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Abstract Time-scale dynamics integrates the differential equations of continuous systems and the difference
equations of discrete systems. It can not only reveal the similarities and differences between continuous and
discrete systems, but also describe the physical nature of continuous and discrete systems and other complex
dynamical systems more clearly and accurately. Therefore, it has been widely used in many fields of science
and engineering in recent years. In this paper, we investigate Lie symmetries and invariants of nonholonomic
systems of non-Chetaev type on time scales. First, we present and prove the Lie symmetry theorem for
undisturbed nonholonomic systems of non-Chetaev type on time scales. The study shows that if the Lie
symmetry satisfies the structural equation, it will lead to the conserved quantity, which is the exact invariant of
the system. Secondly, considering that the system is subjected to small disturbance, we present and prove the
adiabatic invariant theorem of Lie symmetry for nonholonomic systems of non-Chetaev type on time scales.
Due to the arbitrariness of the time scale, the method and results of this paper are of universal significance.
An example is given to illustrate the validity of the results.

1 Introduction

Symmetry is a very important and universal property of dynamical systems. The invariants of dynamical
systems are intrinsically related to the symmetries. For a complex dynamical system, one of the effective ways
to find invariants is to study its symmetries. Lie symmetry is the invariance of differential equations under
an infinitesimal transformation [1]. Since Lutzky [2] introduced the Lie method into dynamical systems and
established the relationship between the invariance of the differential equations of motion under infinitesimal
transformations and the invariants of the systems, important progress has been made in the study of Lie
symmetry of constrained mechanical systems [3–9].

Under the action of small disturbance, the change in symmetry and its invariant are closely related to the
integrability of dynamical systems. Therefore, it is important to study the perturbation of symmetries and
adiabatic invariants of the systems. The classical adiabatic invariant refers to a physical quantity that changes
slower compared to the slow change in a parameter of the system [10]. In fact, slow change in parameters
is equivalent to small disturbance. Some results have been presented in the studies on the perturbation of
symmetries and adiabatic invariants of constrained mechanical systems [11–16].

The time scale is any nonempty closed subset of the real number set. Time-scale calculus integrates
continuous analysis, discrete analysis and quantumanalysis into awhole, and provides a powerfulmathematical
tool for the study of complex dynamical systems [17–20]. Bartosiewicz and Torres [21] first studied and proved
the Noether theorem on time scales. In recent years, the study of Noether theorems and integral methods of
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constrained mechanical systems on time scales has attracted great attention, including Lagrange systems,
Hamilton systems, nonholonomic systems, Birkhoff systems, etc., and some results have been obtained [22–
29]. Recently, we proposed and studied Lie symmetries of Lagrange systems and Hamilton systems on time
scales [30]. However, up to now, there are few studies on Lie symmetries of nonholonomic systems on
time scales, and perturbation of Lie symmetries under small disturbance and adiabatic invariants. This is the
motivation of the research to be carried out in this paper.

2 Differential equations of motion for nonholonomic systems of non-Chetaev type on time scales

On time scales, the d’Alembert–Lagrange principle can be expressed as [31](
Qs − �

�t

∂T

∂q�
s

+ ∂T

∂qσ
s

)
δqσ

s = 0 (1)

where T = T
(
t, qσ

s (t) , q�
s (t)

)
is the kinetic energy, Qs = Qs

(
t, qσ

k (t) , q�
k (t)

)
are the generalized forces,

and qs (s = 1, 2, . . . , n) are the generalized coordinates. The time scales calculus and its basic properties
involved here and later can be found in [17].

Let the system be subjected to g ideal two-sided nonholonomic constraints of non-Chetaev type

fβ = fβ
(
t, qσ

s (t) , q�
s (t)

) = 0, (β = 1, 2, . . . , g; s = 1, 2, . . . , n) . (2)

The restriction conditions imposed on the virtual displacements by the nonholonomic constraints (2) are

fβs
(
t, qσ

k (t) , q�
k (t)

)
δqσ

s = 0, (β = 1, 2, . . . , g; s, k = 1, 2, . . . , n) , (3)

Generally speaking, there is no relation between fβs and ∂ fβ/∂q�
s . If we take fβs = (

∂ fβ/∂q�
s

)σ
, then

non-Chetaev constraints become Chetaev constraints [31].
According to the principle (1) and the restriction conditions (3), we can easily obtain

�

�t

∂L

∂q�
s

− ∂L

∂qσ
s

= Q′′
s + λβ fβs, (s = 1, 2, . . . , n) (4)

by using the Lagrange multiplier method. Equations (4) are called the differential equations of motion for
nonholonomic systems of non-Chetaev type on time scales. Here, L = T − V is the Lagrangian, Q′′

s =
Q′′

s

(
t, qσ

k (t) , q�
k (t)

)
the non-potential generalized forces, λβ are the constraint multipliers. Suppose that the

system is non-singular, i.e., D = det (Ask) = det
(
∂2L/

(
∂q�

s �q�
k

)) �= 0, from Eqs. (2) and (4), we can find
λβ = λβ

(
t, qσ

k (t) , q�
k (t)

)
. Thus, Eq. (4) can be expressed as

�

�t

∂L

∂q�
s

− ∂L

∂qσ
s

= Q′′
s + �s, (s = 1, 2, . . . , n) , (5)

where �s = �s
(
t, qσ

k (t) , q�
k (t)

) = λβ fβs . Equation (5) are called the equations of the corresponding
holonomic system of the nonholonomic system (2) and (4) on time scales. If the initial values of generalized
coordinates qs0 and generalized velocities q�

s0 on time scales satisfy the constraint equations (2), i.e.,

fβ
(
t0, q

σ
s0, q

�
s0

) = 0, (β = 1, 2, . . . , g; s = 1, 2, . . . , n) , (6)

then the solution of Eq. (5) gives the motion of the nonholonomic system (2) and (4). Expanding Eq. (5), we
can find all the generalized accelerations, that is

q��
s = hs

(
t, qσ

k , q�
k

)
, (s = 1, 2, . . . , n) . (7)

If the system is subjected to the small disturbance forces υFs , then Eq. (5) becomes

�

�t

∂L

∂q�
s

− ∂L

∂qσ
s

= Q′′
s + �s + υFs, (s = 1, 2, . . . , n) , (8)

whereυ is a small parameter. Equation (8) is the differential equations of disturbedmotion for the nonholonomic
system of non-Chetaev type on time scales. Expanding Eq. (8), we get

q��
s = hs

(
t, qσ

k , q�
k

) + υ
Msk

D
Fk, (9)

where Msk is the cofactor of the element Ask of determinant D.
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3 Lie symmetries of nonholonomic systems of non-Chetaev on time scales

Let us consider a one-parameter Lie group of infinitesimal transformations as follows:

t̄ = t + ετ (t, qk) , q̄s
(
t̄
) = qs (t) + εξs (t, qk) , (s = 1, 2, . . . , n) , (10)

where ε is an infinitesimal parameter, τ and ξs are the infinitesimal generators.
The criterion equations of Lie symmetry of Eq. (7) are

ξ��
s − 2hsτ

� − q�σ
s τ�� = X (1) (hs) , (s = 1, 2, . . . , n) , (11)

where [30]

X (0) = τ
∂

∂t
+ ξk

∂

∂qk
,

X (1) = τ
∂

∂t
+ ξk

∂

∂qk
+ (

ξ�
k − q�

k τ�
) ∂

∂q�
k

. (12)

The invariance of nonholonomic constraints (2) under the infinitesimal transformations (10) is reduced to
the restriction equations of Lie symmetry as follows:

X (1) [
fβ

(
t, qσ

s , q�
s

)] = 0, (β = 1, 2, . . . , g) . (13)

Substituting δqσ
s = ε

(
ξσ
s − q�σ

s τσ
)
into conditions (3), we get

fβs
(
ξσ
s − q�σ

s τσ
) = 0, (β = 1, 2, . . . , g) . (14)

Equation (14) are the additional restriction equations of non-Chetaev nonholonomic constraint (2) on infinites-
imal generators. So, we have

Definition 1 If the infinitesimal generators τ and ξs satisfy the criterion equation (11) and the restriction
equation (13), as well as the additional restriction equation (14), then the invariance is called the Lie symmetry
of the nonholonomic mechanical system (2) and (4) of non-Chetaev type on time scales.

When the system is subjected to small disturbance forces υFs , the original Lie symmetry will be changed.
It is assumed that the infinitesimal generators of the disturbed system are the small perturbation on the basis
of the generators of the undisturbed system. For convenience, the generators of the undisturbed system are
denoted as τ 0 and ξ0s , and the disturbed generators are denoted as τ and ξs ; then, we get

τ = τ 0 + υτ 1 + υ2τ 2 + · · · , ξs = ξ0s + υξ1s + υ2ξ2s + · · · (15)

The disturbed infinitesimal generator vector X (0) and its first expansion X (1) are

X (0) = τ
∂

∂t
+ ξk

∂

∂qk
= υm

(
τm

∂

∂t
+ ξmk

∂

∂qk

)
= υmX (0)

m , (16)

X (1) = τ
∂

∂t
+ ξk

∂

∂qk
+ (

ξ�
k − q�

k τ�
) ∂

∂q�
k

= υm

[
τm

∂

∂t
+ ξmk

∂

∂qk
+ (

ξm�
k − q�

k τm�
) ∂

∂q�
k

]
= υmX (1)

m . (17)

The criterion equations of Lie symmetry of Eq. (9) are

ξ��
s − 2hsτ

� − 2υ
Msk

D
Fkτ

� − q�σ
s τ�� = X (1) (hs) + υX (1)

(
Msk

D
Fk

)
, (s = 1, 2, . . . , n) . (18)
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Substituting Eqs. (15) and (17) into Eqs. (13), (14) and (18), and making the coefficients of υm equal to each
other, we get

ξm��
s − 2hsτ

m� − 2
Msk

D
Fk

(
τm−1)� − q�σ

s τm�� = X (1)
m (hs) + X (1)

m−1

(
Msk

D
Fk

)
,

(s = 1, 2, . . . , n; m = 0, 1, 2, . . .) , (19)

X (1)
m

[
fβ

(
t, qσ

s , q�
s

)] = 0, (β = 1, 2, . . . , g) , (20)

fβs
(
ξmσ
s − q�σ

s τmσ
) = 0, (β = 1, 2, . . . , g) . (21)

Whenm = 0, we specify that τ−1 = ξ−1
s = 0. Equations (19–21) are the criterion equation and the restriction

equation, and additional restriction equation, respectively, of the disturbed nonholonomic system of non-
Chetaev type on time scales.

Definition 2 If the infinitesimal generators τm and ξms satisfy the criterion equation (19) and the restriction
equation (20), as well as the additional restriction equation (21), then the invariance is called the Lie symmetry
of the disturbed nonholonomic mechanical system (2) and (8) of non-Chetaev type on time scales.

4 Lie symmetries and exact invariants of nonholonomic systems of non-Chetaev type on time scales

Lie symmetries can lead to conserved quantities under certain conditions. The following theorem gives the
condition under which the Lie symmetry of nonholonomic mechanical system of non-Chetaev type leads to a
conserved quantity on time scales, and the form of the conserved quantity.

Theorem 1 For the undisturbed nonholonomic system (2) and (4) of non-Chetaev type on time scales, if the
infinitesimal transformation (10) corresponds to the Lie symmetry of the system, and there is a gauge function
G = G

(
t, qσ

s , q�
s

)
that satisfies the following structural equation:

Lτ� + X (1) (L) + μ (t)
∂L

∂qσ
k
q�
k τ� + (

Q′′
k + �k

) (
ξk − q�

k τ
)σ + G� = 0, (22)

then the Lie symmetry of the system results in the following conserved quantity:

I = ∂L

∂q�
k

ξk +
(
L − ∂L

∂q�
k

q�
k

)
τ − μ (t)

∂L

∂t
τ + G = const. (23)

Proof Due to

�

�t
I = ∂L

∂q�
k

ξ�
k + �

�t

(
∂L

∂q�
k

)
ξσ
k +

(
L − ∂L

∂q�
k

q�
k

)
τ� + �

�t

(
L − ∂L

∂q�
k

q�
k

)
τσ

−μ (t)
∂L

∂t
τ� − �

�t

(
μ (t)

∂L

∂t

)
τσ + G�, (24)

similar to the proof of the second Euler–Lagrange equations of the Lagrange systems on time scales in the
reference [22], for Eq. (5) of the nonholonomic system on time scales, the following relation can be obtained
easily:

�

�t

(
L − ∂L

∂q�
k

q�
k − μ (t)

∂L

∂t

)
= ∂L

∂t
− (

Q′′
k + �k

)
q�σ
k . (25)

Equation (25) is actually the energy equation of the nonholonomic mechanical system on time scales. ��
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According to the formula (12), we get

X (1) (L) = X (1) [
L

(
t, qσ

k , q�
k

)] = τ
∂L

∂t
+ ξk

∂L

∂qσ
k

+ (
ξ�
k − q�

k τ�
) (

∂L

∂q�
k

+ μ (t)
∂L

∂qσ
k

)
. (26)

Substituting Eq. (25) and the structural equation (22) into the formula (24), and considering the relation (26)
and Eq. (5), we have

�

�t
I = ∂L

∂q�
k

ξ�
k + �

�t

(
∂L

∂q�
k

)
ξσ
k − ∂L

∂q�
k

q�
k τ� + ∂L

∂t
τσ − μ (t)

∂L

∂t
τ�

−X (1) (L) − μ (t)
∂L

∂qσ
k
q�
k τ� − (

Q′′
k + �k

)
ξσ
k

=
[

�

�t

∂L

∂q�
k

− ∂L

∂qσ
k

− Q′′
k − �k

]
ξσ
k = 0. (27)

Therefore, the formula (23) is the conserved quantity of the system, and the theorem is proved.
Theorem 1 can be called the Lie symmetry theorem of undisturbed nonholonomic systems of non-Chetaev

type on time scales. Since the system is not disturbed, the conserved quantity (23) is an exact invariant. The
theorem reveals the relationship between Lie symmetries and invariants when the system is undisturbed.

If we take T = R, then σ (t) = t , μ (t) = 0, and the criterion equation (11) and the restriction equation
(13) and the additional restriction equation (14) of Lie symmetry on time scales become

ξ̈s − 2hs τ̇ − q̇s τ̈ = X (1) (hs) , (28)

X (1) (
fβ (t, qs, q̇s)

) = 0, (29)

fβs (ξs − q̇sτ) = 0. (30)

In this case, Theorem 1 gives

Theorem 2 For the undisturbed nonholonomic system of non-Chetaev type on time scales, if the generators
of infinitesimal transformations satisfy the criterion equation (28) and the restriction equation (29), as well
as the additional restriction equation (30), and there is a gauge function G = G (t, qs, q̇s) that satisfies the
following structural equation:

L τ̇ + X (1) (L) + (
Q′′

k + �k
)
(ξk − q̇kτ) + Ġ = 0,

(31)

then the Lie symmetry of the system results in the following conserved quantity:

I = ∂L

∂q̇k
ξk +

(
L − ∂L

∂q̇k
q̇k

)
τ + G = const. (32)

Theorem 2 is given in the reference [6].

If we take T = Z, then σ (t) = t + 1, μ (t) = 1, and the criterion equation (11) and the restriction equation
(13) and the additional restriction equation (14) of Lie symmetry on time scales become

�2ξs − 2hs�τ − �qs (t + 1)�2τ = X (1) (hs) , (33)

X (1) [
fβ (t, qs (t + 1) , �qs (t))

] = 0, (34)

fβs [ξs (t + 1) − �qs (t + 1) τ (t + 1)] = 0. (35)

In this case, Theorem 1 gives
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Theorem 3 For the undisturbed discrete nonholonomic system of non-Chetaev type on time scales, if the
generators of infinitesimal transformations satisfy the criterion equation (33) and the restriction equation (34),
as well as the additional restriction equation (35), and there is a gauge function G = G (t, qs (t + 1) , �qs (t))
that satisfies the following structural equation:

L�τ + X (1) (L) + ∂L

∂qk (t + 1)
�qk�τ + (

Q′′
k�k

)
(ξk (t + 1) − �qk (t + 1) τ (t + 1)) + �G = 0, (36)

then the Lie symmetry of the system results in the following conserved quantity:

I = ∂L

∂�qk
ξk +

(
L − ∂L

∂�qk
�qk

)
τ − ∂L

∂t
τ + G = const. (37)

In Theorem 3, the relation between Lie symmetries and exact invariants for the discrete nonholonomic system
of non-Chetaev type is established.

5 Lie symmetries and adiabatic invariants of nonholonomic systems of non-Chetaev type on time scales

The classical adiabatic invariant refers to a physical quantity that changes more slowly relative to the slow
change in a parameter of the system. So the adiabatic invariant is an approximate invariant. The following
theorem gives the conditions for adiabatic invariants resulting from Lie symmetries of disturbed nonholonomic
systems of non-Chetaev type on time scales, and the form of adiabatic invariants.

Theorem 4 For the disturbed nonholonomic system (2) and (8) of non-Chetaev type on time scales, if the
infinitesimal transformation (10) corresponds to the Lie symmetry of the system, and there are gauge functions
Gm = Gm

(
t, qσ

s , q�
s

)
that satisfy the following structural equations:

Lτm� + X (1)
m (L) + μ (t)

∂L

∂qσ
k
q�
k τm� + (

Q′′
k + �k

) (
ξmk − q�

k τm
)σ

+Fk
(
ξm−1
k − q�

k τm−1
)σ + G�

m = 0, (m = 0, 1, 2, . . .) , (38)

then

Iz =
z∑

m=0

υm

[
∂L

∂q�
k

ξmk +
(
L − ∂L

∂q�
k

q�
k

)
τm − μ (t)

∂L

∂t
τm + Gm

]
(39)

is a z-th adiabatic invariant of the nonholonomic system on time scales.

Proof Take the delta derivative of formula (39) with respect to time t , and we get

�

�t
Iz =

z∑
m=0

υm

[
∂L

∂q�
k

ξm�
k + �

�t

(
∂L

∂q�
k

)
ξmσ
k +

(
L − ∂L

∂q�
k

q�
k

)
τm� + �

�t

(
L − ∂L

∂q�
k

q�
k

)
τmσ

−μ (t)
∂L

∂t
τm� − �

�t

(
μ (t)

∂L

∂t

)
τmσ + �

�t
Gm

]
. (40)

For the disturbed system (8), the energy equation (25) can be extended as

�

�t

(
L − ∂L

∂q�
k

q�
k − μ (t)

∂L

∂t

)
= ∂L

∂t
− (

Q′′
k + �k

)
q�σ
k − υFkq

�σ
k . (41)

By substituting Eqs. (38) and (41) into the formula (40), and considering Eq. (8), we get

�

�t
Iz =

z∑
m=0

υm
[
υFk

(
ξmσ
k − q�σ

k τmσ
) − Fk

(
ξm−1
k − q�

k τm−1
)σ ]

= υz+1Fk
(
ξ zσk − q�σ

k τ zσ )
. (42)
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Therefore, Iz is a z-th adiabatic invariant of the nonholonomic system on time scales. The theorem is
proved.

Theorem 4 can be called the Lie symmetry theorem of disturbed nonholonomic systems of non-Chetaev
type on time scales, which reveals the relationship between Lie symmetries and adiabatic invariants when the
system is subject to small disturbance. When undisturbed, Theorem 4 degenerates to Theorem 1. ��

If we take T = R, then σ (t) = t , μ (t) = 0, and the criterion equation (19) and the restriction equation
(20) and the additional restriction equation (21) of Lie symmetry on time scales become

ξ̈ms − 2hs τ̇
m − 2

Msk

D
Fk τ̇

m−1 − q̇s τ̈
m = X (1)

m (hs) + X (1)
m−1

(
Msk

D
Fk

)
, (43)

X (1)
m

(
fβ (t, qs, q̇s)

) = 0, (44)

fβs
(
ξms − q̇sτ

m) = 0. (45)

Hence, Theorem 4 gives

Theorem 5 For the disturbed nonholonomic system of non-Chetaev type, if the generators of infinitesimal
transformations satisfy the criterion equation (43) and the restriction equation (44), as well as the addi-
tional restriction equation (45), and there are gauge functions Gm = Gm (t, qs, q̇s) that satisfy the following
structural equations:

L τ̇m + X (1)
m (L) + (

Q′′
k + �k

) (
ξmk − q̇kτ

m) + Fk
(
ξm−1
k − q̇kτ

m−1
)

+ Ġm = 0, (46)

then the system has a z-th adiabatic invariant as follows:

Iz =
z∑

m=0

υm
[

∂L

∂q̇k
ξmk +

(
L − ∂L

∂q̇k
q̇k

)
τm + Gm

]
. (47)

If we take T = Z, then σ (t) = t + 1, μ (t) = 1, and the criterion equation (19) and the restriction equation
(20) and the additional restriction equation (21) of Lie symmetry on time scales become

�2ξms − 2hs�τm − 2
Msk

D
Fk�τm−1 − �qs (t + 1) �2τm = X (1)

m (hs) + X (1)
m−1

(
Msk

D
Fk

)
, (48)

X (1)
m

[
fβ (t, qs (t + 1) , �qs (t))

] = 0, (49)

fβs
[
ξms (t + 1) − �qs (t + 1) τm (t + 1)

] = 0. (50)

Hence, Theorem 4 gives

Theorem 6 For the disturbed discrete nonholonomic system of non-Chetaev type on time scales, if the genera-
tors of infinitesimal transformations satisfy the criterion equation (48) and the restriction equation (49), as well
as the additional restriction equation (50), and there are gauge functions Gm = Gm (t, qs (t + 1) , �qs (t))
that satisfy the following structural equations:

L�τm + X (1)
m (L) + ∂L

∂qk (t + 1)
�qk�τm + (

Q′′
k + �k

) (
ξmk (t + 1) − �qk (t + 1) τm (t + 1)

)

+Fk
(
ξm−1
k (t + 1) − �qk (t + 1) τm−1 (t + 1)

)
+ �Gm = 0, (m = 0, 1, 2, . . .) , (51)

then the system has a z-th adiabatic invariant as follows:

Iz =
z∑

m=0

υm
[

∂L

∂�qk
ξmk +

(
L − ∂L

∂�qk
�qk

)
τm − ∂L

∂t
τm + Gm

]
. (52)

In Theorem 6, the relation between Lie symmetries and adiabatic invariants for the discrete nonholonomic
system of non-Chetaev type is established.

Due to the arbitrariness of time scales, apart from the above two special cases, different time scales can be
selected according to the needs, so as to obtain the corresponding results.
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6 An example

Assume that the Lagrangian of a Q nonholonomic mechanical system of non-Chetaev type on time scales is

L = 1

2

[(
q�
1

)2 + (
q�
2

)2]
. (53)

The system is subjected to the following nonholonomic constraint:

f = q�
1 + btq�

2 − bq2 + t = 0, (b = const.). (54)

The virtual displacements of the system satisfy the following equation:

δqσ
1 − bσ (t) δqσ

2 = 0. (55)

First, we establish the differential equations of motion of the system. Equation (4) gives

q��
1 = λ, q��

2 = −λbσ (t) . (56)

According to Eqs. (54) and (56), we obtain

λ = 1

b2σ 2 (t) − 1
, (57)

so we have

�1 = 1

b2σ 2 (t) − 1
, �2 = − bσ (t)

b2σ 2 (t) − 1
(58)

and Eq. (56) becomes

q��
1 = 1

b2σ 2 (t) − 1
, q��

2 = − bσ (t)

b2σ 2 (t) − 1
. (59)

Second, we calculate the Lie symmetry and exact invariants of the system. The criterion equations of Lie
symmetry are

ξ��
1 − 2

b2σ 2 (t) − 1
τ� − q�σ

1 τ�� = X (1)
(

1

b2σ 2 (t) − 1

)
,

ξ��
2 + 2bσ (t)

b2σ 2 (t) − 1
τ� − q�σ

2 τ�� = −X (1)
(

bσ (t)

b2σ 2 (t) − 1

)
. (60)

Equation (60) has a solution

τ 0 = 0, ξ01 = bt, ξ02 = 1. (61)

The restriction equation and the additional restriction equation of the system, respectively, are

ξ�
1 − q�

1 τ� + bt
(
ξ�
2 − q�

2 τ�
) + bq�

2 τ − bξ2 + τ = 0, (62)

ξσ
1 − q�σ

1 τσ − bσ (t)
(
ξσ
2 − q�σ

2 τσ
) = 0. (63)

Obviously, the generators (61) satisfy Eqs. (62) and (63), so the generators (61) correspond to the Lie symmetry
of the system.

Substituting the generators (61) into the structural equation (22), we get

G0 = −bq1. (64)

According to Theorem 1, from the generators (61) and the gauge function (64), we obtain the following
conserved quantity:



Adiabatic invariants and Lie symmetries on time scales 301

I0 = btq�
1 + q�

2 − bq1 = const. (65)

This is the exact invariant caused by the Lie symmetry (61) of the system.
The third step is to calculate the adiabatic invariants led by the perturbation of Lie symmetry under small

disturbance. Suppose the system is subjected to small disturbance forces υFs , i.e.,

υF1 = υb, υF2 = υ
(
b2t + q�

2

)
, (66)

then Eq. (59) becomes

q��
1 = 1

b2σ 2 (t) − 1
+ υb, q��

2 = − bσ (t)

b2σ 2 (t) − 1
+ υ

(
b2t + q�

2

)
. (67)

The criterion equation (19) of Lie symmetry gives

ξ1��
1 − 2

b2σ 2 (t) − 1
τ 1� − 2bτ 0� − q�σ

1 τ 1�� = X (1)
1

(
1

b2σ 2 (t) − 1

)
+ X (1)

0 (b) ,

ξ1��
2 + 2bσ (t)

b2σ 2 (t) − 1
τ 1� − 2

(
b2t + q�

2

)
τ 0� − q�σ

2 τ 1��

= −X (1)
1

(
bσ (t)

b2σ 2 (t) − 1

)
+ X (1)

0

(
b2t + q�

2

)
. (68)

Equation (68) has a solution

τ 1 = 0, ξ11 = t, ξ12 = 1

b
. (69)

The restriction equations and the additional restriction equations of the disturbed system are

ξ1�1 − q�
1 τ 1� + bt

(
ξ1�2 − q�

2 τ 1�
) + bq�

2 τ 1 − bξ12 + τ 1 = 0, (70)

ξ1σ1 − q�σ
1 τ 1σ − bσ (t)

(
ξ1σ2 − q�σ

2 τ 1σ
) = 0. (71)

The generators (69) satisfy Eqs. (70) and (71), so it corresponds to the Lie symmetry of the disturbed system.
The structural equation of the disturbed system is

Lτ 1� + (
ξ1�1 − q�

1 τ 1�
)
q�
1 + (

ξ1�2 − q�
2 τ 1�

)
q�
2 + 1

b2σ 2 (t) − 1

(
ξ11 − q�

1 τ 1
)σ

− bσ (t)

b2σ 2 (t) − 1

(
ξ12 − q�

2 τ 1
)σ + b

(
ξ01 − q�

1 τ 0
)σ + (

b2t + q�
2

) (
ξ02 − q�

2 τ 0
)σ + G�

1 = 0. (72)

Substituting Eq. (69) into Eq. (72), we can get

G1 = −b2t2 − q1 − q2. (73)

According to Theorem 4, we have

I1 = btq�
1 + q�

2 − bq1 + υ

(
tq�

1 + 1

b
q�
2 − q1 − q2 − b2t2

)
. (74)

This is the first-order adiabatic invariant caused by the Lie symmetry of the disturbed system. Similarly, we
can find adiabatic invariants of the second and higher orders.

We now consider two special cases T = R and T = Z.

If T = R, then σ (t) = t , μ (t) = 0, and q� (t) = dq
dt , and the Lagrangian (53), nonholonomic constraint

(54) and the virtual displacement equation (55) are reduced to those [6] in the classical continuous case,
respectively:

L = 1

2

(
q̇21 + q̇22

)
, f = q̇1 + btq̇2 − bq2 + t = 0, δq1 − btδq2 = 0, (75)
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and Eq. (74) gives classical continuous version of adiabatic invariant as follows:

I1 = btq̇1 + q̇2 − bq1 + υ

(
t q̇1 + 1

b
q̇2 − q1 − q2 − b2t2

)
. (76)

If T = Z, then σ (t) = t + 1, μ (t) = 1, and q� (t) = q (t + 1) − q (t) = �q (t), and the Lagrangian (53),
nonholonomic constraint (54) and the virtual displacement equation (55) are reduced to those in the classical
discrete case, respectively:

L = 1

2

[
(�q1 (t))2 + (�q2 (t))2

]
, f = �q1 (t) + bt�q2 (t) − bq2 (t) + t = 0,

δq1 (t + 1) − b (t + 1) δq2 (t + 1) = 0, (77)

and Eq. (74) gives the discrete version of the adiabatic invariant as follows:

I1 = bt�q1 (t) + �q2 (t) − bq1 (t) + υ

[
t�q1 (t) + 1

b
�q2 (t) − q1 (t) − q2 (t) − b2t2

]
, (78)

where � is the usual forward difference operator.
If we choose another time scale, for example, T = {

2 j : j ∈ N0
}
, we can get another discrete version of

the adiabatic invariant (74).

7 Conclusions

In this paper, we proposed and studied Lie symmetries and exact invariants of nonholonomic systems of
non-Chetaev type on time scales, and studied the perturbation of Lie symmetry and adiabatic invariants of
nonholonomic systems of non-Chetaev type on time scales under small disturbance. The main contributions
of this paper are as follows: The first is that we established the criterion equations of Lie symmetry for
nonholonomic systems of non-Chetaev type on time scales, proposed and proved the Lie symmetry theorem,
and derived the corresponding exact invariants caused by the Lie symmetry of the undisturbed system; the
second is that we studied the perturbation of Lie symmetry of the system under small disturbance, and derived
the adiabatic invariants of nonholonomic system of non-Chetaev type on time scales. Since the time scales
calculus has the two features, i.e., unification and extension, the results of this paper are universal. The method
and results can be further extended to various constrained mechanical systems on time scales.
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