
Acta Mech 230, 3723–3740 (2019)
https://doi.org/10.1007/s00707-019-02474-z

ORIGINAL PAPER

Wenzhi Yang · Zengtao Chen

Fractional single-phase lag heat conduction and transient
thermal fracture in cracked viscoelastic materials

Received: 23 December 2018 / Revised: 9 May 2019 / Published online: 9 August 2019
© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Abstract In the present article, a thermo-viscoelastic model is developed to investigate fractional single-
phase lag heat conduction and the associated transient thermal mechanical behavior of a cracked viscoelastic
material under a thermal shock. To avoid the negative temperature distribution around cracks, which violates the
second law of thermodynamics, the time-fractional single-phase lag heat conduction is introduced to analyze
the transient temperature field around the cracks. The Fourier and Laplace transforms, coupledwith the singular
integral equations, are employed to solve the governing partial differential equations numerically. Both the
results of temperature field and stress intensity factors (SIFs) show that the fractional single-phase lag heat
conduction model is more accurate and reasonable compared to the conventional hyperbolic heat conduction.
A significant difference in transient fracture behavior exists between viscoelastic and elastic materials. A sharp
pulse of the SIFs at the early stage is observed and should be consider carefully to meet the requirement of
increased application of viscoelastic composites under thermal loading.

1 Introduction

With the rapid development of material science and advanced manufacturing techniques, a wide variety of
new functional composites materials, such as polymer matrix composites, nanocomposites hydrogels and soft
elastomers, have been invented and put into application extensively in a broad range of fields, like biomedical,
tissue, drug delivery, aerospace, mechanical, civil, and nuclear engineering, automotive and aeronautical indus-
try [1–7]. To assess the safety factors or lifetime, one common aspect which should be taken into consideration
is their performance under external thermal loading. For example, to overcome the drawback of low thermal
conductivity of polymers, by inserting particles of ultra-high thermal conductivities into the polymer matrix,
this kind of polymer-based composites has been commonly fabricated and used in various industries [8–10].
Another example is the widespread usage of enormous kinds of biomaterials, which are designed to mimic or
replace biological materials and are inevitably to be exposed to heating and cooling, like laser or other modern
thermo-therapeutics in biomedical treatments [11,12].

In order to assure the lifetime, safety and reliability of these composites, the analysis of the heat trans-
fer and transient thermal stress distributions are of paramount importance. Microcracks may develop in the
manufacturing of these composites or during the external thermal or mechanical loading process, especially
at the interfaces of multiphases due to the differences in the mechanical properties between interphases and
matrix [13], in which case the concentration of thermal stresses and high temperature gradients would be
induced around the cracks. As to the thermo-elastic analysis of crack problems in various materials, there have
been extensive theoretical researches, such as the investigations of FGMs [14–16] or piezoelectric materials
[17–19]. However, two main limitations lie in these previous reports. One is only the classical Fourier’s law
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concerned in the analysis of heat conduction, which indicates the infinite thermal wave propagation speed and
violates the physical fact. The other is neglection of the viscous effect of mechanical properties in deriving
the thermal stresses. With the increasing high demanding of accuracy in engineering problems, especially the
fast-growing usage of the viscoelastic composites, these aspects cannot be ignored anymore.

To overcome the deficiency of the classical Fourier Law and take the finite speed of thermal waves into
consideration, Cattaneo and Vernotte [20,21] proposed the hyperbolic heat conduction model, by introducing
the “thermal relaxation time”, which is a material constant of the time lag of heat flux, usually decided by
the collision frequency of the molecules. Since then, numerous scientific works have been developed for the
non-Fourier heat conduction, such as [22–29]. As to the heat conduction in cracked media and associated
fracture analysis, since 2010s, there have been several reports concerning the non-Fourier effect [30–38]. In
these reports, some extreme thermal conditions were assumed, such as high heating rates, very high or low
temperature, or heat conduction in nanosystem, which are caused by the fact that the thermal relaxation time for
most materials is very small, in the order of picoseconds. However, as to the composites or biological materials,
due to the particular complex inner structures, experiments [39,40] show the order of thermal relaxation time
can be up to the order of 10 s, which indicates non-Fourier effects should be considered even in conventional
thermal conditions for these materials.

Although the hyperbolic heat conduction theory has exhibited some success in the past decades, some
researchers [41–44] pointed out that it introduces additional non-physical effects. One obvious error is that it
could give negative absolute temperature. Similarly, the same effect can be observed in the crack problems,
like the negative temperature distribution around cracks in [30,31]. Due to the fact there is no negative tem-
perature in both the initial condition and the external thermal loading, the appearance of negative absolute
temperature shows the heat flowing from cold to hot regions around the crack, which violates the second law
of thermodynamics. To circumvent this kind of problem, Zhang et al. [45] introduced the fractional calculus to
the conventional hyperbolic heat conduction model. By comparing several types of fractional heat conduction
equations in the one-dimensional thermal problem, they found a series of favorable results in eliminating the
negative temperatures. As an extension of the integer order in partial differential equations, fractional calculus
has been widely discussed in various applications like fluid mechanics, viscoelasticity and biological engi-
neering [46–49]. Unlike the integer order, time-fractional order differentiation is a non-local operator, which
indicates the next state of system depends on both the current state and the historical states. Whether the
time-fractional single-phase lag heat equation can predict nonnegative absolute temperatures around cracks
would be an interesting topic. In this article, we employed the simplest fractional single-phase lag model to
investigate the two-dimensional heat transfer in a cracked material.

To depict the relationship between stress and strain, the linear theory of elasticity succeeds in various
applications, especially for materials like metals and concrete. However, classical elasticity does not apply to
the new synthetic composite materials. For these viscoelastic materials, significant creep or stress relaxation
behavior may exist even under room temperature. Usually, the stress and strain depend on their historical
variation, and the deformation is a time-dependent process. From the knowledge of linear viscoelasticity, the
viscous effect of materials would be much more significant under elevated temperature. Therefore, there has
been a lot of research concerning thermo-viscoelasticity, such as [50–52]. However, most work only focused on
the one-dimensional heat transfer in uncracked materials. There are very few works investigating the thermal
fracture behavior of viscoelastic materials. As to cracked viscoelastic materials, the heat conduction would
always be two-dimensional since the existence of a crack could disturb the temperature field. It would be
interesting to see what kind of transient fracture behaviors could be predicted if we extend the non-Fourier
effect into viscoelastic materials. With the increasing application of soft composites, the viscoelastic fracture
analysis under thermal loading has become an important topic.

In the present article, instead of focusing on one specific material, we analyze the general crack problem
under the framework of the fractional thermo-viscoelasticity. By employing the Laplace transform, the time
dependency of the heat conduction equation as well as the viscoelastic constitutive equation is eliminated.
Coupledwith Fourier transform and the singular integral equations, the governing, partial differential equations
(PDEs) are solved numerically. The closed form expressions of both temperature and stress fields are derived,
and thereafter, the transient stress intensity factors are shown graphically.

2 Formulation of the problem

As shown in Fig. 1, consider a crack of length 2c parallel to the free surface of a half infinite plane with
homogeneous viscoelastic properties. The initial temperature of the plane is assumed to be T1 uniformly. The
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Fig. 1 Geometry and loading of the crack problem

free surface is subjected to a uniform thermal shock T0H(t), where H(t) is the Heaviside function. The crack
is assumed to be partially thermally insulated, and the distance to the free surface is h. Like in the popular usage
of uncoupled thermal-elastic theory in crack problems, only the temperature field is assumed to influence the
viscoelastic thermal stress. In addition, the inertia effect and body force are neglected. Unlike the linear elastic
materials, the significant relaxation phenomena with time should be considered in the viscoelastic materials,
so the transient material properties [53,54] are assumed to be:

E(t) = E0 f1(t), υ(t) = υ0 f2(t), λ(t) = λ0 f3(t), (1)

where E(t), υ(t), λ(t) are theYoung’smodulus, Poisson’s ratio and thermal expansion coefficient, respectively.
E0, υ0, λ0 are the initial constants and f1(t), f2(t), f3(t) are the relaxation functions. In the following sections,
the governing equations for both heat transfer and viscoelastic thermal stresses are presented in detail.

2.1 Heat conduction

For a viscoelastic composite with complex inner structures, the thermal relaxation time is usually much
higher compared to common materials. To incorporate the non-Fourier heat transfer and eliminate the negative
temperatures, the time-fractional single-phase lag heat conduction model is investigated in this article, as
follows:

q(X, t) + τα
q

α!
∂αq(X, t)

∂tα
= −k∇T (X, t), (2)

where k is the thermal conductivity, q is heat flux, τq is the thermal relaxation time, t is time, ∇ is the gradient
operator, X is the position ; the Caputo fractional derivative of order α is defined as:

∂α f (X, t)

∂tα
=

⎧
⎪⎨

⎪⎩

1
�(1−α)

t∫

0
(t − τ)−α ∂ f (X,τ )

∂τ
dτ, 0 < α < 1,

∂ f (X,t)
∂t , α = 1,

(3)

where �(.) is the gamma function. The equation of energy conservation in the absence of inner heat source
reads:

−∇ · q = ρcp
∂T

∂t
, (4)

where ρ is the mass density and cp is the specific heat. Substituting Eq. (2) into (4), the governing equation
for the temperature field is obtained as

a∇2T = ∂T

∂t
+ τα

q

α!
∂1+αT

∂t1+α
, (5)

where a = k
ρcP

is the thermal diffusivity and ∇2 = ∂
∂x2

+ ∂
∂y2

.
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The initial and boundary conditions for the thermal field are:

T = T1,
∂T

∂t
= 0, (t = 0),

T (x,−h) = T0, (t > 0, |x | < ∞),

T = T1, (y → ∞),

∂T

∂y
= V [T (x, 0+) − T (x, 0−)], (y = 0, |x | ≤ 1),

T (x, 0+) = T (x, 0−), (|x | > 1),

∂T (x, 0+)

∂y
= ∂T (x, 0−)

∂y
, (|x | > 1),

(6)

where the quantityV is the dimensionless thermal conductivity of the crack surface [55–58],V = 0 corresponds
to complete thermal insulation and V → ∞ corresponds to complete thermal conduction.

Introducing the dimensionless variables:

T = (T − T1)/(T0 − T1), t = t/(c2/a), (x, y, h) = (x, y, h)/c, τ = τq/(c
2/a), (7)

the dimensionless governing equation becomes

∇2T = ∂T

∂t
+ τα

α!
∂1+αT

∂t1+α
. (8)

Hereafter, the hats of the dimensionless variables are omitted for simplicity. The dimensionless initial and
boundary conditions of the temperature field are:

T = 0,
∂T

∂t
= 0, (t = 0),

T (x,−h) = 1, (t > 0, |x | < ∞),

T = 0, (y → ∞),

∂T

∂y
= V [T (x, 0+) − T (x, 0−)], (y = 0, |x | ≤ 1),

T (x, 0+) = T (x, 0−), (|x | > 1),

∂T (x, 0+)

∂y
= ∂T (x, 0−)

∂y
, (|x | > 1).

(9)

2.2 Viscoelastic stress field

In this article, the thermo-viscoelastic problem under plane stress condition is considered. Thus, σzz = σzx =
σzy = 0. The equilibrium equation is σi j, j = 0, strain-displacement relationship is εi j = 1

2 (ui, j + u j,i ), and
the two-dimensional compatibility equation is:

∂2εx

∂y2
+ ∂2εy

∂x2
= 2

∂2εxy

∂x∂y
. (10)

Unlike the classical elasticity, the constitutive law of viscoelasticity [59] reads:

si j =
t∫

0

G1(X, t − τ)
dei j
dτ

dτ,

σkk =
t∫

0

G2(X, t − τ)
dεkk
dτ

dτ − 3

t∫

0

ϕ(X, t − τ)
dT

dτ
dτ

(11)
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with

si j = σi j − 1

3
σkkδi j, ei j = εi j − 1

3
εkkδi j ,

where si j and ei j are deviatoric components of the stress and strain tensors, G1(X, t) and G2(X, t) are the
shear and the bulk relaxation functions and ϕ(X, t) is the thermal relaxation function. To avoid the convolution
in the above equation and eliminate the time dependency, the Laplace transform is employed:

f ∗(X, p) =
∞∫

0

f (X, t) exp(−pt)dt,

f (X, t) = 1

2π i

∫

Br

f ∗(X, p) exp(pt)dp,

(12)

where p is the Laplace transform variable, the superscript “*” denotes the variables in the Laplace domain and
“Br” stands for the Bromwich path. Considering the following relationship [54,59] in the Laplace domain:

G∗
1 = E∗

1 + pυ∗ , G∗
2 = E∗

1 − 2pυ∗ , ϕ∗ = pG∗
2λ

∗, (13)

the above constitutive equations can be reduced to:

ε∗
x = 1

pE∗ (σ ∗
x − pυ∗σ ∗

y ) + pλ∗T ∗,

ε∗
y = 1

pE∗ (σ ∗
y − pυ∗σ ∗

x ) + pλ∗T ∗,

ε∗
xy = 1 + pυ∗

pE∗ σ ∗
xy .

(14)

Coupled with the time-dependent material properties from Eq. (1), we have

∂u∗

∂x
= 1

pE0 f1(p)
[σ ∗

x − pυ0 f2(p)σ
∗
y ] + pα0 f3(p)T

∗,

∂v∗

∂y
= 1

pE0 f1(p)
[σ ∗

y − pυ0 f2(p)σ
∗
x ] + pα0 f3(p)T

∗,

∂u∗

∂y
+ ∂v∗

∂x
= 2(1 + pυ0 f2(p))

pE0 f1(p)
σ ∗
xy,

(15)

where fi (p) (i = 1, 2, 3) is the Laplace transform of fi (t) (i = 1, 2, 3).
Introducing the Airy stress function in the Laplace domain U∗, the stresses can be expressed as

σ ∗
x = ∂2U∗

∂y2
, σ ∗

y = ∂2U∗

∂x2
, σ ∗

xy = −∂2U∗

∂x∂y
. (16)

Substitute the above equations into the strain compatibility equation, the governing equation is obtained:

∇2∇2U∗ + E0λ0 p
2 f1(p) f3(p)∇2T ∗ = 0. (17)

Let us introduce the following dimensionless variables:

σi j
∗ = σ ∗

i j/(E0λ0T0), U
∗ = U∗/(E0λ0T0c

2),

(u∗, v∗) = (u∗, v∗)/(cλ0T0), εi j
∗ = ε∗

i j/(λ0T0).
(18)

The above equations can be further reduced to:

∇2∇2U∗ + p2 f1(p) f3(p)∇2T ∗ = 0, (19)
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and
∂u∗

∂x
= 1

p f1(p)
[σ ∗

x − pυ0 f2(p)σ
∗
y ] + p f3(p)T

∗,

∂v∗

∂y
= 1

p f1(p)
[σ ∗

y − pυ0 f2(p)σ
∗
x ] + p f3(p)T

∗,

∂u∗

∂y
+ ∂v∗

∂x
= 2(1 + pυ0 f2(p))

p f1(p)
σ ∗
xy .

(20)

Similarly, the hats of the dimensionless variables are omitted for simplicity.
In this problem, the mechanical boundary conditions in both the time domain and Laplace domain can be

expressed as:
σxy(x,−h) = σy(x, −h) = 0, (|x | < ∞),

σxy(x, 0) = σy(x, 0) = 0, (|x | ≤ 1),

σxy(x, 0
+) = σxy(x, 0

−), (|x | > 1),

σy(x, 0
+) = σy(x, 0

−), (|x | > 1),

u(x, 0+) = u(x, 0−), (|x | > 1),

v(x, 0+) = v(x, 0−), (|x | > 1).

(21)

3 Solution of the temperature field

Considering the zero initial conditions, application of the Laplace transform to the governing equation (8) leads
to

∇2T ∗ = pT ∗ + τα

α! p
1+αT ∗, (22)

and the boundary conditions in the Laplace domain are:

T ∗(x,−h) = 1/p, (|x | < ∞),

T ∗ = 0, (y → ∞),

∂T ∗

∂y
= V [T (x, 0+) − T (x, 0−)], (y = 0, |x | ≤ 1),

T ∗(x, 0+) = T ∗(x, 0−), (|x | > 1),

∂T ∗(x, 0+)

∂y
= ∂T ∗(x, 0−)

∂y
, (|x | > 1).

(23)

To solve the PDE (22) subjected to (23), after employing Fourier transform, the solution of the temperature
field in the Laplace domain is:

T ∗(x, y, p) =
∞∫

−∞
D(ξ, p) exp(−my − i xξ)dξ + 1

p
exp(−q(y + h)), y > 0,

T ∗(x, y, p) =
∞∫

−∞

−D(ξ, p)

1 + exp(−2mh)
{exp(my) − exp[−m(2h + y)]} exp(−i xξ)dξ

+ 1

p
exp(−q(y + h)), y < 0,

(24)

where m =
√

p + ξ2 + τα

α! p1+α , q =
√

p + τα

α! p1+α , ξ is the Fourier transform variable and D(ξ, p) is
unknown, it will be determined by the following density function:

φ∗(x, p) = ∂T ∗(x, 0+, p)

∂x
− ∂T ∗(x, 0−, p)

∂x
. (25)
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Substituting Eqs. (24) into (25) and applying the inverse Fourier transform, one gets

D(ξ, p) = i[1 + exp(−2mh)]
4πξ

1∫

−1

φ∗(τ, p) exp(iξτ)dτ. (26)

From the continuity condition in the boundary conditions, it is clear that

1∫

−1

φ∗(x, p)dx = 0,

φ∗(x, p) = 0, (|x | > 1).

(27)

Then substituting Eq. (24) into the boundary conditions on crack faces, with the aid of Eq. (26), the following
singular integral equation is obtained:

1∫

−1

φ∗(τ, p)
[

1

τ − x
+ k∗(x, τ, p)

]

dτ = 2πq

p
exp(−qh), |x | ≤ 1, (28)

and the kernel function reads:

k∗(x, τ, p) =
∞∫

0

{

1 − m[1 + exp(−2mh)] + 2V

ξ

}

sin[(x − τ)ξ ]dξ. (29)

In order to solve Eqs. (27) and (28), the numerical technique in [60] is employed such that the following
algebraic equations are obtained:

n∑

k=1

1

n
F∗(τk, p)

[
1

τk − xr
+ k∗(xr , τk, p)

]

= 2πq

p
exp(−qh), |x | ≤ 1, (30)

n∑

k=1

π

n
F∗(τk, p) = 0, (31)

where τk = cos (2k−1)π
2n , k = 1, 2, . . . , n; xr = cos rπ

n , r = 1, 2, . . . , n − 1, and

F∗(x, p) = φ∗(x, p)√
1 − x2

, |x | ≤ 1. (32)

Once the above algebraic equations are solved, the inverse Laplace transform of (12) can be performed, and
the temperature field in the time domain can be obtained.

4 Solution of the stress field

As mentioned above, the uncoupled, thermo-viscoelastic theory is adopted in the present work. Only the
temperature field will affect the stress field, but not vice versa. To avoid the violation of the second law of
thermodynamics, the fractional single-phase lag heat conduction theory has been employed to give a more
accurate temperature distribution, especially around the cracks. Whether a more accurate thermal stress field
and transient fracture behavior will be predicted by the fractional heat conduction theory, will be the focus of
this research. In Sect. 3, the temperature field has been determined, so the next step is to investigate the stress
field via the following equation:

∇2∇2U∗ = −p2 f1(p) f3(p)∇2T ∗. (33)



3730 W. Yang, Z. Chen

Application of the Fourier transform to Eq. (33) leads to

U∗(x, y, p) =
∞∫

−∞
(B1 + B2y) exp(− |ξ | y − i xξ)dξ −

∞∫

−∞
C1 exp(−my − i xξ)dξ,

y > 0

U∗(x, y, p) =
∞∫

−∞
{(A1 + A2y) exp(|ξ | y) + (A3 + A4y) exp(− |ξ | y)} exp(−i xξ)dξ

−
∞∫

−∞
{C21 exp(my) + C22 exp(−my)} exp(−i xξ)dξ, y < 0,

(34)

where A1, A2,A3, A4,B1, B2 are determined by the mechanical boundary conditions (21).C1,C21,C22 can be
obtained by the particular solution corresponding to the temperature field, as shown inAppendix. Incorporating
the dimensionless constitutive Eq. (20) into the relating boundary conditions, the jumps of the displacement
components in the Laplace domain at the line y = 0 are

∂[u∗]
∂x

= 1

p f1(p)
[σ ∗

x ] + p f3(p)[T ∗],
∂2[v∗]
∂x2

= − 1

p f1(p)

[
∂

∂y
σ ∗
y

]

.

(35)

The stress components σ ∗
x , σ ∗

y , σ ∗
xy can be obtained from the Airy stress function via Eq. (16). Substituting the

stresses and the temperature jump into the above Eq. (35), we have

∂[u∗]
∂x

=
∞∫

−∞

1

p f1(p)

{ −2 |ξ | (B2 − A4) + ξ2(B1 − A3) + (−2 |ξ | A2 − ξ2A1)+
m2C21 + m2(C22 − C1)

}

exp(−i xξ)dξ

+
∞∫

−∞
p f3(p)D(ξ)

2

1 + e−2mh
exp(−i xξ)dξ,

∂[v∗]
∂x

=
∞∫

−∞

(

− i

ξ

)
1

p f1(p)

{ −(β + |ξ |)[ξ2(B1 − A3) − 2 |ξ | (B2 − A4)] + ξ2(B2 − A4)

+(β − |ξ |)(2 |ξ | A2 + ξ2A1) − ξ2A2 + m3C21 − m3(C22 − C1)

}

exp(−i xξ)dξ

+
∞∫

−∞

(

− i

ξ

)

p f3(p)D(ξ)
2

1 + e−2mh
exp(−i xξ)dξ.

(36)

Now we introduce two dislocation density functions:

ψ∗
1 (x, p) = ∂[u∗ (x, p)]

∂x
, ψ∗

2 (x, p) = ∂[v∗ (x, p)]
∂x

. (37)

By applying the mechanical boundary conditions on crack faces via Eq. (21), the following singular integral
equations can be derived:

1∫

−1

2∑

j=1

[
δi j

τ − x
+ ki j (x, τ )

]

ψ∗
j (τ, p)dτ = 4πp f3(p)W

∗
i (x, p), i = 1, 2, −1 ≤ x ≤ 1 (38)

with

1∫

−1

ψ∗
i (x, p)dx = 0, i = 1, 2, (39)
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where the expressions of ki j (x, τ ),W ∗
i (x, p) can be found in the Appendix. To solve the singular integral

equations, the Lobatto–Chebyshevmethod [61] is employed and Eqs. (39) and (39) are transformed to algebraic
equations:

n∑

i=1

Ai

[
1

τi − xk
+ k11(xk, τi )

]

F∗
1 (τi , p) +

n∑

i=1

Aik12(xk, τi )F
∗
2 (τi , p) = 4πp f3(p)W

∗
1 (xk, p),

n∑

i=1

Ai F
∗
1 (τi , p) = 0,

n∑

i=1

Aik21(xk, τi )F
∗
1 (τi , p) +

n∑

i=1

Ai

[
1

τi − xk
+ k22(xk, τi )

]

F∗
2 (τi , p) = 4πp f3(p)W

∗
2 (xk, p),

n∑

i=1

Ai F
∗
2 (τi , p) = 0,

(40)

where

ψ∗
i (τ, p) = F∗

i (τ, p)√
1 − τ 2

, (i = 1, 2), |τ | ≤ 1, (41)

τi = cos
(i − 1)π

n − 1
, i = 1, 2, . . . n;

xk = cos
(2k − 1)π

2(n − 1)
, k = 1, 2, . . . n − 1;

Ai = π

2(n − 1)
, i = 1, n; Ai = π

n − 1
, i = 2, 3, . . . n − 1. (42)

According to the literature [14,30], the stress intensity factors (SIFs) in the Laplace domain are defined as:

K ∗
I = −π

4
F∗
2 (1, p), K ∗

I I = −π

4
F∗
1 (1, p). (43)

5 Numerical results and discussions

In Sects. 3 and 4, the theoretical solutions of dynamic temperature field and the transient stress intensity factors
in the Laplace domain have been obtained by solving the singular integral equations. To get the corresponding
results in the time domain, the numerical Laplace inversion technique from [62] is employed.

To begin with, the temperature distribution around the crack is shown in Fig. 2. Here, we assume the crack
to be completely thermally insulated, i.e., V = 0. The dimensionless transient temperature distributions on
the crack faces and crack extension line are investigated under the fractional single-phase lag heat conduction
theory. When τ = 0.5, the influence of the fractional order α is shown at four time instants t = 0.5, 1, 2, 5,
respectively. “UF” denotes the upper crack face, while “LF” denotes the lower crack face. As expected,
obvious temperature jumps are observed for all time instants and all fractional orders. With increasing time,
the temperature jumps increase at first and then decrease. The largest temperature jump occurs in Fig. 2c at a
dimensionless time t = 2.

Actually, α = 1 corresponds to conventional hyperbolic heat conduction, which leads to the unphysical
negative temperature distribution as shown in [30,31]. This can be confirmed in Fig. 2a. The red lines show
that the temperatures on both crack faces and the crack extension line are negative. Because there is no
negative temperature in both the initial condition and the external thermal loading, the appearance of negative
temperature implies heat flow from cold to hot regions around the crack, which violates the second law of
thermodynamics. Another unphysical phenomenon is that the temperature of the upper crack face is higher
than that of the lower crack face. The thermal shock is applied at the free surface, as shown in Fig. 1; the
lower crack face would be heated at first and the temperature should be always higher than the upper face.
Interestingly, when α is reduced to 0.8 or 0.5, these unphysical phenomena disappear. It is noted that the
main difference between the conventional and fractional single-phase lag heat conduction theories happens at
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Fig. 2 Dimensionless temperature distributions on crack faces and the extension line under the influence of fractional order α
when τ = 0.5 at different time instants a t = 0.5; b t = 1; c t = 2; d t = 5

the early stage under the thermal shock, as seen in Figs. 2a, b. In Figs. 2c, d, the difference of temperature
distributions under different fractional differential orders diminishes with elapsing time.

To further confirm the advantages of the fractional single-phase lag heat conduction theory, the temperature
variations of themidpoints of the crack faces versus dimensionless time are shown in Figs. 3, 4 and 5. Similarly,
“UF” denotes the midpoint of the upper crack face, while “LF” denotes the midpoint of the lower crack face.
“Fourier” corresponds to the classical Fourier law via setting the dimensionless thermal relaxation time to
zero. Figure 3 corresponds to the conventional hyperbolic heat conduction theory, where the non-Fourier
effect brings a wave-like oscillation in the temperature history. The magnitude of the oscillation will increase
with increasing τ . When τ = 5, very serious temperature overshooting happens, i.e., the maximum of the
temperature is much higher than the external thermal loading. Another important feature is the unphysical
negative temperature in the early stage. Both the serious overshooting and negative temperatures are caused
by the significant wave-like behaviors, which is the relaxation features in conventional hyperbolic theory. As
shown in the definition by Eq. (44), the fractional calculus introduces a memory effect and indicates that the
current state of heat conduction depends on its historical states. The memory effect is determined by the kernel
function K (t − τ) = (t−τ)−α

�(1−α)
, while the classical Fourier law can be regarded as “instantaneous memory” with

the kernel being Dirac’s delta:

∂αq

∂tα
=

t∫

0

K (t − τ)
∂q

∂τ
dτ =

t∫

0

(t − τ)−α

�(1 − α)

∂q

∂τ
dτ, 0 < α < 1. (44)
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Fig. 3 The effect of dimensionless thermal relaxation time τ on the temperature variation of midpoints of crack faces when
fractional order α = 1

Fig. 4 The effect of dimensionless thermal relaxation time τ on the temperature variation of midpoints of crack faces when
fractional order α = 0.8

The fractional model’s advantage is the consideration of not only the inherent relaxation characteristic and the
wave-like behavior of the conventional hyperbolic model but also the characteristic of the classical Fourier
heat conduction. It is noted that wave-like behaviors would disappear when the fractional order is reduced
from 1 to 0. Therefore, the significant overshooting and negative temperatures in the early stage are weakened
with decreasing fractional order α, as shown in Figs. 4 and 5. When α is reduced to 0.5, all negative tem-
peratures disappear and there exists only slight temperature overshooting. In addition, with increasing time,
the temperature reaches the steady state for different values of τ . We believe these features are caused by the
memory effect. All results demonstrate that the fractional single-phase lag model would be more accurate and
more reasonable in predicting the temperature field than the conventional one. Moreover, it should be noticed
that the transient temperature would take longer to reach the peak value for smaller fractional order.

The influence of the dimensionless thermal conductivity V of the crack faces on the temperature distribu-
tions around the crack is investigated for the steady state, as shown in Fig. 6. From Fig. 5, when α = 0.5, the
steady-state value of temperature is hardly disturbed by the thermal relaxation time. Here, α = 0.5, τ = 0.5 is
selected for the graphical comparison here. It is noted that the temperature jumps are declining, and the temper-
atures of the crack extension line are rising, when V increases from zero to infinity.When V approaches infinity,
the crack is completely thermally conducting and the temperature distribution showsnodisturbance of the crack.



3734 W. Yang, Z. Chen

Fig. 5 The effect of dimensionless thermal relaxation time τ on the temperature variation of midpoints of crack faces when
fractional order α = 0.5

Fig. 6 The effect of different thermal conductivity V on the temperature distributions around the crack in the steady state when
α = 0.5, τ = 0.5

Then, let us consider the transient fracture behavior of viscoelastic material using the fractional heat con-
duction theory. Unlike elastic materials, viscoelastic materials always have significant creep or stress relaxation
behavior, which will affect the stress intensity factors directly. The fractional single-phase lag theory predicts
a more accurate and reasonable temperature field as the preceding figures show. Now, we will further verify
that it will also predict more accurately the thermo-mechanical fracture behavior.

As mentioned in Eq. (1), three different relaxation functions of material properties are assumed for vis-
coelasticity. However, from the theoretical results (see Eq. (40)), it can be found that only f3(t), i.e., the
relaxation function of thermal expansion coefficient, will affect the SIFs. The physical explanation is that these
relaxation functions are assumed to be independent of spatial coordinates. The stresses can be treated as the
sum of mechanical stresses and thermal stresses. The mechanical stresses in the plane will relax at the same
speed according to f1(t), f2(t), while the thermal stresses are determined by f3(t) as well as the change of
temperature, δT , which is dependent on the spatial positions. This will be further verified by our future work
via considering the space-dependent relaxation functions [63]. In this article, the classical form of viscoelastic

relaxation function [53] is assumed as f3(t) = (λ∞
λ0

+ (1− λ∞
λ0

)e
− t

t0 ), with λ∞
λ0

= 0.5, t0 = 1. In the following
analysis, the crack is assumed to be perfectly thermally insulated.

From the previous reports [30,31], the hyperbolic heat conduction will bring wave-like oscillation to both
temperature field and SIFs. To give a clear comparison of the fracture behavior between elastic materials
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Fig. 7 Comparison of SIFs in viscoelastic and elastic materials under the classical Fourier’s Law

Fig. 8 The effect of dimensionless thermal relaxation time τ on the SIFs a KI and b KI I when the fractional order α = 1

and viscoelastic materials under thermal shock, the classical Fourier heat conduction theory is used when
τ = 0. The elastic solution is obtained by setting f3(t) = 1. An obvious difference can be observed in Fig. 7.
KI in both materials are positive; nevertheless, KI I are negative with a much larger magnitude, indicating
that mode II fracture always plays a dominant role. For elastic materials, the SIFs increase at first and then
decrease slowly. However, the SIFs of viscoelastic materials will reach their peak value in a short period and
then drop sharply. In addition, the peak value of KI I for viscoelastic materials is higher than that for elastic
materials.

When α = 1, the fractional heat conduction theory is reduced to the conventional hyperbolic theory, and
the influence of the thermal relaxation time on the SIFs in viscoelastic materials is shown in Fig. 8. As expected,
significant wave-like oscillations can be observed, and the magnitudes of the oscillation increase with higher
thermal relaxation time, which should be a major concern in the application of viscoelastic composites with
complex inner structures. However, as Fig. 8 shows, the SIFs can be quite high even when t = 30, which
is unphysical due to the fact that the modulus of a viscoelastic material will drop to a very low value with
enough time elapsed. Fortunately, this unphysical phenomenon can be eliminated with the application of frac-
tional theory, as shown in Figs. 9 and 10. Similar to the temperature results, the fractional calculus shows
a pronounced memory effect. With a decrease in the fractional order α, the complex, wave-like oscillations
are reduced significantly. When t = 30, a steady-state value approaching zero appears for both SIFs after
sufficient time for α = 0.5. These results verify the accuracy of the fractional single-phase lag heat conduction
compared to the conventional one. In addition, different thermal relaxation times exhibit no dramatic influence
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Fig. 9 The effect of dimensionless thermal relaxation time τ on the SIFs a KI and b KI I when the fractional order α = 0.8

Fig. 10 The effect of dimensionless thermal relaxation time τ on the SIFs a KI and b KI I when the fractional order α = 0.5

on the peak values of SIFs. The SIFs always show a quite sharp pulse at the early stage under thermal shock
for viscoelastic composites, which should be carefully considered in designing these materials for thermal
loading.

6 Conclusion

In this article, we firstly extend the non-Fourier heat conduction law to the crack problem of a half-plane under
thermal shock within the framework of thermo-viscoelasticity. The fractional single-phase lag heat conduction
theory is employed to avoid the unphysical effects associated with the conventional hyperbolic heat conduc-
tion. The governing PDEs of the problem are solved by employing the Fourier and Laplace transform, along
with the singular integral equations. Finally, we found that the fractional single-phase lag heat conduction has
a very good performance in predicting both temperature distribution around cracks and the transient fracture
behaviors considering the viscoelastic material properties. As the fractional factor, α, decreases, the negative
temperature predicted by the hyperbolic heat conduction disappears. Finally, a sharp pulse of the SIFs at the
early stage under thermal shock is observed, which reveals that the fracture risk due to this overshooting needs
to be carefully consider in the design and application of viscoelastic composites.
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Appendix

C1(ξ, p) = [m2 − ξ2]−2D(ξ, p)p3 f1(p) f3(p)

C21(ξ, p) = [m2 − ξ2]−2 −D(ξ, p)

1 + exp(−2mh)
p3 f1(p) f3(p)

C22(ξ, p) = [m2 − ξ2]−2 D(ξ, p) exp(−2mh)

1 + exp(−2mh)
p3 f1(p) f3(p)

k11(x, τ ) =
∞∫

0

[1 − 4ξ f11(ξ)] sin[(x − τ)ξ ]dξ

k22(x, τ ) =
∞∫

0

[1 − 4ξ2 f22(ξ)] sin[(x − τ)ξ ]dξ

k12(x, τ ) =
∞∫

0

−4ξ f12(ξ) cos[(x − τ)ξ ]dξ

k21(x, τ ) =
∞∫

0

−4ξ2 f21(ξ) cos[(x − τ)ξ ]dξ

W ∗
1 (x, p) = 2

∞∫

0

ξw∗
1(ξ, p) sin(xξ)dξ

W ∗
2 (x, p) = −2

∞∫

0

ξ2w∗
2(ξ, p) cos(xξ)dξ

w∗
1(ξ, p) = −2g2h11 + 2 |ξ | h12(s2g1 − g2)

8 |ξ | ξ2 − g3

w∗
2(ξ, p) = −2g2h21 + 2 |ξ | h22(s2g1 − g2)

8 |ξ | ξ2 − g4

h11(ξ) = |ξ | + exp(−2 |ξ | h)(− |ξ | + 2hξ2)

h12(ξ) = 1 − exp(−2 |ξ | h)(1 − 2h |ξ | + 2h2ξ2)

h21(ξ) = 1 − exp(−2 |ξ | h)(1 + 2h |ξ |)
h22(ξ) = 2 |ξ | h2 exp(−2 |ξ | h)

f11(ξ) = h12(4 |ξ |)−1

f12(ξ) = (−2ξh11 + 2ξ |ξ | h12)(−2 |ξ |)−3

f21(ξ) = h22(4 |ξ |)−1

f22(ξ) = [−2ξh21 + 2ξ |ξ |)h22](−2 |ξ |)−3

g1(ξ) = −ξ2 f ′
3 − 2 |ξ | f ′

4 + f ′
5

g2(ξ) = −2 |ξ | ξ2 f ′
3 − 3ξ2 f ′

4 − f ′
6

g3(ξ) = exp(− |ξ | h)[(1 − h |ξ |) f ′
2 − hξ2 f ′

1] − mI21 + mI22
g4(ξ) = exp(− |ξ | h)[(1 + h |ξ |) f ′

1 + h f ′
2] − I21 − I22

I1(ξ, p) = 1

p2 f1(p) f3(p)
C1(ξ, p)
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I21(ξ, p) = 1

p2 f1(p) f3(p)
C21(ξ, p)

I22(ξ, p) = 1

p2 f1(p) f3(p)
C22(ξ, p)

f ′
1(ξ) = I21 exp(−mh) + I22 exp(mh)

f ′
2(ξ) = mI21 exp(−mh) − mI22 exp(mh)

f ′
3(ξ) = I1 − I21 − I22
f ′
4(ξ) = −mI21 + m(I22 − I1)

f ′
5(ξ) = m2 I21 + m2(I22 − I1) + 2

1 + e−2mh
D(ξ)

f ′
6(ξ) = m3 I21 − m3(I22 − I1)
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