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Abstract This paper is concernedwith the dynamics and stability of a flapping flag, with emphasis on the onset
of flutter instability. Themathematicalmodel is based on the one derived in a paper byArgentina andMahadevan
(Proc Nat Acad Sci 102:1829–1834, 2005). In that paper, it is reported that the effect of vortex shedding from
the trailing edge of the flag, represented by the complex Theodorsen function C , has a stabilizing effect, in
the sense that the critical flow speed (where flutter is initiated) is increased significantly when vortex shedding
is included. The numerical eigenvalue analyses of the present paper display the opposite effect: the critical
flow speed is decreased when the Theodorsen function (i.e., vortex shedding) is included. These predictions
are verified by an analytical energy balance analysis, where it is proved that a small imaginary part of the
Theodorsen function, C = 1− i ε, 0 < ε � 1, has a destabilizing effect, i.e., the critical flow speed is smaller
than by the so-called quasi-steady approximationC = 1−i 0. Furthermore, order-of-magnitude considerations
show that Coriolis and centrifugal force terms in the equation ofmotion, previously discarded on the assumption
that they are associated with very slow changes across the flag, have to be retained. Numerical results show
that these terms have a significant effect on the stability of the flag; specifically, the said destabilizing effect
of the vortex shedding is significantly reduced when these terms are retained. The mentioned energy balance
analysis illuminates the nature of the flutter oscillations and the ‘competition’, at the flutter threshold, between
the different types of fluid forces acting on the flag.

1 Introduction

The mechanical and mathematical understanding of flapping flags and sails has been of interest to many
scientists through more than a century. It seems that the first theoretical investigation of a flapping flag is
due to Rayleigh [29]. In an investigation of the instability of jets, published in 1879, Rayleigh noted that ‘its
bearing upon the flapping of sails and flags will be evident.’ Rayleigh’s investigation is included in Lamb’s
Hydrodynamics [16, p. 374], and its relation to the flapping of flags and sails is mentioned therein, too.

Until the start of the twenty-first century, the general scientific interest in the flag problem was not large but
still, a number of noteworthy studies were published. Thwaites [39] studied theoretically the fluid–structure
interaction problem of flow past a flexible, inelastic membrane. Taneda [35] carried out a careful experimental
study of the waving motion of flags in a wind tunnel. Coene [9] investigated, both theoretically and experi-
mentally, the stability of a long ‘flag’ (a fabric strip) subjected to tension. Coene writes that the investigation
actually gives the solutions to two examples (problems) formulated in Milne-Thomson’s Theoretical Hydro-
dynamics [25, p. 466], of which the second one reads, ‘Explain, giving the necessary theory, why a flag flaps
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in a breeze.’ Fitt and Pope [13] formulated a mathematical model which included the mass and stiffness of the
flag.

At the dawn of the twenty-first century, new experimental studies seem to have revitalized the interest in
the classical flag problem. Zhang et al. [42] studied the dynamics of flexible filaments in a flowing soap film
as a model for a one-dimensional flag in a two-dimensional flow. Shelley et al. [31] carried out experiments
on a flexible sheet, as a model of a heavy flag, in flowing water. Many new theoretical investigations, as well
as new experiments, have appeared in the wake of the extended understanding obtained through these papers.
Some of them (up to 2011) are described in a review paper by Shelley and Zhang [32].

The present investigation was motivated by the work of Argentina and Mahadevan [2] and, in particular,
by their discussion of the mechanism of instability in terms of asymptotic limits. Specifically, they discuss the
limit where the nondimensional mean flow speed u → ∞ while the added fluid mass parameter

ρ = fluid density

flag density

flag length

flag thickness
→ 0

in such a way that the dynamic fluid pressure (and fluid force multiplier) term ρu2 is finite. In this limit, the
complex Theodorsen function becomes real,C → 1− i 0. This function, which represents the vortex shedding
from the trailing edge of the flag, acts as a multiplier to the fluid force terms, and C = 1 − i 0, called the
quasi-steady approximation, corresponds to the neglect of vortex shedding. Numerical results in [2] show that
in this limit, the critical flow speed is significantly lower when this quasi-steady approximation (C = 1 − i 0)
is used in place of the true, complex value of C . They show also that, in this limit, the flutter oscillations
are dominated by the first (fundamental, free vibration) eigenmode, while in the quasi-steady approximation,
coupled-mode flutter, with a coupling between the first and the second eigenmode, takes place. These results
appear to differ from classical results for flutter of cantilevered plates in an airstream (e.g. [27, Ch. 6.8]).

How can a very small imaginary part of C have such a large influence on the critical flow speed? And how
can the quasi-steady critical flow speed—characterized by coupled-mode flutter—be so much lower than the
properly evaluated ‘unsteady’ critical flow speed which, apparently, is characterized by single-mode flutter
in first eigenmode? It was the main motivation behind the present study to clarify such questions through
analytical energy considerations, supported by computations.

The paper is organized as follows. Section 2 reviews and develops the fluid force evaluation and the
coupled fluid–structure equation of motion derived by Argentina and Mahadevan [2]. It is argued that some
terms neglected in [2]—specifically, fluid force terms of Coriolis and centrifugal force type—need to be
retained in the equation of motion. Discretization of this equation of motion, as well as the determination of
eigenvalues and eigenvectors, is discussed in Sect. 3.

Section 4 is concernedwith a numerical stability analysis, i.e., the determination of eigenvalues as functions
of the flow speed u, and flutter oscillations. Special attention is paid to the influence of the Theodorsen function,
in order to understand that, in [2], the critical flow speed is increased significantly when vortex shedding is
taken into account, as discussed above. In the present numerical analysis, the opposite effect is found, that is,
that the critical flow speed is decreased significantly when the effect of vortex shedding is taken into account.
A possible reason for this is discussed, and it is emphasized that the sign of the argument of the Theodorsen
function must be considered carefully.

On the other hand, it is found that the ‘destabilizing effect’ of the vortex shedding (and thus, of the
Theodorsen function) is largely reduced when the mentioned Coriolis and centrifugal force terms are properly
taken into account. It is also found that the inclusion of these terms implies that higher-order eigenmodes are
brought into play in the flutter oscillations, as seen by experiments with flag-like thin structures [27,40].

Section 5 is concerned with energy considerations. The main result of that section is a proof that the
presence of a small imaginary part in the Theodorsen function C will actually lower the critical flow speed,
relative to the value for quasi-steady limit, C = 1− i 0, in full support of the numerical results of Sect. 4. The
energy balance analysis contributes also to an extended understanding of the nature of the flutter oscillations.
It is shown, for example, that a necessary condition for flutter to occur is that the gradient of the phase angle
function is negative over most part of the flag domain. Finally, conclusions are made in Sect. 6.

2 Equation of motion

The undisturbed flag lies in the domain 0 ≤ x ≤ L , y = 0, 0 ≤ z ≤ l, where (x, y, z) is a usual right-hand
Cartesian coordinate system, with the z-axis orthogonal to the x- and y- axes and running into the paper, see
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Fig. 1 Sketch of the flapping flag configuration. The width of the flag is l (into the paper)

Fig. 1. A fluid of density ρ f is moving with uniform velocityU in the positive x-direction. The flag is modeled
as a thin plate, and it is assumed that this plate vibrates only in beam modes; that is, at any point x ∈ [0, L],
the deflection is the same for any z ∈ [0, l].

Let Y (x, t) be the deflection of the flag at position x and time t . Then, the equation of motion is given by

m
∂2Y

∂t2
+ B∗ ∂5Y

∂4x∂t
+ B

∂4Y

∂x4
= lΔP. (1)

Here, m = ρshl is the mass per unit length of the flag, where ρs is the density of the flag material of thickness
h, B = Eh3/12(1 − ν2) is the flexural rigidity ,where E is Young’s modulus and ν is Poisson’s ratio, B∗ is
a parameter that represents internal damping in the flag material and ΔP is the pressure difference across the
flag due to the fluid flow.

Assuming that the flag/plate is clamped at x = 0 and free at x = L , the four boundary conditions are given
by

Y (0, t) = 0,

[
∂Y

∂x

]
x=0

= 0,

[
∂2Y

∂x2

]
x=L

= 0,

[
∂3Y

∂x3

]
x=L

= 0. (2)

Argentina and Mahadevan [2] have carried out an analysis of the fluid forces acting on the flag, based on
the classical work of Theodorsen [38]. In their analysis, they evaluate a non-circulatory velocity potential φnc
to account for the flow along the flag and a circulatory velocity potential φc to account for the vortex wake
shed from the trailing edge of the flag, in order to satisfy the Kutta–Joukowski condition as well as Kelvin’s
theorem [3,22]. Making use of the linearized Bernoulli equation

p(x, y, t) = −ρ f

[
∂

∂t
+U

∂

∂x

]
φ(x, y, t), (3)

where p is the pressure and φ = φnc + φc, the pressure difference across the flag is evaluated as

ΔP = −ρ f UC(κ) f
( x

L

){
∂Y

∂t
+U

∂Y

∂x

}

−ρ f L g
( x

L

){
∂2Y

∂t2
+ 2U

∂2Y

∂t∂x
+U 2 ∂2Y

∂x2

}
. (4)

Here,

f (ξ) = 2

√
1 − ξ

ξ
, g(ξ) = 2

√
(1 − ξ)ξ, (5)

and C(κ) is the Theodorsen function, to be specified a little later. The functions f (ξ) and g(ξ) are shown in
Fig. 2. It is noted that they are both positive definite for 0 ≤ ξ ≤ 1.

It is noted also that Argentina and Mahadevan [2] discard the last two terms in (4) on the ground that they
are small in comparison with the first term of the second line. It will be shown a little later that this is not the
case.
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(a) (b)

Fig. 2 Functions f (ξ) (a) and g(ξ) (b) defined in (5)

In the following, we will make use of nondimensional versions of (1) and (2) which can be obtained by
introducing the nondimensional parameters

ξ = x

L
, τ = t

L
UB = t

L

1

L

√
B

m
, η = Y

L
,

ρ = ρ f Ll

m
= ρ f

ρs

L

h
, u = U

UB
= UL

√
m

B
, σ ∗ = B∗

B
UB, (6)

where UB is the elastic wave propagation speed. Equations (1) and (2) then take the forms

{1 + ρg(ξ)} ∂2η

∂τ 2
+ σ ∗ ∂5η

∂ξ4∂τ
+ ∂4η

∂ξ4
+ ρuC(κ) f (ξ)

{
∂η

∂τ
+ u

∂η

∂ξ

}

+ ρug(ξ)

{
2

∂2η

∂ξ∂τ
+ u

∂2η

∂ξ2

}
= 0, (7)

and

η(0, τ ) = 0,

[
∂η

∂ξ

]
ξ=0

= 0,

[
∂2η

∂ξ2

]
ξ=1

= 0,

[
∂3η

∂ξ3

]
ξ=1

= 0. (8)

The first term in (7) represents inertia forces, with the termmultiplying unity (in the first pair of curly brackets)
being the inertia forces of the flag itself and the term multiplying ρg(ξ) the inertia forces due to the added fluid
mass. The second term represents dissipative forces due to internal damping of the flag material. The third
term represents the elastic forces of the flag. The fourth term, proportional to ρu, represents dissipative forces
due to fluid damping. The fifth and final term in the first line, proportional to ρu2, represents circulatory fluid
forces. The two terms in the second line are fluid force terms as well, originating from the last two terms in (4).
The first term (in the second line) represents Coriolis forces, while the second term represents a ‘centrifugal
force’ [26].

It is noted that ∂2Y/∂t2 = (U 2
B/L)∂2η/∂τ 2, 2U∂2Y/∂t∂x = (U 2

B/L)2u∂2η/∂τ∂ξ , and U 2∂2Y/∂x2 =
(U 2

B/L)u2∂2η/∂ξ2, that is to say, the three terms in the last line of (4) are of the same order of magnitude; the
last two terms cannot be neglected. It follows from (7) that the fluid force terms in the second line are of same
order of magnitude as the last two terms in the first line; again, they cannot be neglected.

The Theodorsen function C(κ) is defined by

C(κ) =

∫ ∞

1

ξ̃√
ξ̃2 − 1

e−iκξ̃d ξ̃

∫ ∞

1

√
ξ̃ + 1

ξ̃ − 1
e−iκξ̃d ξ̃

= H (2)
1 (κ)

H (2)
1 (κ) + iH (2)

0 (κ)
, κ ∈ R+, (9)
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where H (2)
n is the Hankel function of second kind and order n, and

κ = ω

2u
(10)

is a nondimensional, real, positive wavenumber, with ω being the nondimensional frequency of the flag
oscillations (defined in connection with (11)). The function C represents the vortex wake shed from the
trailing edge ξ = 1, modeled by the mentioned non-circulatory potential φnc, and as indicated by (9), it
involves evaluation of integrals over the shed vorticity in the domain ξ̃ ∈ [1,∞); see [2,5,14,38] for details.
(In particular, Theodorsen himself [38] gives a step-by-step evaluation of the improper integrals into Bessel
and Hankel functions.) Thus, κ , defined by (10), is the wavenumber for the oscillating vortex sheet representing
the wake from the flag and will in the following be called the wake wavenumber.

In the numerical stability analyses to follow, the time dependence of the solution η(ξ, τ ) is assumed to be
in the form

η(ξ, τ ) = η̂(ξ) exp(λτ), (11)

with λ = α + iω. Inserting (11) into (7) turns the latter equation into an ordinary differential equation which,
together with the boundary conditions (8), constitutes an eigenvalue problem. With reference to (11), the
vibrations are stable if α < 0 and unstable if α > 0. The stability limit sl and the critical flow speed uc
are defined as follows: sl = {(u, α) : α = 0 for u = uc, α > 0 for u > uc}. Flutter is initiated at sl
(u = uc) if ω �= 0, divergence if ω = 0. In case of flutter (which is the only type of instability considered
in the present paper), the imaginary part ω of the leading (latently unstable) eigenvalue branch (or eigenvalue
curve) λ = λ(u) at the critical flow speed uc is called the flutter frequency and is denoted by ωc, where the
subscript c indicates ‘critical’.

Considering the time dependence given by (11), it may be more natural to replace iκ = iω/2u in the first
expression in (9) by λ/2u = (α + iω)/2u. But, as noted by Bisplinghoff et al. [5, p. 281], this implies that the
integrals become divergent by stable motion, i.e. for α < 0. Such a representation is thus not feasible. On the
other hand, it is possible and of interest to extend (9) to include negative values of ω. (It is possible because
both positive and negative values of ω correspond to an outgoing wake; cf. [2,5,14,38].) We find that [1]

C(−κ) = H (1)
1 (κ)

H (1)
1 (κ) − iH (1)

0 (κ)
, κ ∈ R+, (12)

where H (1)
n is the Hankel function of first kind, order n. It is seen that (12) is simply the complex conjugate of

(9).

3 Discretization and eigensolution analysis

The boundary value problem obtained from (7), (8), and (11) is solved numerically by employing a Galerkin
finite element discretization. The flag is divided into Ne elements, each of length 1/Ne. Within each element,
the deflection η is approximated by cubic polynomials [10, p. 101]. Equations (7) and (8) are then transformed
into a matrix eigenvalue problem in the form

L(λ)a = [
λ2

{
Ms + ρM f

} + λDs + S + ρuC(κ)
{
λD f + uF

} + ρu {2C + uG}] a = 0, (13)

where Ms is the structural mass matrix, M f is the added (fluid) mass matrix, Ds is the structural damping
matrix, S is the stiffness matrix, D f is the fluid damping matrix (proportional to the term ∂η/∂τ in (7)), F is
a fluid load matrix, C is a Coriolis matrix, G is a second fluid load matrix and a = aR + iaI is the complex
eigenvector, with aR being the real part and aI the imaginary part. The matrices Ms , M f , Ds , D f , and S are
symmetric, F and C are skew-symmetric, while G is generally non-symmetric. With the column divided into
Ne elements, the matrices in (13) are of size 2Ne × 2Ne, as each node has two degrees of freedom (deflection
and rotation).

Since κ = Im(λ)/2u, (13) is a nonlinear eigenvalue problem. The eigenvalues λ are determined by
employing a Newton–Raphson method [17, p. 81]. Let λs be approximation number s to an eigenvalue. Then,
the improved approximation, number s + 1, is given by

λs+1 = λs − bTs L(λs)as
bTs L,λ(λs)as

, s = 0, 1, . . . (14)
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where b is the left eigenvector, given by bTL(λ) = 0, and L,λ denotes ∂L/∂λ. (In this relation, it is noted that
∂C/∂λ = −i(∂C/∂κ)/2u.) The eigenvectors as and bs are determined by direct computation, by assigning
one element (of as and bs) the value 1 + i 0 and solving the resultant linear equation systems. This sequence
is continued until |λs+1 − λs | < 10−10.

All results in the following have been obtained using 50 finite elements (Ne = 50). This number is based on
the convergence study given in Appendix A, from where it is judged that Ne = 50 gives sufficiently accurate
results. The critical flow speeds given in the following have been determined using the bisection method.

It is remarked that the model and the corresponding numerical results do not need the inclusion of material
damping tomake sense, due to the presence of fluid damping. Accordingly, while we keep thematerial damping
term in the energy considerations to follow (in Sect. 5), for the sake of completeness, we ignore it (i.e. set
σ ∗ = 0 in (7)) in all the numerical examples to follow, to stay in line with the examples of [2].

4 Stability analysis

4.1 The approximation of Argentina and Mahadevan

In this subsection, we will investigate how the eigenvalues λ depend on the flow speed u by the approximation
employed by Argentina and Mahadevan [2] which, again, consists of the terms in the first line of (7). For the
discretized model, it is the terms in (13) exclusive of the terms in the last pair of curly brackets, i.e. exclusive
of ρu {2C + uG}.

Figures 3a, b show the real and imaginary parts of the eigenvalues for the quasi-steady approximation,
C(κ) ≡ 1 − i 0. Shown are the first six eigenvalues, λ j = α j + iω j , j = 1, . . . , 6, ω1 < ω2 < · · · < ω6,
and their complex conjugates, λ∗

j = α j − iω j . (Higher-order eigenvalues λ j , j > 6, remain stable and are
thus not included in the figures.) The eigenvalues with positive imaginary parts are drawn with full lines,
while those with negative imaginary parts are drawn with broken lines. (This plotting style is adopted in all
similar eigenvalue plots in the remainder of the paper.) With C(κ) ≡ 1 − i 0, all matrices in (13) are real and
accordingly, the eigenvalues occur in complex conjugate pairs, λ = α ± iω. This is clear from the symmetry
about the ω = 0 axis in Fig. 3b, and from the coincidence of the real parts in Fig. 3a, in the sense that the
broken lines cannot be seen as they are coinciding with the full lines. It will be seen later that when C(κ) takes
complex values, the eigenvalues will still appear in complex conjugate pairs, due to the property expressed by
(12). (It is thus not necessary, actually, to plot the eigenvalues with negative imaginary parts, as well as those
with positive imaginary parts, but it is done nonetheless as a check of correctness.)

Figure 3a shows that the real part of the leading eigenvalue1 (the eigenvalue with the largest real part
α∗ = Re(λ∗)) crosses the line α = 0 at the critical flow speed uc = 23.95. The corresponding flutter
frequency is ωc = 22.18. This frequency is associated with the first eigenvalue branch λ1, that is, the branch
that for u = 0 starts out as the first (lowest) eigenfrequency ω1. However, at the critical flow speed, the
critical eigenvalue branch is almost coinciding with the second eigenvalue branch λ2. By ‘almost’ is meant
that coincidence is not realized, due to the presence of fluid damping. Hence, in the quasi-steady case, the flutter
motion is ‘close to’ coupled-mode flutter, yet it is not ‘true’ coupled-mode flutter, as the coupling between first
and second eigenvalue branches is not complete. It is noted that if the damping matrix in (13) is proportional
to the mass matrix (or equivalently, if the damping force coefficient (multiplying ∂η/∂τ ) in (7) is proportional
to the inertia force coefficient (multiplying ∂2η/∂τ 2), then the flutter instability will be ‘true’ coupled-mode
flutter [28, p. 126]. As (7) shows, this is not so in the present case, due to the presence of the functions f (ξ)
and g(ξ), defined by (5).

It is noted that Argentina and Mahadevan [2] use the term ‘the quasi-steady approximation’ for the case
where, in addition to C ≡ 1 − i 0, all unsteady terms in (4) are equal to zero. Using this approximation, we
obtain, with ρ = 0.2, the critical flow speed uc = 23.57. This agrees very well with the corresponding result of
Argentina and Mahadevan [2]. Their results satisfy, for non-large values of ρ (say, ρ < 1), the approximation
uc ≈ 10.53/

√
ρ which, with ρ = 0.2, gives uc ≈ 23.55. In this paper, we will use the term ‘the quasi-steady

approximation’ to refer just to the simplification C = 1 − i 0.
Figure 4a shows the flutter oscillations at the onset of instability, at the critical flow speed uc = 23.95, for

the case ρ = 0.2 and C(κ) ≡ 1 − i 0. The time step between the curves is Δτ = π/8ωc. Figure 4b shows the

1 It is emphasized, again, that all eigenvalues appear in complex conjugate pairs. Thus, by an ‘eigenvalue’ is really meant a
pair of complex conjugate eigenvalues, and by an ‘eigenvalue branch’ is really meant a pair of branches (i.e., curves) of complex
conjugate eigenvalues.
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(a) (b)

Fig. 3 a Real and b imaginary parts of the eigenvalues by a finite element discretization with 50 elements for the case ρ = 0.2,
with C(κ) ≡ 1 − i 0. The critical flow speed uc = 23.95. The flutter frequency ωc = 22.18. Note that the eigenvalue branches
with negative imaginary parts are plotted with broken lines

(a) (b)

Fig. 4 a Flutter oscillations η(ξ, τ ) at the onset of instability by the critical flow speed uc = 23.95, for the case ρ = 0.2 and with
C(κ) ≡ 1 − i0. b The corresponding phase angle function φ(ξ) (in degrees)

to Fig. 4a corresponding phase angle function φ(ξ). It is noted that the phase angle φ at element number e is
evaluated as φe = arctan(aI e/aR e), where aI e and aR e are the (2e−1)th elements in aI and aR , respectively,
cf. (13). In the figures, the continuous phase angle function φ(ξ) is simply interpolated between the discrete
element values φe. It is noted that the phase angle gradient ∂φ(ξ)/∂ξ < 0 in the whole range ξ ∈ [0, 1]. This
negative phase angle gradient results in a ‘dragging’ sort of motion. Considering two positions (stations) on
the flag, ξ1 and ξ2, 0 < ξ1 < ξ2 < 1, the motion at ξ2 will always lag behind the motion at ξ1. This dragging
motion manifests itself also as a downstream traveling wave motion. (This will be discussed in more detail in
Sect. 5.2.)

Thinking in terms of a classical modal (say, Bubnov–Galerkin) expansion [6, p. 58]; see also Sect. 5.2.2),
and keeping the just given discussion on coupled-mode flutter in mind, it is apparent that the flutter vibrations
contain components of both first and second eigenmodes. This is clear fromboth the vibrational shapes (Fig. 4a)
and the phase shift of 180◦ across the ‘smoothed out’ nodal point (Fig. 4b). (This smoothing out is due to
damping [33], which here is fluid damping.)

For the purpose of comparison, Fig. 5 shows the real and imaginary parts of the eigenvalues for the quasi-
steady case (C(κ) ≡ 1 − i 0) with ρ = 25, although the quasi-steady approximation perhaps is invalid for
such a large value of ρ. The real part of the leading eigenvalue crosses the line α = 0 at the critical flow
speed uc = 3.95. The corresponding flutter frequency is ωc = 10.37. As in the previous case, this frequency
is associated with the first eigenvalue branch λ1 and also here, the flutter instability is ‘almost’ coupled-mode
flutter, in the sense explained in connection with Fig. 3.
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(a) (b)

Fig. 5 aReal and b imaginary parts of the eigenvalues for the case ρ = 25, withC(κ) ≡ 1−i 0. The critical flow speed uc = 3.95.
The flutter frequency ωc = 10.37

(a) (b)

Fig. 6 a Flutter oscillations η(ξ, τ ) at the onset of instability by uc = 3.95, for the case ρ = 25 and with C(κ) = 1 − i0. b The
corresponding phase angle function φ(ξ) (in degrees)

Figure 6a shows the flutter oscillations at the critical flow speed, uc = 3.95, for this case (ρ = 25,
C(κ) ≡ 1 − i 0). It is noted that the upstream quarter-part of the flag hardly vibrates at all, relative to the
downstream half-part.

The to Fig. 6a corresponding phase angle function is shown in Fig. 6b. It is noted that the negative gradient
of the phase angle function is very large in this case. Alone in the range 0 < ξ � 0.5, there is a phase shift of
approximately 180◦, and then one of approximately 120◦ in 0.5 � ξ < 1.

Figures 7a, b show the real and imaginary parts of the eigenvalues, evaluated with ‘proper’ inclusion of the
Theodorsen function C(κ), and with (13) treated as a nonlinear eigenvalue problem. The critical flow speed
is here uc = 7.05. The unstable eigenvalue branch is the one that at flow speed u = 0 corresponds to the first
eigenvalue, λ1. At the onset of flutter, the imaginary part ωc = ω1 = 5.06. A second crossing of the line α = 0
occurs at u ≈ 72.5. This eigenvalue branch corresponds, at u = 0, to the third eigenvalue, λ3. At the crossing,
the imaginary part of this branch takes the value ω = 81.2.

Figure 8a shows the flutter oscillations at the onset of instability, at the critical flow speed uc = 7.05, for
the case ρ = 0.2 with the proper value of C(κ). Thinking again in terms of a (Galerkin) modal expansion, it is
apparent that the vibrations are here dominated by the first, fundamental eigenmode. Figure 8b shows the to
Fig. 8a corresponding phase angle function φ(ξ). Comparing with Fig. 4b, we have again that the phase angle
gradient ∂φ(ξ)/∂ξ < 0 in the whole range ξ ∈ [0, 1], but now the value of −∂φ(ξ)/∂ξ is, in average, much
smaller.
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(a) (b)

Fig. 7 a Real and b imaginary parts of the eigenvalues for the case ρ = 0.2, evaluated with proper inclusion of C(κ). The critical
flow speed uc = 7.05. The flutter frequency ωc = 5.06

(a) (b)

Fig. 8 a Flutter oscillations η(ξ, τ ) at the onset of instability by the critical flow speed uc = 7.05, for the case ρ = 0.2 and with
proper inclusion of the Theodorsen function C(κ). b The corresponding phase angle function φ(ξ) (in degrees)

Figure 9 shows the real and imaginary parts of the eigenvalues for the case with mass ratio parameter
ρ = 25 and again with the ‘correct’ evaluation of the Theodorsen function C(κ). The critical flow speed is
uc = 2.82, with corresponding flutter frequency ωc = 5.16. Also here, the unstable eigenvalue branch is the
one that at flow speed u = 0 corresponds to the first eigenvalue, λ1. A second crossing occurs at u ≈ 11.2.

Figure 10a shows the flutter oscillations for the case ρ = 25, evaluated with the proper value of C(κ).
The corresponding phase angle function φ(ξ) is shown in Fig. 10b. It is interesting to note that both the flutter
oscillations and the phase angle function are similar to those shown in Fig. 4. An explanation may be found
by returning to Fig. 9b, where it will be seen that the two lowest eigenfrequencies ω1 and ω2 are in close
proximity at u = uc, just as they are by the quasi-steady approximation with ρ = 0.2 (Fig. 3b).

Since it is found that the critical flow speed is reduced significantly for the equation of motion of Argentina
and Mahadevan [2] when the Theodorsen function is included, it is natural to ask what happens if the sign of
the argument of the Theodorsen function, the wake wavenumber κ , is changed? If this is done for the case
ρ = 0.2, it is found that the critical flow speed increases to uc ≈ 67.0. It is noted that this value appears to be
close to the critical value (uc = 66) identified in [2] as the critical one. Similarly, for ρ = 25 the critical flow
speed changes to u = 6.60. This value agrees with the one that in [2] is identified as the critical one.

The energy analysis of Sect. 5.3 will fully clarify the effect of the Theodorsen function on the stability
limit and clarify why a positive value of κ has a destabilizing effect and a negative value a stabilizing effect.

In relation to the significance of the sign of κ , it is remarked that in the paper [24], which is based on
the model of Argentina and Mahadevan [2], a time dependence in the form exp(−iωτ) is employed (see their
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(a) (b)

Fig. 9 a Real and b imaginary parts of the eigenvalues for the case ρ = 25, evaluated with proper inclusion of C(κ). The critical
flow speed uc = 2.82. The flutter frequency ωc = 5.16

(a) (b)

Fig. 10 a Flutter oscillations at the onset of instability by uc = 2.82, for the case ρ = 25 and with proper inclusion of C(κ). b
The corresponding phase angle function φ(ξ) (in degrees)

Eq. (3.5), and consider then the inverse transform which gives η(ξ, τ ) (here using our notation)); however,
the vorticity distribution function which enters the Theodorsen functional (cf. [2] for details) is assumed to
have a time dependence in the form exp(iωτ) (see their Eq. (3.8)). This gives, in effect, a change of sign of
the argument of the Theodorsen function, just as we have considered here. In the paper [23], a sign error is
introduced (compare their Eqs. (9), (31), and (32)) which implies exactly the same effect. It will be shown
in Sect. 5 that flutter occurs in the form of a downstream traveling wave. The vortex sheet, representing the
vorticity shed from the trailing edge of the flag, clearly also travels downstream. But if the time dependence
of the flag motion is taken as exp(−iωτ) and that of the vorticity distribution of the wake corresponding to
this motion as exp(iωτ), this will, in effect, amount to a wake (vortex sheet) traveling against the flow, which
clearly is meaningless.

4.2 The influence of the Coriolis and centrifugal terms

In the following, we will investigate how the two ‘new’ terms in (7), the Coriolis force term 2ρug∂2η/∂τ∂ξ
and the Centrifugal force term ρu2g∂2η/∂ξ2, affect the eigenvalues λ as functions of the flow speed u.

Figures 11a, b show the real and imaginary parts of the eigenvalues, evaluatedwith a ‘proper’ inclusion of the
Theodorsen function C(κ), for ρ = 0.2. The critical flow speed uc = 9.78, with flutter frequency ωc = 16.09,
by the branch which at u = 0 starts as the second eigenvalue. With the quasi-steady approximationC = 1− i0,
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(a) (b)

Fig. 11 a Real and b imaginary parts of the eigenvalues for the case ρ = 0.2, evaluated with inclusion of the Coriolis and
centrifugal force terms and with proper inclusion of C(κ). The critical flow speed uc = 9.78. The flutter frequency ωc = 16.09

(a) (b)

Fig. 12 a Flutter oscillations at the onset of instability by uc = 9.78, for the case ρ = 0.2, evaluated with inclusion of the Coriolis
and centrifugal force terms and with proper inclusion of C(κ). b The corresponding phase angle function φ(ξ) (in degrees)

the course of the eigenvalues remains basically unchanged; however, the critical flow speed increases to
uc = 10.13, while the flutter frequency changes to ωc = 16.83. Thus, in contrast to the approximatively 70%
drop in the value of uc by the approximation of [2], the influence of the Theodorsen function on uc is moderate
when the Coriolis and centrifugal terms are included in (4) and (7). It is noted that the critical flow speed
uc for this value of the fluid loading parameter ρ agrees well with that of Tang and Païdoussis [36,37], who
found uc = 9.95 based on a different method. This moderate influence of the Theodorsen function is also
in qualitative agreement with an example in Hodges and Pierce [15, pp. 143,154], who, for a two degrees of
freedom wing model, show that, relative to the quasi-steady approximation C = 1− i0, when the Theodorsen
function is properly included, the change in the critical flow speed is less than 20%.

Figure 12a shows the flutter oscillations at the critical flow speed, uc = 9.78, for this case (ρ = 0.2).
Comparing with Figs. 4 and 8, it is noted that the second eigenmode is dominating in this case. The to Fig. 12a
corresponding phase angle function is shown in Fig. 12b. It is noted that the gradient here is smaller than in
Fig. 4b (but much larger than in Fig. 8b).

Figure 13a shows the flutter oscillations at the critical flow speed, uc = 11.90, for the case ρ = 0.5.
Comparing with Fig. 12, it is noted that the presence of the third eigenmode can be seen in this case. In this
relation, the flutter frequency ωc = 31.88 is here by the branch which at u = 0 starts as the third eigenvalue.
It is interesting to note that when the quasi-static approximation C = 1 − i0 is used in this case, the critical
flow speed does not change within four significant digits. The flutter frequency changes to ωc = 33.71. The
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(a) (b)

Fig. 13 a Flutter oscillations at the onset of instability by uc = 11.90, for the case ρ = 0.5, evaluated with inclusion of the
Coriolis and centrifugal force terms and with proper inclusion of C(κ). The flutter frequency ωc = 31.88. b The corresponding
phase angle function φ(ξ) (in degrees)

(a) (b)

Fig. 14 a Flutter oscillations at the onset of instability by uc = 10.32, for the case ρ = 2, evaluated with inclusion of the Coriolis
and centrifugal force terms and with proper inclusion of C(κ). The flutter frequency ωc = 42.54. b The corresponding phase
angle function φ(ξ) (in degrees)

phase angle function corresponding to Fig. 13a is shown in Fig. 13b. The large gradient and the very large
phase shift between ξ = 0 and ξ = 1 should be noticed.

Flutter oscillation and phase angle plots for the case ρ = 2 are shown in Fig. 14. Here, the critical flow
speed uc = 10.32, and flutter takes place at the frequency ωc = 42.54. This is again by the branch which at
u = 0 starts as the third eigenvalue. It is noted that if the quasi-static approximation C = 1− i0 is used in this
case, the critical flow speed changes to uc = 12.97 and the flutter frequency to ωc = 72.83. Here, the critical
eigenvalue is actually associated with the branch which at u = 0 starts as the fourth eigenvalue.

To recapitulate the main finding of this section, when the Coriolis and centrifugal force terms are included
in (7) (and in (13)), the influence of the Theodorsen function (or in physical terms, the influence of the wake)
on the critical flow speed is greatly reduced. It is noted also that the evolution of the flutter oscillations by
increasing value of ρ, where higher and higher eigenmodes come into play at a pace much higher than by the
approximation of Argentina and Mahadevan [2], is in agreement with results based on other methods, such
as those of Tang and Païdoussis [36,37], who employed the discrete vortex method, and those of Watanabe
et al. [41], who employed a traditional cfd (computational fluid dynamics) approach with a finite difference
discretization of the Navier–Stokes equations, as well as a potential flowmodel based on the theory of Küssner
and Schwartz (cf. [5,14]). So is the finding that the changes in the numerical magnitude of the critical flow
speed uc with changing values of ρ are relatively small, at least for the range of ρ-values considered here.
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5 Energy considerations

Argentina and Mahadevan [2] and Manela and Howe [23] claim that the critical flow speed is lower for the
quasi-steady approximation than for the case where the Theodorsen function is properly included, while we
have found the opposite to be the case. In order to understand this, and also to obtain a better understanding of
the mechanism behind the flutter instability, we will investigate the energetics of the fluid–structure interaction
in the present system.

5.1 General equations

Multiplication of the equation of motion (7) by the lateral flag velocity ∂η/∂τ , followed by integration over
the flag surface, 0 ≤ ξ ≤ 1, gives a power (rate of work) balance equation. Integrating this equation over time,
say from τ = τ1 to τ2, gives an energy balance equation. Writing (7) in the operator form L(η) = 0, we have

∫ τ2

τ1

∫ 1

0

∂η

∂τ
L(η)dξdτ = 0. (15)

Inserting (7), this equation can be rewritten as

[ΔE]τ2τ1 = [ΔT + ΔV ]τ2τ1

=
∫

τ2

τ1

⎡
⎣−

∫ 1

0

σ ∗
(

∂3η

∂ξ2∂τ

)2

dξ − ρu

∫ 1

0

C(κ) f (ξ)

{(
∂η

∂τ

)2

+ u
∂η

∂τ

∂η

∂ξ

}
dξ

⎤
⎦ dτ

−
∫

τ2

τ1

∫ 1

0

ρug(ξ)
∂η

∂τ

{
2

∂2η

∂τ∂ξ
+ u

∂2η

∂ξ2

}
dξdτ, (16)

where

T = 1
2

∫ 1

0
{1 + ρg(ξ)}

(
∂η

∂τ

)2

dξ (17)

is the kinetic energy of the flag, including the extra contribution due to the added fluid mass, and

V = 1
2

∫ 1

0

(
∂2η

∂ξ2

)2

dx (18)

is the potential energy of the flag. [ΔE]τ2τ1 thus indicates the change in mechanical energy from time τ = τ1 to
time τ = τ2.

In the following, we will assume that the time interval [τ1, τ2] is coinciding with one period of oscillation,
say, τ1 = 0 and τ2 = 2π/ω, such that the deflection of the flag at time τ = τ2 coincides with the deflection at
τ = τ1.

The first term in the right-hand side of (16) represents the energy dissipated by internal (flag material)
damping. Since the integrand is positive definite and there is a minus in front of the term, it is clear that this
term reduces the mechanical energy in each period of oscillation.

First, we ignore the terms in the last line of (16) and consider Argentina and Mahadevan’s [2] example for
the case where ρ → 0 and u → ∞ in such a way that the fluid force multiplier ρu2 remains finite. Equation
(10) then gives that κ → 0 and, as shown in Appendix B, the Theodorsen function

C(κ) ∼ 1 − (π/2)κ − i(ln 2 + 1 − γ )κ (19)

in this limit. (Here, γ is Euler’s constant, γ = 0.5771 . . . and ln 2 + 1 − γ ≈ 1.1160.) We will here first
consider the limit case limκ→0 C(κ) = 1 − i 0, the quasi-steady approximation, which is precisely satisfied
in the case of steady flow [2]. Since the function f (ξ) > 0 for all ξ ∈ [0, 1], cf. (5), the second term on the
right-hand side of (16) (proportional to ρu) thus acts as a dissipative term, too.
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Flutter motion at the threshold of instability is characterized by [ΔE]2π/ω
0 = 0 and unstable flutter oscilla-

tions by [ΔE]2π/ω
0 > 0. Both of these conditions can be satisfied only if the third term on the right-hand side

of (16) (proportional to ρu2) is positive. This is realized only if ∂η/∂τ and ∂η/∂ξ have opposite signs over
most part of the domain ξ ∈ [0, 1], and over most part of the vibrational period 0 ≤ τ ≤ π/ω. How this is
realized is discussed in detail in Sect. 5.2.

Consider next the influence of the Coriolis force term and the centrifugal force term, that is, the two ‘new’
terms represented by the last line of (16). Integration by parts of the Coriolis force term (the first term) gives,
with use of the boundary conditions and the fact that g(0) = g(1) = 0,

2
∫ 1

0
g(ξ)

∂η

∂τ

∂2η

∂τ∂ξ
dξ = −

∫ 1

0

dg(ξ)

dξ

(
∂η

∂τ

)2

dξ. (20)

It will be shown in Sect. 5.2.1 that the integral on the left-hand side actually is positive (or equivalently, that
the one on the right-hand side is negative) and thus that the Coriolis force term acts as a dissipative term.

Considering now the last term, the centrifugal force term, it is seen that is order for this term to act as
an energy source, which sends energy from the flow into the fluttering flag, it is necessary that ∂η/∂τ and
∂2η/∂ξ2 have opposite signs over most part of the domain ξ ∈ [0, 1], and over most part of the vibrational
period 0 ≤ τ ≤ π/ω. It will be shown in Sect. 5.2.1 that this is actually not the case and thus that it is the last
term in the second line of (16) that acts as the main energy source.

It is of interest at this point to compare the present case with that of a cantilevered fluid-conveying
pipe [18,26,34], for which the ‘fluid force’ terms correspond just to the ‘new’ Coriolis and centrifugal
force terms in (16), but without the presence of the function g(ξ). That is to say, the fluid forces appear
in the form ρu

{
∂2η/∂τ∂ξ + u∂2η/∂ξ2

}
. Using integration by parts for the spatial integral in (16), the

energy delivered to the structural vibrations by these forces during one period of oscillation is given by
−ρu

∫ 2π/ω

0 [∂η/∂τ {∂η/∂τ + u∂η/∂ξ}]ξ=1 dτ . Since the first term, (∂η/∂τ)2, clearly is positive definite, flut-
ter is realized only if ∂η/∂τ and ∂η/∂ξ , evaluated at the free column end, ξ = 1, have opposite signs over
most part of each vibrational period. In other words, for the fluid-conveying pipe, the energy delivered to the
vibrating structure from the flowing fluid is dependent on the phase difference between ∂η/∂τ and ∂η/∂ξ at
the free end only, whereas for the flag, it is dependent on this phase difference (between ∂η/∂τ and ∂η/∂ξ )
over the whole domain 0 ≤ ξ ≤ 1.

5.2 Influence of the phase angle distribution on the energy balance

5.2.1 Representation with continuous phase angle function

In order to get a more detailed understanding of how flutter is realized by a flapping flag, we will consider
vibrations just at the threshold of flutter instability, at the critical flow speed u = uc, where steady-state
oscillations occur, with [ΔE]2π/ω

0 = 0. These vibrations can be expressed as [33]

η(ξ, τ ) = A(ξ) cos(ωcτ + φ(ξ)), (21)

where A(ξ) is an amplitude function, φ(ξ) a is phase angle function and ωc is the flutter frequency.
Consider first the case C(κ) ≡ 1− i 0. Inserting (21) into (16) and evaluating the time integrals, we obtain

[ΔE]2π/ωc
0 = −πωc

∫ 1

0
σ ∗

[{
d2A

dξ2
− A

d2φ

dξ2

}2

+
{
2
dA

dξ

dφ

dξ
+ A

d2φ

dξ2

}2
]
dξ

−ρucπ

[
ωc

∫ 1

0
f (ξ)A2(ξ)dξ + uc

∫ 1

0
f (ξ)A2(ξ)

dφ(ξ)

dξ
dξ

]

−ρucπ

[
2ωc

∫ 1

0
g(ξ)A(ξ)

d A(ξ)

dξ
dξ + uc

∫ 1

0
g(ξ)

{
2A(ξ)

d A(ξ)

dξ

dφ(ξ)

dξ
+ A2(ξ)

d2φ(ξ)

dξ2

}
dξ

]
.

(22)
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Here, the terms in the last line correspond to the terms in the last line of (7). Assuming first that these terms
are zero, then, in order to satisfy [ΔE]2π/ω

0 = 0, it is necessary that the integral

∫ 1

0
f (ξ)A2(ξ)

dφ(ξ)

dξ
dξ < 0, (23)

since all the proceeding integrals are positive definite (and there is a minus in front of any term). Since f (ξ)
is positive definite, the phase angle gradient ∂φ(ξ)/∂ξ needs to be negative over the most part of ξ ∈ [0, 1].
The results of Figs. 4, 6, 8, and 10 indicate that this is indeed the case.

Consider next the influence of the Coriolis force term and the centrifugal force term, that is, the ‘new’
terms represented by the last line of (22). Integration by parts of the Coriolis force term gives, with use of the
boundary conditions and the fact that g(0) = g(1) = 0,

2
∫ 1

0
g(ξ)A(ξ)

dA(ξ)

dξ
dξ = −

∫ 1

0

dg(ξ)

dξ
A2(ξ)dξ. (24)

It is noted that dg(ξ)/dξ > 0 for 0 < ξ < 1/2 and dg(ξ)/dξ < 0 for 1/2 < ξ < 1, as is evident from Fig. 2b,
and in light of Figs. 12, 13 and 14, we can assume that dφ/dξ < 0 for all ξ ∈ [0, 1]. Noting the symmetry
of g(ξ) (cf. Fig. 2b), it follows that the integral on the left-hand side of (24) is positive if

∫ 1
1/2 A

2(ξ)dξ >∫ 1/2
0 A2(ξ)dξ and negative otherwise. With the present clamped-free boundary conditions, and as the flutter
vibrations shown in Figs. 12, 13 and 14 also indicate, this will be so, that is, (24) will be positive. Thus, the
Coriolis force term will act as a dissipative term.

Integration by parts of the first of the two centrifugal force terms gives, with use of the boundary conditions
(and g(0) = g(1) = 0),

2
∫ 1

0
g(ξ)A(ξ)

∂A(ξ)

∂ξ

∂φ(ξ)

∂ξ
dξ = −

∫ 1

0
g(ξ)A2(ξ)

d2φ(ξ)

dξ2
dξ −

∫ 1

0

dg(ξ)

dξ
A2(ξ)

dφ(ξ)

dξ
dξ. (25)

Adding the very last term of (22) to this result, only the last term in the right-hand side of (25) remains. For
this term, it is noted again that dg(ξ)/dξ < 0 for 1/2 < ξ < 1, and in this domain A(ξ) is largest. Since
dφ/dξ < 0 for all ξ ∈ [0, 1], it follows that this term will not contribute significantly to the flutter instability.
This is supported by the numerical results of Sect. 4.2, which show that inclusion of the Coriolis and centrifugal
force terms in general has a ‘stabilizing effect’.

The conclusion is thus that it is mainly the term ‘highlighted’ in (23) that feeds energy to the fluttering
flag, and this happens, again, if the phase angle gradient ∂φ(ξ)/∂ξ is negative over the most part of ξ ∈ [0, 1].
In this relation, it is noted that the bending wavenumber k for the ‘waving’ flag (plate) is defined as ‘minus
the phase change per unit increase in distance’ [11, p. 3], i.e. k(ξ) = −∂φ/∂ξ [21, p. 310]. The bending wave
speed c(ξ) is, at the flutter frequency ωc, defined as

c(ξ) = ωc

k(ξ)
. (26)

This expression shows that the flutter motion is a traveling wave motion, traveling in the direction of positive
ξ , just like the numerical examples in Sect. 4 indicate.

It is of interest to end this subsection with a return to a comparison with the fluid-conveying pipe. As
discussed in Sect. 5.1, the fluid force terms are equivalent to the terms in the last line of (22), but without the
presence of the function g(ξ). Integration by parts and use of the boundary conditions gives

[ΔE]2π/ωc
0 = −ρucπ

[
2ωc

∫ 1

0
A(ξ)

dA(ξ)

dξ
dξ + uc

∫ 1

0

{
2A(ξ)

dA(ξ)

dξ

dφ(ξ)

dξ
+ A2(ξ)

d2φ(ξ)

dξ2

}
dξ

]

= −ρucπ

{
ωc A

2(1) + uc A
2(1)

[
dφ

dξ

]
ξ=1

}
. (27)

Thus, for the fluid-conveying pipe, a necessary condition for flutter is that [dφ/dξ ]ξ=1 < 0; that is, here we
have a conditions that apply only at a point (a boundary), rather than an integral condition as (23) for the
flapping flag.
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5.2.2 Representation by modal functions

In Sect. 4, we made reference to a modal (eigenmode) expansion, as used in a Bubnov–Galerkin discretization,
and it may be of interest to consider how the influence of the phase angle distribution comes into play in the
energy balance equation (16) when applying this discretization approach, by which the flag/plate deflection
η(ξ, τ ) is expanded in a series in the form [6, p. 58],

η(ξ, τ ) =
N∑

n=1

bn fn(ξ) exp(λτ). (28)

Here, fn(ξ) are the eigenmodes, or modal functions, for free (beam-like) vibrations of a cantilevered plate.
These functions satisfy the boundary conditions (8). The complex constants2 bn = bn R + ibn I are determined
by the conditions

N∑
m=1

bm

∫ 1

0
L( fm(ξ)) fn(ξ)dξ = 0, n = 1, 2, · · · , N , (29)

where the operator notation introduced in (15) has been used. The modal functions have the form [4, p. 382]

fn(ξ) = cosh(anξ) − cos(anξ) − gn {sinh(anξ) − sin(anξ)} , (30)

where

an =
(m
B

) 1
4
ω

1
2 , gn = sinh an − sin an

cosh an + cos an
. (31)

The coefficients (eigenvalues) an are the roots of the transcendental equation cos an cosh an + 1 = 0.
For the evaluation of the energy balance equation (16), we consider an expansion in the real form

η(ξ, τ ) =
N∑

n=1

An fn(ξ) cos(ωcτ + φn), (32)

where An =
√
b2n R + b2n I and tan φn = bn I /bn R .

Analytical evaluation of the integrals in (16) with (32) inserted is not possible with the presence of the
functions f (ξ) and g(ξ) (see (5)). It is possible only if we set f (ξ) = g(ξ) ≡ 1. Since these functions are
positive definite, evaluation with f (ξ) = g(ξ) ≡ 1 is meaningful from a qualitative point of view and in the
light that it gives extended analytical understanding. Thus, we obtain, with f (ξ) = g(ξ) ≡ 1,

[ΔE]2π/ω
0 = [ΔT + ΔV ]τ2τ1 = −σ ∗πωc

∑
n

a4n A
2
n

−ρucCπωc

∑
n

A2
n + ρu2cCπ

∑
m

∑
n

Am An
4 sin(φm − φn)(
am
an

)2

+ (−1)m+n

−ρucωc2π
∑
n

A2
n+ρu2cπ

∑
m

∑
n

Am An
4(amgm − angn) sin(φm − φn)(

am
an

)2

− (−1)m+n

. (33)

The terms in the last line correspond to the terms in the last line of (22). Assuming first that these terms are
zero, focussing on the fluid force terms in the second line, it is noticed that the condition [ΔE]2π/ω

0 = 0 can
be satisfied if φm − φn ≷ 0 and (am/an)2 + (−1)m+n ≷ 0. Considering next the last line, the last term in this
line can only be positive if φm − φn ≷ 0 and (am/an)2 − (−1)m+n ≷ 0. In other words, for both cases it is
seen that different phase angles between at least some of the individual modes are necessary for flutter to take
place, and individual modes that are out of phase with each other combine to form a traveling wave (e.g. [12]
§ 49.)

2 The use of the symbols an and bn in this subsection should not be confused with the elements of the right and left eigenvectors
a and b used in the finite element analysis of Sect. 3.
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5.3 Influence of the Theodorsen function on the energy balance

In order to understand the apparent ‘destabilizing effect’ of the Theodorsen function, we investigate in the
following how its inclusion affects the energy balance (16). We return again to the representation (21) with a
continuous phase angle function. The Theodorsen function C can be written as3

C(κ) = F(κ) − iḠ(κ), (34)

where F and Ḡ are real, positive definite functions. Rather than just inserting (34) into (22), it is useful to
reconsider (16) in order to keep the final result in real form. Since multiplication with −i corresponds to a
phase shift of −π/2, we can write

− iḠ
∂η

∂τ

∂η

∂ξ
= Ḡ

∂η

∂τ

∂η̃

∂ξ
, (35)

where

η̃(ξ, τ ) = A(ξ) cos(ωcτ − π/2 + φ(ξ)) = A(ξ) sin(ωcτ + φ(ξ)). (36)

Inserting these expressions into (16) and evaluating again the time integrals, we obtain

[ΔE]2π/ωc
0 = −πωc

∫ 1

0
σ ∗

[{
d2A

dξ2
− A

d2φ

dξ2

}2

+
{
2
dA

dξ

dφ

dξ
+ A

d2φ

dξ2

}2
]
dξ

−ρucπ

[
ωcF(κ)

∫ 1

0
f (ξ)A2(ξ)dξ + ucF(κ)

∫ 1

0
f (ξ)A2(ξ)

d

dξ
φ(ξ)dξ

]

+ρu2cπ Ḡ(κ)

∫ 1

0
f (ξ)A(ξ)

d

dξ
A(ξ)dξ

−ρucπ

[
2ωc

∫ 1

0
g(ξ)A(ξ)

d A(ξ)

dξ
dξ + uc

∫ 1

0
g(ξ)

{
2A(ξ)

d A(ξ)

dξ

dφ(ξ)

dξ
+ A2(ξ)

dφ(ξ)

dξ

}
dξ

]
.

(37)

It is noted that the real part F(κ) ∈ [ 12 , 1], with F → 1 for κ → 0, and that F → 1
2 for κ → ∞, cf.

Appendix B. However, F(κ) acts as a multiplier to both of the two ‘competing’ fluid force terms in the second
line; in other words, they are both reduced by the same factor (relative to maxκ F = 1). Equation (37) thus
shows that, in the absence of internal damping (σ ∗ = 0), and if Ḡ(κ) = 0 as well, a change in the magnitude
of F(κ) will have no effect on the critical flow speed.

Consider now the term proportional to Ḡ. Equivalent to (24), integration by parts and use of the boundary
conditions, and the fact that f (1) = 0, gives

∫ 1

0
f (ξ)A(ξ)

d

dξ
A(ξ)dξ = −1

2

∫ 1

0

d f (ξ)

dξ
A2(ξ)dξ. (38)

It is easy to show, and it is also evident from Fig. 2, that d f (ξ)/dξ < 0 for all ξ ∈ [0, 1]. Thus, the term
proportional to Ḡ is positive definite. This means that a small positive value of Ḡ will lower the critical flow
speed uc relative to its value for Ḡ = 0. It is noted that

C(κ) ∼ 1 − π

2
κ − i(ln 2 + 1 − γ )κ, that is, F(κ) ∼ 1 − π

2
κ, Ḡ(κ) ∼ (ln 2 + 1 − γ )κ for κ → 0+,

(39)

cf. ‘Appendix B’. Thus, according to (37) and (39), increasing κ (starting from κ = 0) will lower the critical
flow speed. It is noted, finally, that the Coriolis force term and the centrifugal force term, that is, the ‘new’
terms in the last line of (37), do not depend on the Theodorsen function. Plots showing the true values of κ ,
F(κ) and Ḡ(κ) as function of the flow speed u, corresponding to the eigenvalue curves in Figs. 7, 9 and 11,
are given in Appendix C.

3 In Fung [14], the notation C(κ) = F(κ) + iG(κ) is used, but in the present context, the notation (34) is more convenient.
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6 Conclusion

The present paper has considered the dynamics of a flapping flag, employing the mathematical model of
Argentina and Mahadevan [2], with the aim of clarifying (i) the effect of the complex Theodorsen function on
the stability (flutter) bound and (ii) the physical mechanism of the flutter instability.

As to (i), it was shown through an energy balance analysis that a small imaginary part in the Theodorsen
function, C = 1 − i ε, 0 < ε � 1, has a destabilizing effect, i.e., the critical flow speed uc is smaller by
this approximation than by the quasi-steady approximation C = 1 − i 0. This prediction gives support to
the numerical eigenvalue analyses, which display the same effect, in opposition to earlier studies. It is noted
that these studies considered critical flow speed curves (stability diagrams) only, not the distribution of the
eigenvalues for lower and higher flow speeds than the critical one. The present study emphasizes the importance
of tracing the eigenvalue branches (characteristic curves) for 0 < u < uc.

It was found, also, that the last two terms in the expression for the pressure difference across the flag (4),
corresponding to a Coriolis force term and a centrifugal force term, respectively, have a significant effect on
the stability of the flag and thus, cannot be neglected.

As to (ii), the energy balance analysis showed that a necessary condition for flutter to occur is that the
gradient of the phase angle distribution function, ∂φ(ξ)/∂ξ , is negative over most part of the flag domain,
0 ≤ ξ ≤ 1. This means that the flutter motion is a downstream traveling wave motion, with a ‘dragging’
appearance (similar, at least in principle, to the motion of a swimming eel [20]).

In the field of optimum design of structures under circulatory loads, it is well known that the critical (flutter)
load (or flow speed) may be a non-smooth function of the parameters [19,30] and thus that it is ‘dangerous’
to just trace the critical load by, say, a root-finding algorithm. Claudon [8] wrote, in the concluding remarks in
such a study that, ‘In general, it is concluded that characteristic curves as complete as possible should be drawn
when analyzing the stability of a structure which becomes unstable by flutter.’ The present work confirms and
reemphasizes this conclusion.

A Convergence

Table 1 shows the convergence of the critical flow speed uc and corresponding flutter frequency ωc in terms of
the number of finite elements Ne. The results in columns 1–4 are for the quasi-steady case withC(κ) ≡ 1− i 0,
for the two different mass ratios ρ = 0.2 and ρ = 25, without inclusion of Coriolis and centrifugal force
terms. It is seen that the convergence is more rapid for ρ = 25 than for ρ = 0.2. Columns 5–8 (marked with
asterisks) are for the mass ratios ρ = 0.2 and ρ = 2, based on the ‘full’ equation of motion (7), with inclusion
of the Coriolis and centrifugal force terms and with proper inclusion of the Theodorsen function C(κ). By
comparison with the first two columns, it is seen that the convergence speed is not significantly affected by
inclusion of the Theodorsen function and the Coriolis and centrifugal force terms.

B Asymptotic values of the Theodorsen function

The asymptotic limits κ → 0 and κ → ∞ are investigated here for the Theodorsen function

C(κ) = H (2)
1 (κ)

H (2)
1 (κ) + iH (2)

0 (κ)
(40)

with the argument κ = ω/2u0. For κ � 1, it is found that [1]

H (2)
0 (κ) = 1 − κ2

22
+ O

(
κ4) − i

[
2

π

{
ln

(κ

2

)
+ γ

}{
1 + κ2

22
+ O

(
κ4)} + 2

π

{
κ2

22
+ O

(
κ4)}] , (41)

and

H (2)
1 (κ) = κ

2

[
1 − (κ/2)2

1 ! 2 ! + O
(
κ4)] + i

[
2

π

1

κ
+ κ

π

{
1 + γ − ln

(κ

2

)}
+ O

(
κ3 ln κ

)]
, (42)
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Table 1 Convergence of the critical flow speed uc and corresponding flutter frequencyωc in terms of the number of finite elements
Ne

Ne uc ωc uc ωc uc ωc uc ωc
ρ = 0.2 ρ = 0.2 ρ = 25 ρ = 25 ρ = 0.2∗ ρ = 0.2∗ ρ = 2∗ ρ = 2∗

10 24.19 22.57 3.98 10.46 9.93 15.97 10.52 42.02
20 24.01 22.28 3.95 10.37 9.83 16.06 10.36 42.30
30 23.97 22.22 3.95 10.37 9.80 16.08 10.33 42.45
40 23.96 22.19 3.95 10.37 9.79 16.09 10.32 42.51
50 23.95 22.18 3.95 10.37 9.78 16.10 10.32 42.54
60 23.94 22.17 3.95 10.37 9.78 16.10 10.32 42.56
70 23.94 22.17 3.95 10.37 9.78 16.10 10.32 42.57
80 23.94 22.16 3.95 10.37 9.78 16.10 10.32 42.58
90 23.94 22.16 3.95 10.37 9.78 16.10 10.31 42.59
100 23.94 22.16 3.95 10.37 9.78 16.10 10.31 42.59

Columns 1–4: for the quasi-steady case with C(κ) ≡ 1− i 0, for the two different mass ratios ρ = 0.2 and ρ = 25. Columns 5–8
(marked with asterisks): for the ‘full’ equation of motion, with Coriolis and centrifugal force terms, and with proper inclusion of
the Theodorsen function C(κ), for the mass ratios ρ = 0.2 and ρ = 2

where γ is Euler’s constant, γ = 0.5771 . . . . These results give that

C(κ) = 1 − π

2
κ + O

(
κ2 ln κ

) − i

[
κ
{
ln 2 − γ − ln κ

} + O
(
κ2 ln κ

)]
(43)

for κ � 1.We can go a step further and consider the following series expansion of ln κ [1], valid for |κ−1| ≤ 1:

ln κ = (κ − 1) − 1
2 (κ − 1)2 + · · · .

Then, (43) can be written as

C(κ) = 1 − π

2
κ + O

(
κ2 ln κ

) − i
[
κ
{
ln 2 + 1 − γ − κ

} + O
(
κ3)]. (44)

For κ � 1, H (2)
0 (κ) and H (2)

1 (κ) can be expressed in unified form as [7]

H (2)
ν (κ) ∼

(
2

πκ

) 1
2

e−i(κ−νπ/2−π/4)
[
1 − i

(
ν2 − 1/4

)
2κ

+ O
(
κ−2)]. (45)

This result gives, with ν = 0 and 1, that

C(κ) ∼ 1

2

{
1 + O

(
κ−2)} − i

1

8κ

{
1 + O

(
κ−2)} (46)

for κ � 1.

C Variation in wake wavenumber and in Theodorsen function with increasing flow speed

Figure 15 shows the wake wavenumber κ = ω∗/2u as function of the flow speed u for ρ = 0.2, corresponding
to the eigenvalue curves shown in Fig. 7 (without the Coriolis and centrifugal force terms included in (7)).
Here,ω∗ denotes the imaginary part of the leading eigenvalue, i.e., the eigenvalue with the largest real part. It is
noted that κ → ∞ for u → 0 and, with reference to Appendix B, that the Theodorsen functionC(κ) ∼ 1

2 + i 0
for κ → ∞. It is seen that κ increases approximately linearly from κ ≈ 0.31 at u = 10 to κ ≈ 0.42 at u = 80.
At the critical flow speed uc = 7.05, κ ≈ 0.34.
Figure 16a, b shows the real and imaginary parts of C(κ) as function of the flow speed u for ρ = 0.2, evaluated
with κ as shown in Fig. 15. Part (a) shows that Re(C) = F decreases approximately linearly from F ≈ 0.66
at u = 10 to F ≈ 0.62 at u = 80. From Part (b), it is seen that Im(C) = −Ḡ increases, also approximately
linearly, from −Ḡ ≈ −0.18 at u = 10 to −Ḡ ≈ −0.16 at u = 80. At the critical flow speed uc = 7.05,
F ≈ 0.64 and −Ḡ ≈ −0.17.
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Fig. 15 Wake wavenumber κ = ω∗/2u as function of the flow speed u, for the case ρ = 0.2, corresponding to the eigenvalue
curves shown in Fig. 7. Here, ω∗ is the imaginary part of the leading eigenvalue, i.e., the eigenvalue with the largest real part α∗.
It is noted that κ → ∞ for u → 0

(a) (b)

Fig. 16 a real and b imaginary parts of the Theodorsen function, F = Re(C(κ)) and −Ḡ = Im(C(κ)), respectively, as function
of the flow speed u, when evaluated with the wake wavenumber κ(u) shown in Fig. 15 (ρ = 0.2)

Fig. 17 Wake wavenumber κ = ω∗/2u as function of the flow speed u for the case ρ = 25, corresponding to the eigenvalue
curves shown in Fig. 9
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(a) (b)

Fig. 18 a real and b imaginary parts of the Theodorsen function C(κ) as function of the flow speed u, when evaluated with the
wavenumber κ(u) shown in Fig. 17 (ρ = 25)

Fig. 19 Wake wavenumber κ = ω∗/2u as function of the flow speed u for the case ρ = 0.2, corresponding to the eigenvalue
curves shown in Fig. 11

(a) (b)

Fig. 20 a real and b imaginary parts of the Theodorsen function C(κ) as function of the flow speed u, when evaluated with the
wake wavenumber κ(u) shown in Fig. 19 (ρ = 0.2)
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Figure 17 shows the wake wavenumber κ = ω∗/2u as function of the flow speed u for ρ = 25, corresponding
to the eigenvalue curves shown in Fig. 9 (again without the Coriolis and centrifugal force terms included in
(7)). It is seen that κ increases approximately linearly from κ ≈ 0.91 at u = 2.8 to κ ≈ 1.1 at u = 12. At the
critical flow speed uc = 2.82, κ ≈ 0.91 as well.
Figures 18a, b show the real and imaginary parts of C(κ) as function of the flow speed u, for the κ distribution
shown in Fig. 17. In the range u ∈ [2.8, 12], these functions change approximately linearly too: Re(C) = F
decreases from 0.55 to 0.53 (Part (a)), while Im(C) = −Ḡ increases from −0.11 to −0.094 (Part (b)). At the
critical flow speed uc = 2.82, F ≈ 0.55 and −Ḡ ≈ −0.11.
Figure 19 shows the wake wavenumber κ = ω∗/2u as function of the flow speed u for ρ = 0.2, corresponding
to the eigenvalue curves shown in Fig. 11 (in this case with inclusion of the Coriolis and centrifugal force
terms in (7)). Here, κ decreases approximately linearly from κ ≈ 0.5 at u = 4 to κ ≈ 0.25 at u = 14.
This behavior, different from the previous two cases, can be understood from Fig. 11b, which shows that the
frequency parameters (the imaginary parts of the eigenvalues) here decrease with increasing flow speed. At
the critical flow speed uc = 9.78, κ ≈ 0.38.
Figures 20a, b show the real and imaginary parts of C(κ) as function of the flow speed u, for the κ distribution
shown in Fig. 19. As in the previous cases, in the range where κ varies approximately linearly with u, these
functions vary approximately linearly too. In the range u ∈ [4, 14], Re(C) = F increases from 0.60 to 0.69
(Part (a)), while Im(C) = −Ḡ decreases from −0.15 to −0.18 (Part (b)). At the critical flow speed uc = 9.78,
F ≈ 0.63 and −Ḡ ≈ −0.17.
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