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Abstract In this paper, the dynamics of a nonlinear smooth and discontinuous oscillator, modeled as a string–
mass structure, is analyzed. This structure is convenient to be installed in vibration damping systems of high
buildings for their protection in the case of earthquakes. The considered string–mass structure contains a
translator movable mass connected with two strings. The motion of the mass is oscillatory and perpendicular
to the string’s position. Usually, in strings preloading forces act. Due to geometric and physical properties
of the system, the restitution force of the string is nonlinear. The model of the mass motion is a strong
nonlinear second-order differential equation. The nonlinearity is of power type, and the order of nonlinearity
is any positive real number. An exact solution of the truly nonlinear equation is introduced in the form of
the Ateb function (inverse Beta function). Based on the exact solution, the approximate solving procedure of
the nonlinear equation of motion is developed. The method is suitable for dynamic analyses of the system.
The influence of the preloading force on the nonlinear vibrations of the string–mass system is considered. It
is concluded that variation of the string force has influence on the velocity of the amplitude decrease in the
system.

1 Introduction

Nowadays, there is a strong request for elimination of the low-frequency vibration in the real systems. This
request is satisfied with vibration isolators of passive type, with low rigidity and high static loading, whose
natural frequency is almost the quarter of the frequency of the system [1]. The issue of obtaining low stiffness
and high load isolator is a problem known for a long time [2]. It is found that the problem is possible to be
solved with the so-called quasi-zero-stiffness (QZS) system. It is an elastic system with an almost flat area
on its static force characteristic, i.e., an area with stiffness near zero [3]. The QZS system allows to obtain
simultaneously high static load and low dynamic stiffness. The most widely model of the system contains three
linear springs connected in one point and with a configuration which gives the nonlinear geometric property.
Statics and dynamics of the model are investigated in [4–8]. It is obtained that if one spring is vertical and the
other two inclined, at the static equilibrium the dynamic stiffness is zero, while near this position it increases
with displacement and remains much less than the static stiffness [9]. The mathematical model of the QZS is
[5]
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ẍ + cẋ + x

(
1 − 1√

1 + x2

)
= F0 cos (ωt) (1)

where c is the damping coefficient, F0 is the amplitude, and ω is the frequency of the excitation force. Due to
nonlinearity in system (1), bifurcation phenomena [10] occur. For certain parameters, the motion of the system
is chaotic [11] and strange attractors exist [12].

Nowadays, othermethods for obtainingQZS are developed: “scissor-like” systemwith spring [13], buckled
beam instead of inclined springs [14], systems with pneumatic [15,16] or magnetic elements [17], etc. For all
of the models with QZS it is common that they have better absorption properties than linear isolators [18].
However, it is concluded that the system has several disadvantages, including design complexity, configuration
requirements, and manufacturing [19].

In the literature, the other paradigm of the low-frequency isolator is the so-called smooth and discontinual
(SD) oscillator which is developed from a simple arch model [20]. The SD oscillator with negative stiffness
is connected in parallel with the vertical support to obtain the geometric configuration of QZS [10]. The
mathematical model is

ẍ + cẋ + x

(
1 − 1√

a2 + x2

)
= F0 cos (ωt) (2)

where the parameter α is the control parameter for smoothness or discontinuity. Comparing (1) and (2), it is
seen that Eq. (2) is the generalized form of (1) where the parameter α need not be 1. Namely, (1) and (2) are
equal for α = 1. In addition, the order of nonlinearity in both models is the same.

Assuming that x � a and using the first two terms of the series expansion of the function
√

α2 + x2 =
a(1 + 1

2
x2

α2 + O( x
2

α2 )), i.e.,
1√

α2+x2
≈ 1

a (1 − 1
2
x2

α2 ), Eq. (2) transforms into

ẍ + cẋ + x

(
1 − 1

α

)
+ x3

2α3 = F0 cos (ωt). (3)

It is obvious that Eq. (3) is with cubic nonlinearity. A significant number of papers is published considering
the dynamics of the nonlinear systems (for example [21–23]). Various asymptotic approaches for solving these
nonlinear differential equations are developed.

There are two main directions of designing a QZS isolator: (a) to produce a system where that effect can be
obtained with a cam–roller–spring mechanism [24] or (b) to manufacture a compact low-frequency vibration
isolator [25]. The isolator in the form of a single item is designed, and prototypes of different shapes and
materials are made [26,27]. In the QZS isolator with the cam–roller system, where the cam is designed to
convert the vertical displacement of the cam into horizontal displacement of the roller, for a given vertical
displacement of the cam the horizontal displacement of the roller is expressed with a polynomial [28]. The
compact low-frequency isolator, made of two-component polyurethane, has a high advantage in comparison
with the conventional spring and rubber vibration isolators due to smaller dimensions. The isolators are applied
for driver seats [29], for reducing dynamic loads on the foundation [30], for sensors formeasurement of absolute
vibration displacement of a moving platform [31], for machine rotors [32], etc. Experimental measurements
on the QZS isolators are also done [33]. It is concluded that the results obtained experimentally qualitatively
correspond to those obtained analytically, but there is quantitative difference.

The aim of the paper is to improve the physical andmathematical models of theQZS system by generalizing
the form of nonlinearity of the system. The newmodel has to be able to create a compact, light vibration isolator
with quasi-zero stiffness, which would have minimum parts and components, according to an engineering
requirement nowadays, especially in application where size or weight is limited. Namely, instead of linear, the
nonlinear springs are connected in parallel with the vertical support which gives not only geometric but also
physical nonlinearity. The influence of the order of nonlinearity on the vibration of the system is investigated.

The paper is divided into six sections. In Sect. 2, the model of the string–mass structure is suggested. The
motion of the system is described with a second-order differential equation with strong nonlinear elastic term.
In Sect. 3, a mathematical procedure for solving of the differential equation of the truly nonlinear string–mass
system is developed. Free and forced vibrations excited with multi-frequency force are considered. The exact
vibration is given in the form of the Ateb (inverse Beta) function. In Sect. 4, the influence of the preloading
string force on the vibration property of the string–mass structure is investigated. Two cases are considered:
one, when the preloading force in the string is constant, and second, when the force is a time variable function.
In Sect. 5, a numerical example is presented. The paper ends with Conclusions.
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Fig. 1 Force distribution in the strings

2 Model of the system

Using the archetypal model [34], the system is designed as a mass–string system shown in Fig. 1. The slider
with mass m is connected with two nonlinear strings in parallel with the vertical support.

Motion of the mass is in perpendicular direction to the string orientation. The displacement of slider causes
deformation of the string (see Fig. 1)

ΔL =
√
L2 + X2 − L (4)

where L is the initial length of the string and x is the displacement. Using the relation for the stress

σ = T

A
(5)

and also the stress–strain expression [35]

σ = εβE, (6)

the force T follows as

T = AE

(
�L

L

)β

(7)

where E is Young’s modulus, A is the cross section of the string, ε is the strain, and β ∈ R (integer or non-
integer) is the order of nonlinearity. Varying the position of the free end of the string, the preloading force in
the string can be varied. For the preloading force T0, the total string force is obtained as

T = T0 + E A

⎛
⎝

√
1 +

(
X

L

)2

− 1

⎞
⎠

β

. (8)

Using the first two terms of the series expansion of (8) for the case when x/L � 1, it is

T = T0 + E A

2α

(
X

L

)2β

. (9)

For the angle θ , formed between the initial and deformed position of the string, when sin θ ≈ tanθ = X/L ,
the approximate restitution force in x direction is

F = T0
X

L
+ E A

2β

X

L

(
X

L

)2β

. (10)

Using (4) and the assumption that the linear damping force and an excitation force act, the differential
equation of motion follows

mẌ + T0
X

L
+ E A

2β

X

L

(
X

L

)2β

+ cẊ = Fe(t). (11)

Let us introduce the dimensionless variables and parameters

x = X

L
, t∗ = t
e, ω2 = T0

mL
, c = c

m
e
, kla = ω2


2
e
, kna = E A

mL
2
e
, (12)
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where
e is the frequency of the excitation force, while kla and kna are coefficients of linearity and nonlinearity.
Substituting (12) in (11) and introducing the notation α = 2β + 1, the dimensionless equation of motion is
obtained,

ẍ + klax + knax |x |α−1 + cẋ = 1

mL
2
e
F(t∗). (13)

Equation (13) is: (a) truly nonlinear for kla = 0, (b) linear with small nonlinearity if kla � kna and (c)
strongly nonlinear if kna � kla. Which type of equation will follow depends mainly on the value of the
preloading force T0. Thus, if T0 is zero, the coefficient of the linear term is zero, and we have the nonlinear
energy sink. Otherwise, as in the real string T0 � EA the nonlinear equation cannot degenerate into a linear
one in spite of the fact that x � L . The nonlinear term is dominant in comparison with the linear one, and
Eq. (13) is strongly nonlinear.

3 Strongly nonlinear string structure

If the damping and excitation force are small in comparison with the nonlinear term, Eq. (13) transforms into

ẍ + knax |x |α−1 = ε

mL
2 F(t∗) − εklax − εcẋ (14)

where ε � 1 is a small parameter.
Two special cases of motion of the system are investigated: the free and the forced vibrations.

3.1 Free vibration of the string–mass system

For the case when ε = 0 and the damping and the excitation force are omitted, Eq. (14) transforms into

ẍ + knax |x |α−1 = 0. (15)

Equation (15) is the mathematical model of the free vibration of the string–mass system. It is a truly
nonlinear second-order differential equation with the exact solution [36]

x = Cca(α, 1, 
t∗ + θ) (16)

where ca is the cosine Ateb (inverse beta) function with amplitudeC , phase angle θ and frequency
. Namely,
using (16) and time derivatives [37],

d

dt∗
ca(α, 1,
t∗ + θ) = − 2
∗

α + 1
sa(1, α,
t∗ + θ), (17)

d

dt∗
sa(1, α,
t∗ + θ) = 
caα(α, 1,
t∗ + θ) (18)

where sa is the sine Ateb function which satisfies the relation

caα+1(α, 1,
t∗ + θ) + sa2(1, α,
t∗ + θ) = 1, (19)

and substituting in (15), the frequency of the function follows as


 =
√
knaCα−1

2(α + 1)
. (20)

The period of functions sa(1, α,
t∗ + θ) and ca(α, 1,
t∗ + θ) is according to [38]

P =
2B

(
1

α+1 ,
1
2

)



(21)
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where B is the beta function. Using (20) and (21), the frequency of vibration is computed as

ω∗ = π

B
(

1
α+1 ,

1
2

)
√
2Cα−1

α + 1
kna, (22)

i.e., for (12)

ω∗ = π

B
(

1
α+1 ,

1
2

)
√
2Cα−1

α + 1

E A

mL
2 . (23)

Analyzing (23), it can be concluded that the frequency of vibration is higher for higher rigidity of the
string. If the mass of the absorber is smaller, the frequency of the vibration is higher. The frequency of
vibration depends on the length of the string: The longer the string, the smaller is the frequency. The frequency
of vibration depends on the initial deflection and on the order of nonlinearity, too.

3.2 Forced vibration of the string–mass system

Let us assume the multi-harmonic excitation given in the general form. In [39], it is suggested that the most
suitable form of the excitation force is a cosine Ateb periodic function

f = F0ca(α, 1, 
et)|ca(α, 1, 
et)|α−1 (24)

where F0 is the amplitude and 
e is the frequency of the function. Namely, it is known that the ca function
has a cosine Fourier series expansion. Introducing the dimensionless coefficients


∗ = 
e

ω
, f0 = F0

mL
2
e
, (25)

and considering the forced vibration, the mathematical model of the forced vibration of the system is

ẍ + knax |x |α−1 = f0ca(α, 1, 
∗t∗)|ca(α, 1,
∗t∗)|α−1. (26)

For the known excitation parameters F0 and 
∗, Eq. (26) has an exact analytical solution

x = Cca(α, 1, 
∗t∗) (27)

where C is the amplitude of vibration which satisfies the relation

− 2C

α + 1

∗2 + knaC |C |α−1 = f0, (28)

i.e., the expression with real coefficients

− C

β + 1

m2L2
4
e

T0
+ E AC |C |2β = F0. (29)

For the casewhen the excitation force F0 is of the order ofEA andmuchhigher than m2L2
4
e

T0
, the approximate

value of the amplitude of vibration is

C =
(

F0
E A

) 1
2β+1

. (30)

The amplitude depends on the order of nonlinearity of the string material β: The higher the coefficient β,
is the smaller is the amplitude of vibration.
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4 Influence of the preloading force on the vibration

If the preloading force of the string, i.e., the linear term, and also the damping term exist, the equation of
motion is

ẍ + knax |x |α−1 = −εknax − εcẋ . (31)

Equation (31) is a strongly nonlinear equation with small perturbation terms with small parameter ε.
Comparing (15) and (31), it is concluded that Eq. (31) is the perturbed version of Eq. (15). For this assumption,
it is obvious that the solution of (31) has to be the perturbed version of the solution of (15). Based on this
assumption, the following procedure for solving (31) is introduced:

– First, the exact solution of (15) is determined.
– The solution of (31) and its derivative are assumed in the form of the solution of (15) and its derivative.
– The first derivative of the assumed solution of (31) is computed and compared with the assumed first
derivative of (15). Equating the relations a first-order equation is obtained.

– Substituting the assumed solution in (31), the additional first-order equation is obtained.
– The second-order differential Eq. (31) is transformed into two first-order differential equations where the
new variables are the amplitude and phase of vibration.

– For solving of the first-order differential equations, the averaging procedure is introduced.

If the length of the string and the preloading string force T0 are not varying, parameters kla and kna are
constant, and Eq. (31) is with constant coefficients. Otherwise, if the length of the string and the preloading
force are varying in time, parameters kla and kna are also time variable and Eq. (31) is with time variable
coefficients.

4.1 System with constant string force

According to the suggested procedure, the solution of (31) and its first derivative are assumed in the form (16)
but with the time variable parameters, i.e.,

x = C(t∗)ca(α, 1, ψ(t∗)), ẋ = −2
∗(t∗)
α + 1

C(t∗)sa(1, α, ψ(t∗)) (32.1,2)

where C = C(t∗) is the time variable amplitude and ψ = ψ(t∗) is the time variable phase that satisfies the
relation

ψ̇(t∗) = 
(t∗) + θ̇ (t∗). (33)

Comparing (32.2) with the complete time derivative of (32.1), the following constraint is obtained:

Ċca − C θ̇
2

α + 1
sa = 0 (34)

where C = C(t∗), ψ = ψ(t∗), θ = θ(t∗), ca = ca(α, 1, ψ), and sa = sa(1, α, ψ). Using the time derivative
of (32.2) and substituting in (31), we obtain

(Ċ
 + C
̇)
2

α + 1
sa + C
θ̇

2

α + 1
caα = εklaCca − εcC


2

α + 1
sa. (35)

Equations (34) and (35) correspond to the second-order differential equation (31). After somemodification,
it is

Ċ
 = εklaCsaca − εcC

2

α + 1
sa2, (36)

C
θ̇
2

α + 1
= εklaCca2 − εcC


2

α + 1
saca. (37)
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For simplification, we average equations (36) and (37) over the period P of the Ateb function. The averaged
equations are

Ċ
 = −εcC

2

α + 1
〈sa2〉, (38)

C
θ̇
2

α + 1
= εklaC〈ca2〉 (39)

where

〈sa2〉 = 1

P

∫ P

0
sa2dψ = α + 1

α + 3
, 〈ca2〉 = 1

P

∫ P

0
ca2dψ, 〈sa ca〉 = 1

P

∫ P

0
sa ca dψ = 0

Solving Eq. (38), it is

C = C0 exp

(
− 2εc

α + 3
t∗

)
(40)

where C0 is the arbitrary initial value. Substituting (40) in (39), the time variation of the phase is

ψ(t∗) =
∫ t∗

0

(

 + εkla




α + 1

2
ca2

)
dt∗. (41)

Using the amplitude and phase relation, the relative motion of the string–mass system is approximately
expressed as

X = (C0L) exp

(
− 2εc

α + 3

√
T0
mL

t

)
ca(α, 1, ψ(t)). (42)

Based on (42), we conclude that the amplitude of vibration decrease depends not only on the damping
coefficient andmass of the slider, but also on the length of the string, preloading force, and order of nonlinearity.

Numerical example

For the real mechanism with mass m = 1kg, string length L = 1m, cross section of the string A = 125mm2,
modulus of elasticity E = 200GPa, and the order of nonlinearity 2.73 (see [21]), the dimensionless coefficient
of nonlinearity is kna = 10.3. It is known that for standard constructionmaterials it is always true thatEA � T0,
since T0/A is smaller than the break tension, and break tension is much smaller than E . Then, for tensioning a
string with a safety factor 2 with respect to break, it follows that T0 < EA/400. Assuming the preloading force
T0 = 15N and the damping coefficient c = 1 kg/s, we calculate the dimensionless parameters εkla = 0.12,
εc = 0.833 and 
 = 1.175C0.865.

For this set of parameters, the equations of motion (36) and (37) are

Ċ = 0.10213C0.135saca − 0.4465Csa2, θ̇ = 0.19047ca2C−0.865 − 0.833saca. (43)

The averaged equations (38) and (39) transform into

Ċ = −0.29075C, θ̇ = 0.16231C−0.865.

Integrating the equations for the initial conditions C(0) = 0.5 and θ(0) = 0, the averaged amplitude
and phase variations are C = 0.5 exp (−0.29075t∗) and θ = 0.33031(exp(0.25150t∗) − 1). In Fig. 2, the
solution of the exact equation (43) obtained numerically and the averaged amplitude of vibration C − t∗
obtained analytically is plotted. It is obvious that the averaged amplitude is on the top of the exact curve and
the difference is negligible.
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Fig. 2 Numerical solution of the exact equations (43) (full line) and the analytically obtained averaged amplitude curve (dotted
line)

4.2 System with time variable string force

In the system shown in Fig. 1, the length of the string and the preloading force can be varied. The effect of
their variation is mathematically recognized as the time variation of the coefficients kna and kla. If the change
of parameters is slow and the function of the so-called slow time τ = εt , the equation of motion (31) is
transformed into

ẍ + kna(τ )x |x |α−1 = −εkla(τ )x − εcẋ . (44)

To solve Eq. (44), we introduce the solution and its time derivative in form (32) with frequency function

 which depends on the amplitude of vibration C and on the slow time τ . Introducing the assumed solution,
Eq. (44) transforms into

Ċ

(

 + C

∂


∂C

)
2

α + 1
sa + C
θ̇

2

α + 1
caα = εklaCca − εcC


2

α + 1
sa − εC

∂


∂τ

2

α + 1
sa. (45)

Equations (34) and (45) are two first-order differential equations which represent the rewritten version of
(44) in new variables C and ψ , i.e., θ . After some transformation and using the relation (20), it is

Ċ
 = εklaCsaca − εcC

2

α + 1
sa2 − εC

∂


∂C

2

α + 1
sa2, (46)

C
θ̇
2

α + 1
= εklaCca2 − εcC


2

α + 1
saca − εC

∂


∂C

2

α + 1
saca. (47)

To solve the system of Eqs. (46) and (47) is not an easy task. It is at this moment the averaging over the
period of Ateb functions is introduced. The averaged equations are

Ċ = −εC

(
1




∂


∂τ
+ c

)
2

α + 1
〈sa2〉, (48)


θ̇
2

α + 1
= εkla〈ca2〉. (49)

Using (20) and the initial amplitudeC0, after integration the expression for amplitude variation is obtained,

C

C0
=

(

0


(τ)

) 2
α+3

exp

(
− 2c

m (α + 3)

∫ τ

0

√
T0(τ )

L(τ )
dτ

)
, (50)

where


0


(τ)
=

(
C0

C

) α−1
2

√
kna0
kna

.
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kna0 is the initial value of the coefficient. According to (12), the relation is rewritten into

C = C0

(
L(τ )

L

) 1
2(α+1)

exp

(
− c

m(α + 1)

∫ τ

0

√
T0(τ )

L(τ )
dτ

)
. (51)

For the case when the length of the string is constant, the amplitude variation is

C = C0 exp

(
− c

mL(α + 1)

∫ τ

0

√
T0(τ )dτ

)
. (52)

The amplitude decreases in time. The velocity of amplitude decrease depends on the preloading force
variation. The higher the preloading force in the string, is the faster the amplitude decrease is.

However, if the damping is neglected and the length of the string is varying, the amplitude of vibration is

C = C0

(
L(τ )

L

) 1
2(α+1)

. (53)

For α = 3, relation (53) gives the result which is already published in [40].
The variation of phase angle (49) is

θ̇ = εkla
α + 1

2

√
2(α + 1)

knacα−1 〈ca2〉. (54)

It is evident that the phase angle θ tends to increase in time. The phase angle variation depends on the
amplitude of vibration, i.e., not only on the damping coefficient and order of nonlinearity, but also on the string
force time variation.

Using the previously obtained results, we can calculate the amplitude variation due to the variation of the
preloading force. On the contrary, for the known preloading force–time function, we can predict the amplitude
of vibration of the string–mass system.

5 Discussion

To give an appropriate explanation for the obtained analytical results, a numerical example is considered. For
the real system, where the cross section of the string is 125mm2, modulus of elasticity E = 200GPa, and the
order of nonlinearity 2.73 (see [21]), the dimensionless differential equation of motion (31) for the preloading
force T = 15N is

ẍ + 10.3x |x |1.73 = −0.12x − 0.833ẋ . (55)

In Fig. 3a, the analytical solution (43) and the numerical solution of (55) are compared. They are in good
agreement.

In Fig. 3b, the influence of the constant preloading string force on the vibration of the system is considered.
The equation of motion is solved numerically. Two different values for the force are applied. It is obtained that
for higher value of the preloading the vibration decrease is faster and the period of vibration is shorter.

In this Section, the dynamics of the string–mass system where the preloading string force is varying is
considered. Two types of force variation are assumed: (a) preloading force decreases, and (b) the preloading
force increases in slow time.

If there is the slow time relaxation of the string force described as

T = T0
(1 + pτ)2

,

the amplitude variation is

C = C0

(1 + pτ)
p1
p
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Fig. 3 Displacement–time curves: a numerically (black line) and analytically (red line) obtained solutions;b numerically obtained
solutions for various preloading forces: T = 23N (red line) and T = 34N (black line) (color figure online)

Fig. 4 T−τ (red full line) and C−τ (blue dotted line) diagrams for various p (color figure online)

where p is the parameter of the force decrease in time, and

p1 = cT0
mL(α + 1)

.

For p = p1
2 , the decrease in the amplitude corresponds to the force decrease. Otherwise, for p = 1 and

p1 > 2 the amplitude decrease is faster than the decrease in the preloading force.
For m = 1 kg, c = 1 kg/s, L = 1m, α = 2.73, T0 = 10N, various values of parameter p, the T − τ and

C − τ diagrams are plotted (Fig. 4). It is obtained that for higher values of the parameter p the decrease in the
preloading force is faster than for small p. However, the amplitude decrease is slower in time for higher values
of p than for smaller ones. To obtain the faster amplitude decrease, we need smaller values of parameter p and
the slow preloading force decrease.

In Fig. 5, the T − τ and C − τ diagrams for various values of the initial preloading force T0 are plotted. It
is obvious that the variation of the initial preloading force has influence on the velocity of amplitude decrease.
The amplitude decrease is faster for higher values of the initial preloading force.

If there is the preloading force increasing in time,

T = T0
(1 − pτ)2

,

the amplitude of vibration is

C = C0(1 − pτ)
p1
p .

In Fig. 6, the influence of parameter p on the variation of the string force and on the vibration amplitude is
plotted. It is obtained that for higher values of parameter p the increase in the preloading force is faster than
for the smaller values of p. The same holds for the amplitude of vibration: For higher value of p, the velocity
of the amplitude decrease is higher.
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Fig. 5 T−τ (red full line) and C−τ (blue dotted line) diagrams for various T0 (color figure online)

Fig. 6 T−τ (red full line) and C−τ (blue dotted line) diagrams for various p (color figure online)

Fig. 7 T−τ (red full line) and C−τ (blue dotted line) diagrams for various T0 (color figure online)

In Fig. 7, the T−τ and C−τ diagrams for various values of the initial preloading force are considered.
It is obtained that the initial value of the preloading force has influence on the variation of the amplitude of
vibration. For smaller values of the initial preloading force, the amplitude decrease is faster.

6 Conclusions

In the paper, the dynamics of the SD oscillator, modeled as a string–mass structure which is the sub-system
of a vibration absorber, is investigated. The influence of the preloading force of the string on the dynamics of
the mass–string system is studied. The motion of the system is described with a strong nonlinear differential



3000 U. Kozmidis Luburic et al.

equation where the order of nonlinearity is a positive real number (an integer or non-integer). It defines the
geometric and physical nonlinearity of the string. The solution of the nonlinear differential equation is suggested
in the form of the Ateb function. The solution procedure is based on the solution of the truly nonlinear equation
and represents the modified version of the linear solving treatment. Amplitude and phase of vibration are time
dependent, while the frequency depends on the amplitude of vibration, too. It is concluded that the analytically
obtained results agree with numerical ones.

In addition, it is seen that the preloading force in the string has significant influence on the mass motion
in the system: The higher the preloading is, the faster the vibration damping is, and the period of vibration is
shorter. In addition, it is concluded that velocity of the variation of the preloading force has an effect on the
system motion. If the preloading force is decreasing and we start with a high value of the initial preloading
force, the amplitude of vibration would decrease faster than if the initial preloading force is small. However,
if the preloading force is increasing, the small initial preloading force is more convenient for faster amplitude
decrease. Thus, the preloading force can be used as the control parameter of the system. The mass–string
structure suggested in the paper is suitable to be applied for vibration mitigation caused by any multi-harmonic
excitation (earthquake or wind force) as the string tension tunes the frequency of the device with excitation
one.
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