutions (ξ im, ξ0αm , �α

m) for the condition of existence of the integrals of motion (4.10).
Therefore, the fundamental properties of these integrals of motion are similar to those of classical fields,

i.e., corresponding continuous systems with permanent mass.

1. In the general case, when the Lagrangian has form (2.1), the integrals of motion are d�α
m

dxα = 0, i.e., the sum
of four partial derivatives of function �α

m with respect to time and space coordinates is equal to zero. The
difference between (4.14) and the relation for the field with permanent mass is that in (4.14) additional
specific terms appear in the condition for existence of the integrals of motion, but the form of the integrals
of motion remains unchanged.

2. The energy integral, as the special case of the integral ofmotion, represents the energy–impulse conservation
law, as is the case for fields with permanent mass. The integral can be of temporal and space type. The
necessary condition for existence of the energy integral of space type is the existence of the Lagrangian in
form (2.1).

3. In the case of natural classical fields, the general form of the integrals of motion is d�0
m

dt = 0, i.e., it is
reduced to the first term of the total partial derivative of some quantity with respect to time. The energy
conservation laws are similar to those obtained for particles.

4.3 The case of natural classical fields

Using expression (4.8), the condition for existence of the integrals of motion (4.10) is simplified to

∂L
∂ηi

ξ im + ∂L
∂η̇iα

ξ̇ im + ∂L
∂t

ξ00m − Hξ̇00m +
(
Q̃∗

i + P̃i
) (

ξ im − η̇iξ00
)

+ ∂L
∂m

dm

dxα
ξ0αm − �̇α

m = 0 (4.16)

and the corresponding integral of motion is reduced only to the first term

Im = d

dt

(
∂L
∂η̇iα

ξ im − Hξ00m −�0
m

)
= 0 m = 1, 2, . . . , r. (4.17)

Finally, in the case of the natural classical fields with variable mass, for each transformation of the field
functions and independent variables which have form (4.1), there exists at least one set of particular solutions
(ξ im, ξ0αm , �α

m) which satisfy condition (4.16), and r independent integrals of motion (4.16).

5 Pseudo-conservative systems

5.1 Definitions and condition of pseudo-conservatism

Let us introduce a complementary approach to non-conservative fields by introducing pseudo-conservative
fields. In the mechanics of particles and of continuous systems, pseudo-conservative systems are defined as
non-conservative systems whose Lagrangian equations can be transformed into Euler–Lagrange equations by
introduction of a new suitable Lagrangian [14].

Let us consider a classical field with variable mass, i.e., the corresponding continuous system whose
Lagrangian equations according to (2.12) have the form

d

dxα

∂L
∂η̇iα

− ∂L
∂ηi

= Q̃∗
i + P̃i i = 1, 2, . . . , n. (5.1)

In order to define pseudo-conservative fields, a suitable transformation has to be introduced into formal
conservative fields. Two cases can be discerned, depending onwhether in the transformedLagrangian equations
the term Q̃∗

i or both Q̃∗
i and P̃i are taken.
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(a) In the first case, let us formulate the following problem: Find a Lagrangian density of the form

L̃1

(
ηi , ηiα, xα

)
= f1(x

α)L
(
ηi , ηiα, xα

)
, (5.2)

which transforms the Lagrangian equations (5.1) into an equivalent system of simpler Lagrangian equations
without the term Q̃∗

i

d

dxα

∂L̃1

∂η̇iα
− ∂L̃1

∂ηi
= P̃i i = 1, 2, . . . , n. (5.3)

(b) In the second case, the problem is formulated in a similar way: Find a Lagrangian density of the form

L̃2

(
ηi , ηiα, xα

)
= f2(x

α)L
(
ηi , ηiα, xα

)
, (5.4)

for which the system of Lagrangian equations (5.1) would be transformed into an equivalent system of
Euler–Lagrange equations (i.e., without both terms Q̃∗

i and P̃i )

d

dxα

∂L̃2

∂η̇iα
− ∂L̃2

∂ηi
= 0 i = 1, 2, . . . , n. (5.5)

If such new Lagrangian density exists, the non-conservative fields will be named pseudo-conservative (or
quasi-conservative) fields of the first or second type, respectively.

Let us find the condition that a non-conservative classical field is pseudo-conservative.

(a) In the first case, if we insert expression (5.2) into the transformed Lagrangian equations (5.3), we obtain

d

dxα

(
f1

∂L
∂η̇iα

)
− ∂( f1L)

∂ηi
= P̃i .

After grouping the similar terms, we obtain

∂L
∂ηiα

d f1
dxα

+
(

d

dxα

(
∂L
∂η̇iα

)
− ∂L

∂ηi

)
f1 = P̃i .

Substituting the variation derivative by the corresponding expression from the primary Lagrangian equa-
tions (5.1), we obtain

∂L
∂ηiα

d f1
dxα

+
(
Q̃∗

i + P̃i
)
f1 = P̃i i = 1, 2, . . . , n. (5.6)

(b) In the second case, when the right-hand side of the corresponding Lagrangian equations (5.5) is zero,
substituting P̃i = 0 into the right-hand side of (5.6) we obtain the corresponding condition in the form

∂L
∂ηiα

d f2
dxα

+
(
Q̃∗

i + P̃i
)
f2 = 0 i = 1, 2, . . . , n. (5.7)

Let us remark that in Eqs. (5.6) and (5.7) the potential forces are not present, and therefore, the particular
solutions of these equations are also independent on potential forces.

Accordingly, in order that a non-conservative field with variable mass would be pseudo-conservative of
the first or second type, it is necessary and sufficient condition that there exists at least one particular solution
of the system of differential equations (5.6) or (5.7), respectively, which is independent of potential forces.
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5.2 Energy relations

In order to examine the energy relations of the pseudo-conservative fields, it is necessary to discern the
previously mentioned two types of these fields.

(a) In the case of the first type, we start from the transformed equations (5.3), multiplying them with ηiβ and
summarizing over the repeated index

d

dxα

(
∂L̃1

∂η̇iα

)
ηiβ − ∂L̃1

∂ηi
ηiβ = P̃iη

i
β.

Bearing in mind that for

∂L̃1

∂ηβ
= ∂L̃1

∂ηi
ηiβ + ∂L̃1

∂ηi
ηiαβ + dL̃1

dxβ
+ ∂L̃1

∂m

dm

dxβ
, (5.8)

the previous relation can be transformed into

d

dxα

(
∂L̃1

∂η̇iα

)
ηiβ − ∂L̃1

∂ηi
ηiαβ − ∂L̃1

∂ηi
ηiβ = d

dxα

(
∂L̃1

∂η̇iα
ηiβ

)
−

(
∂L̃1

∂xβ
− dL̃1

dxβ
− ∂L̃1

∂m

dm

dxβ

)
= P̃iη

i
β.

Grouping the two similar terms, the relation obtains the following form:

dT α
β

dxα
= d

dxα

(
∂L̃1

∂ηiα
ηiβ−L̃1

)
= −∂L̃1

∂xβ
− ∂L̃1

∂m

dm

dxβ
+ P̃iη

i
β, (5.9)

where the expression in parentheses according to (4.8) represents the energy–impulse tensor. This relation
considers the pseudo-conservative fields of the first type.

(b) For Eq. (5.5), without P̃i , the law of the energy–impulse change for the pseudo-conservative systems of
the second type is

dT α
β

dxα
= d

dxα

(
∂L̃2

∂ηiα
ηiβ−δα

β L̃2

)
= −∂L̃2

∂xβ
− ∂L̃2

∂m

dm

dxβ
. (5.10)

Under certain conditions using the energy laws, the corresponding integrals (usual or in a broader sense)
of motion are obtained. If we establish that the corresponding classical field is pseudo-conservative, the
Lagrangian density of the first type is (5.2) and of the second type (5.4).

Finally, we conclude that the pseudo-conservative fields may have two types of energy change laws: (5.9)
and (5.10), depending whether condition (5.6) or (5.7) is satisfied.

5.3 The case of natural classical fields

Let us find the condition for the non-conservative field to be pseudo-conservative. Two cases are considered
depending on whether the pseudo-conservative fields are of the first or second type.

(a) The non-conservative field is the pseudo-conservative system of the first type if condition (5.6) is satisfied.
According to the definition of the natural classical fields (2.13), we have ∂L

∂η̇i
= aik η̇k and the condition

has the form

aik η̇
k d f1
dt

+
(
Q̃∗

i + P̃i
)
f1 = P̃i . (5.11)
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Bearing in mind that the solution of equation must be independent of the potential forces, it must be
independent from the variables ηi and η̇i . Let us introduce the forces in the form

Q̃∗
i = −2μaik η̇

k, P̃i = c2aik η̇
k . (5.12)

Substituting (5.12) into (5.11) and using the expression

2μ′ = 2μ − c2, (5.13)

it follows that

d f1
dt

− 2μ′ f1 = c2. (5.14)

One particular solution of the linear equation (5.14) is

f1(t) = − c2
2μ′ ≡ K . (5.15)

Using (5.15) and expression (5.2), the Lagrangian density follows:

L̃1

(
ηi , ηiα, xα

)
= f1(t)L

(
ηi , ηiα, xα

)
= KL

(
ηi , ηiα, xα

)
. (5.16)

(b) In the case of the second type of pseudo-conservative field, the term P̃i in relation (5.7) is zero, i.e., c2 = 0.
Expression (5.14) simplifies into

d f2
dt

− 2μ f2 = 0. (5.17)

One particular solution of Eq. (5.17) is

f2(t) = exp (2μt). (5.18)

Using (5.18), the Lagrangian density according to (5.4) is

L̃2

(
ηi , ηiα, xα

)
= exp (2μt)L

(
ηi , ηiα, xα

)
. (5.19)

Applying the energy–impulse tensor T α
β which is reduced to theHamiltonian density, i.e., density of energy,

the energy law (5.9) has the form

dε

dt
= d

dt

(
∂L̃1

∂η̇i
η̇i − L̃1

)
= −∂L̃1

∂t
− ∂L̃1

∂m

dm

dt
− P̃i η̇

i . (5.20)

In the case of the second type of pseudo-conservative fields, the energy law is according to (5.10)

dε

dt
= d

dt

(
∂L̃2

∂η̇i
− L̃2

)
= −∂L̃2

∂t
− ∂L̃2

∂m

dm

dt
. (5.21)

For the field with variable mass, the term ∂L
∂m

dm
dt is almost never zero, except in the case when the separation

and annexation are mutually canceled. Therefore, even in the case when ∂L
∂t = 0 and P̃i η̇i = 0 the energy

conservation law almost never can be valid. However, from these energy laws one can obtain some information
how the energy of the considered field changes in the course of time.
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6 One example

Let us consider a natural continuous mechanical system in a viscous medium, whose elements oscillate along a
straight line, which can be taken as x-axis. Such motion has only one degree of freedom and can be determined
by the elongation of any element of the system from its balance position as field function denoted as η(x ,t).
The oscillating continuous system is determined with the Lagrange density

L
(
ηi , ηiα, xα

)
= 1

2
�η̇2 − 1

2
�kη2. (6.1)

Suppose that in every time interval (t, t + dt) some small part of the element of the continuous system
separates with velocity proportional to the velocity of the element u = λη̇. Diminution of the mass is assumed
to be proportional to the mass m and time interval dt , i.e., dm = −βmdt . The mass variation function is

m = m0exp (−βt). (6.2)

The resistance force, due viscous friction is Q̃∗ = −2μρλη̇. According to (5.12), the system is pseudo-
conservative. Using the unit mass (m = ρ) and its velocity of variation, the quantity P̃∗

i is

P̃i = −βρλη̇. (6.3)

Lagrangian density concerns to volume unit, and it also concerns to corresponding quantities.
We see that the quantities Q̃∗

i and P̃i satisfy the necessary condition (5.12) for non-conservative continuous
system to be pseudo-conservative. Thus, the corresponding differential equations for functions f1 and f2, (5.6)
and (5.7), will be reduced to Eqs. (5.14) and (5.17), respectively, and give the satisfying particular solutions in
forms (5.15) and (5.18). Thismeans that the considered system is simultaneously a pseudo-conservative system
of the first and second type, but this does not mean that this system necessarily has the both corresponding
energy integrals.

Using the generalized Noether’s theorem, let us examine whether the energy integral exists.

(a) For simplicity, let us start with the second type of pseudo-conservative field. In this case, the system is
determined by the Lagrangian density of form (5.19)

L̃2

(
ηi , ηiα, xα

)
= exp (2μt)

(
1

2
ρη̇2 − 1

2
ρkη2

)
. (6.4)

Applying the generalized Noether’s theorem to the field as pseudo-conservative system of the second type,
where Q̃∗

i = 0 and P̃i = 0, the condition for existence of the integrals of motion for the natural classical fields
(4.15) for the mass unit (m = ρ) is

∂L̃2

∂η
ξ1 + ∂L̃2

∂η̇
ξ̇1 + ∂L̃2

∂t
ξ00 +

(
L̃2 − ∂L̃2

∂η̇
η̇

)
ξ̇00 + ∂L̃2

∂�

d�

dt
ξ00 − �̇0 = 0. (6.5)

We choose the transformation functions in the form which corresponds to the oscillator with linear viscous
damping (see Vujanovic and Jones [7], pp. 98–99)

ξ1 = −Aη, ξ00 = 1, �0 = 0. (6.6)

Substituting (6.6) into (6.4) and (6.5), it follows that

�

(
A − μ + 1

2
β

) (
kη2 − η̇2

) = 0. (6.7)

If kη2 − η̇2 �= 0, relations (6.6)1 and (6.7) are satisfied for

A = μ − 1

2
β, ξ1 =

(
1

2
β − μ

)
η. (6.8)

Namely, with such choose of A, condition (6.5) is satisfied for any η and η̇. Finally, for (6.6)–(6.8), condition
(6.5) is fulfilled.
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Remark Condition (6.8) is obtained due to the fact that the condition for existence of the integral of motion F
has the form

F = ϕ
(
ηi , ηiα

)
ψ

(
ξ im, ξ0αm , �α

m

)
= 0.

The transformation functions ξ im, ξ0αm , �α
m have an important role in the problem and must be independent

from other factors. In this case, they are determined due to the fact that the condition for existence of the
integrals of motion is presented in form (6.7), which enables to obtain functions independent on ηi , ηiα. In this
general case, form (6.8) can be considered as a necessary condition for finding at least of one set of particular
solutions (ξ im, ξ0αm , �α

m) which satisfies the condition for existence of the integral of motion.

(b) For the continuous system as a pseudo-conservative one of the first type, where Q̃∗
i = 0 and P̃i �= 0, the

Lagrangian density (5.16) is assumed in the form

L̃1

(
ηi , ηiα, xα

)
= K

(
1

2
ρη̇2 − 1

2
ρkη2

)
, (6.9)

and condition (4.15) transforms into

∂L̃1

∂η
ξ1 + ∂L̃1

∂η̇
ξ̇1 + ∂L̃1

∂t
ξ00 +

(
L̃1 − ∂L̃1

∂η̇
η̇

)
ξ̇00 + P̃i (ξ

1 − η̇ξ00) + ∂L̃1

∂�

d�

dt
ξ00 − �̇0 = 0.

(6.10)

On the basis of (6.9) and bearing in mind that the density of energy of the pseudo-conservative system is

ε̃ = ∂L̃1
∂η̇

η̇ − L̃1 = K ( 12ρη̇2 + 1
2ρkη

2), the relation becomes

η2
(
1

2
K�ξ̇00 + 1

2
Kβρkξ00

)
+ η̇2

(
−1

2
K�ξ̇00 + βρλξ00 − 1

2
Kβρξ00

)
+ η

(−Kρkξ1
)

+ η̇
(
Kρξ̇1 − βρλξ1

) − �̇0 = 0. (6.11)

Since in this relation the variables (η, η̇) and (ξ1ξ00,�0) are mutually mixed up, it is impossible to present
it in form (6.8). Therefore, it is impossible to find at least one set of particular solutions (ξ1, ξ00, �0) which
satisfy condition (6.10) for existence of the corresponding integrals of motion. Thus, although this continuous
system is pseudo-conservative of the first type, there is no integral of motion. The necessary condition for
existence of motion integrals is that the system is pseudo-conservative of the second type.

As in the considered continuous system mass is continuously decreasing and is pseudo-conservative of the
second type, the integral of motion has form (4.16), i.e.,

I = d

dt

{
∂L̃2

∂η̇
ξ1 +

(
L̃2 − ∂L̃2

∂η̇
η̇

)
ξ00 − �0

}
= 0, (6.12)

and according to (6.6) and (6.8), it obtains an explicit form

I = d

dt

{
exp (2μt)

[(
1

2
ρη̇2 + 1

2
ρkη2

)
+

(
1

2
β − μ

)
ρηη̇

]}
. (6.13)

Integral of motion represents an energy integral in a broader sense, which is equivalent to

ε = exp (2μt)

{(
1

2
ρη̇2 + 1

2
ρkη2

)
+

(
1

2
β − μ

)
ρηη̇

}
= const. (6.14)

This energy integral for the continuous system is according to its form similar to the corresponding energy
integrals in mechanics of particles with variable mass for systems which satisfy the necessary condition for
the existence of integrals of motion (see Vujanovic and Jones [7], pp. 97–100).
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