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Abstract In this paper, the size-dependent static behavior of Bishop rods is investigated by Lam and Aifantis
strain gradient formulations of elasticity. Appropriate constitutive boundary conditions are established for both
the theories by making recourse to a variational approach. Unlike contributions of literature, no higher-order
kinematic and static boundary conditions, which have not a clear physical meaning, are required to close
the relevant gradient problems. The proposed methodology leads to mathematically well-posed elastostatic
problems and is illustrated by examining size effects in selected thick rods of nanotechnological interest.
Exact solutions of Bishop nano-rods are detected for a variety of loading systems and kinematic boundary
conditions. Peculiar properties, merits, and implications of both the strain gradient formulations, equippedwith
the proper boundary conditions, are illustrated and commented. The outcomes can be useful for the design and
optimization of rod-like thick components of nanoelectromechanical systems.

1 Introduction

The examination of the mechanical response of nano-structures is the major focus of recent researches in the
literature as a result of extensive exploitations of nano-structured elements in the fabrication of nanoelectrome-
chanical systems (NEMS). Local continuum mechanics is not able to investigate the structural behavior of
nano-devices [1,2]. Adoption of nonlocal formulations is therefore indispensable to capture size effects [3–7].
Modeling of small-scale phenomena in nano-structures is a topic of current interest in the scientific community
[8–36]. Recent reviews on the matter are tackled in [37–39].

In the nonlocal theory of elasticity, the output field at a point of a continuum is assumed to be the integral
convolution between the elastic source field and a suitable averaging kernel. Nowadays, based on adopting
strain- or stress-driven formulations, two different nonlocal elasticity models are available. While Eringen’s
strain-driven law is well established to lead to ill-posed nano-engineering problems which are defined in
bounded domains [40–42], the stress-driven nonlocal model provides a well-posed and efficient approach to
appropriately assess size effects in a wide range of structural problems of technical interest [43–58].

Mindlin in his milestone work [59] introduced the strain gradient theory of elasticity (SGT), where the
material response at a point of a continuum is dependent on both the strain and the strain gradients of different
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orders. Application of the Mindlin model is intricate in the primary mathematical framework, and therefore,
a range of reduced strain gradient models were introduced and discussed in literature [60–67]. The strain
gradient theory of Mindlin [59] includes five extra characteristic length-scale parameters being difficult to be
determined theoretically and experimentally. A simplified strain gradient theory of elasticitywas then presented
by Aifantis [60] with only one characteristic length-scale parameter.

Aifantis strain gradient theory, including Laplacian-type gradients, is more convenient to be employed
from physical and mathematical points of view. The modified strain gradient elasticity theory was established
by Lam et al. [61] wherein an appropriate equilibrium equation governing higher-order stresses was added
to the classical equilibrium conditions. The number of length-scale parameters in Lam strain gradient model
is reduced to three, characterizing dilatation gradient, deviatoric stretch gradient, and symmetric rotation
gradient. Both modified and simplified strain gradient models of elasticity have been widely applied by the
scientific community to capture size-dependent responses of micro- and nano-structures. The size-dependent
formulations founded on the modified and simplified SGTs lead to well-posed problems provided that suitable
constitutive boundary conditions are prescribed.

2 Motivation and outline

The simple rodmodel iswell known tobe appropriatemerely for slender structures, and thus, lateral deformation
and shear stiffness effects have to be accounted for stubby rods [68,69]. A variety of nonlocal theories have been
employed to analyze the size-dependent structural response of thick nano-rods including Eringen differential
nonlocalmodel [70–77], strain gradient elasticity theory [78],modified couple stress theory [79,80], and unified
gradient theory of elasticity [81–85]. Almost all of the presented results in literature, based on the gradient
theories of elasticity, are dedicated to investigate the propagation of longitudinal stress waves in unbounded
domains [78–85], and consequently, the issue of constitutive boundary conditions is omitted. According to
Güven [78], “for a finite bar, such a model has to be completed with higher-order boundary conditions that
can be obtained from the application of variational principles”. Furthermore, in few cases where the higher-
order boundary conditions are introduced for a finite Bishop nano-rod [81,83], the number of the prescribed
boundary conditions exceeds the order of differential conditions of equilibrium.

Therefore, the contributions presented in the literature on examinationofBishopnano-rods in the framework
of both the modified and simplified strain gradient elasticity theories should be amended to properly take the
constitutive boundary conditions into account.

The motivation of the present research is in equipping the Aifantis and Lam strain gradient formulations
of Bishop elastic nano-rods with appropriate constitutive boundary conditions. The corresponding elastostatic
problems of Bishop rods are well posed, so that an effective strategy is provided to assess small-size effects
in stubby nano-rods. The plan is as follows. Differential and boundary conditions of equilibrium of Bishop
local rods are briefly evoked in Sect. 2. Aifantis and Lam strain gradient elasticity theories for Bishop rods are
developed in Sect. 3, and the suitable constitutive boundary conditions are established for every model. The
gradient models in Sect. 3 are then adopted in Sect. 4 to establish exact solutions of Bishop rods for selected
loadings and kinematic boundary conditions of engineering interest. New numerical benchmarks are detected
for gradient stubby nano-rods.

3 Bishop local rod

Ahomogenous elastic thick rodwith length L , area A, and cross section�, subjected to a distributed axial force
per unit length p and concentrated forces N̄ at the rod ends is examined here. Axial, radial, and circumferential
coordinates describing the position of the rod points with respect to the cross section centroid are, respectively,
designated by x , r , and θ . The investigated formulation of the elastic thick rod is considered to be axisymmetric,
and therefore, the circumferential displacement uθ can be omitted. Vanishing of the radial stress on the cross
section leads to the subsequent displacement field of a Bishop thick rod [86]

ux (x, r) = u (x) , ur (x, r) = −νr∂xu (x) , uθ (x, r) = 0, (1)

with ν Poisson’s ratio. ux , ur , and uθ correspondingly representing axial, radial, and circumferential displace-
ment components. The displacement field as Eq. (1) noticeably includes the lateral deformation effects. The
nonvanishing dual fields of strains and stresses in the thick rod elastic model are given by
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εx = ∂xu, γxr = −νr∂2x u, (2.1,2)

σx = Eεx = E∂xu, τxr = Gγxr = −Gνr∂2x u (2.3,4)

where εx , σx and γxr , τxr correspondingly designate axial and shear strain and stress fields. Shear and Euler-
Young moduli are also denoted by G and E , where G = E/2 (1 + ν).

The Bishop rod local elastic model is formulated by assuming that the elastic energy depends on the axial
strain field ε ∈ C2 ([0, L] ; �) as


(ε) := 1

2

∫ L

0

(∫
�

(
Eε2x + Gγ 2

xr

)
dA

)
dx = 1

2

∫ L

0
E A

(
ε2x + ν2ρ2

2 (1 + ν)
(∂xεx )

2
)
dx (3)

where the gyration radius is defined as ρ := √
J/A with J being the polar moment of inertia about the center

of the cross section.
The corresponding stress field in an elastic thick rod is the axial force field N ∈ C1 ([0, L] ; �) which can

be determined by the variational constitutive condition for any virtual axial strain field δε ∈ C1 ([0, L] ; �)

〈N , δε〉 :=
∫ L

0
N (x)δε (x) dx = 〈d
(ε) , δε〉 . (4)

In view of the elastic energy 
 as Eq. (3), the derivative of the elastic energy along a virtual axial strain field
can be directly evaluated as

〈d
(ε) , δε〉 =
∫ L

0
E Aεxδεxdx +

∫ L

0
E A

ν2ρ2

2 (1 + ν)
(∂xεx ) ∂x (δεx ) dx . (5)

Integrating by parts Eq. (5) while imposing the variational condition Eq. (4), a standard localization procedure
provides the following differential problem equipped with constitutive boundary conditions:

{
E A

(
ε − ν2ρ2

2(1+ν)
∂2x ε

)
= N , in [0, L]

ν2ρ2∂xεx = 0, on ∂ [0, L]
(6)

with ∂ [0, L] denoting the boundary of the interval [0, L]. The classical elastic law of slender rods is recovered
as the Poisson ratio ν vanishes in Eq. (6).

The differential and boundary conditions of static equilibrium of rods are also recalled as

∂x N + p = 0, (7.1)(
N + N̄

)
δu

∣∣
x=0 = (

N − N̄
)
δu

∣∣
x=L = 0. (7.2)

It can be noticeably deduced from the established boundary-value problem that the Bishop elastic rod model
contains both the lateral deformation and shear stiffness effects.

4 Strain gradient Bishop rod models

4.1 Lam strain gradient model

The strain energy of a Bishop elastic rod in the framework of Lam SGT can be detected in terms of the axial
strain field ε ∈ C2 ([0, L] ; �) as [78]


SGT
Lam (ε) = 1

2

∫ L

0
E A

(
ε2x +

(
ν2ρ2

2 (1 + ν)
+ 
20

(1 − 2ν)2

(1 + ν)
+ 
21

2 (1 + 2ν)2

5 (1 + ν)

)
(∂xεx )

2

+
(


21
4ν2ρ2

15 (1 + ν)
+ 
22

ν2ρ2

8 (1 + ν)

) (
∂2x εx

)2)
dx (8)

with 
0, 
1, and 
2 being the length-scale parameters associated with dilatation gradients, deviatoric stretch
gradients, and symmetric rotation gradients, respectively.
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The axial force field N ∈ C1 ([0, L] ; �) in a Bishop gradient rod is the dual scalar field of any virtual
axial strain field δε ∈ C1 ([0, L] ; �), according to the following variational rule:

〈N , δε〉 :=
∫ L

0
N (x)δε (x) dx = 〈

d
SGT
Lam (ε) , δε

〉
. (9)

The right-hand side of Eq. (9) can be determined by evaluating the derivative of the elastic energy 
SGT
Lam Eq.

(8) along a virtual axial strain field δε ∈ C1 ([0, L] ; �),

〈
d
SGT

Lam (ε) , δε
〉 =

∫ L

0
E Aεxδεxdx

+
∫ L

0
E A

(
ν2ρ2

2 (1 + ν)
+ 
20

(1 − 2ν)2

(1 + ν)
+ 
21

2 (1 + 2ν)2

5 (1 + ν)

)
(∂xεx ) ∂x (δεx ) dx

+
∫ L

0

(

21

4ν2ρ2

15 (1 + ν)
+ 
22

ν2ρ2

8 (1 + ν)

) (
∂2x εx

)
∂2x (δεx ) dx . (10)

The Lam strain gradient elasticity law of Bishop’s rod is then obtained by integrating by parts Eq. (10) and
enforcing the variational condition Eq. (9). The associated constitutive differential and boundary conditions
are got by resorting to a standard localization procedure,
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N = E A

(
ε −

(
ν2ρ2

2 (1 + ν)
+ 
20

(1 − 2ν)2

(1 + ν)
+ 
21

2 (1 + 2ν)2

5 (1 + ν)

)
∂2x ε +

(

21

4ν2ρ2

15 (1 + ν)
+ 
22

ν2ρ2

8 (1 + ν)

)
∂4x ε

)
in [0, L] , (11.1)

(
ν2ρ2

2 (1 + ν)
+ 
20

(1 − 2ν)2

(1 + ν)
+ 
21

2 (1 + 2ν)2

5 (1 + ν)

)
∂xε −

(

21

4ν2ρ2

15 (1 + ν)
+ 
22

ν2ρ2

8 (1 + ν)

)
∂3x ε = 0 on ∂ [0, L] , (11.2)

(

21

4ν2ρ2

15 (1 + ν)
+ 
22

ν2ρ2

8 (1 + ν)

) (
∂2x εx

) = 0 on ∂ [0, L] . (11.3)

4.2 Aifantis strain gradient model

The gradient model of a Bishop elastic rod according to Aifantis SGT can be also formulated by assuming that
the elastic energy depends on the axial strain field ε ∈ C2 ([0, L] ; �) as


SGT
Aifantis (ε) := 1

2

∫ L

0

(∫
�

(
Eε2x + Gγ 2

xr

)
dA

)
dx + 1

2

2s

∫ L

0

(∫
�

(
E (∂xεx )

2 + G (∂xγxr )
2) dA

)
dx (12)

= 1

2

∫ L

0
E A

(
ε2x +

(
ν2ρ2

2 (1 + ν)
+ 
2s

)
(∂xεx )

2 + 
2s
ν2ρ2

2 (1 + ν)

(
∂2x εx

)2)
dx

where in accordance with Aifantis SGT, the gradient characteristic length 
s is introduced to establish the
significance of the first-order strain gradient field.

In consequence of application of the similar standard variational procedure, as earlier employed for the
Lam SGT, the constitutive differential and boundary conditions of Bishop elastic rods in the framework of
Aifantis SGT are determined as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N = E A

(
ε −

(
ν2ρ2

2 (1 + ν)
+ 
2s

)
∂2x ε + 
2s

ν2ρ2

2 (1 + ν)
∂4x ε

)
in [0, L] , (13.1)

(
ν2ρ2

2 (1 + ν)
+ 
2s

)
∂xε − 
2s

ν2ρ2

2 (1 + ν)
∂3x ε = 0 on ∂ [0, L] , (13.2)


2s
ν2ρ2

2 (1 + ν)
∂2x ε = 0 on ∂ [0, L] . (13.3)

Noticeably, both the modified and simplified strain gradient laws of a Bishop elastic rod have similar mathe-
matical form, though with different strain gradient coefficients in prescription of the constitutive differential
and boundary conditions.
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5 Exact analytical solutions and illustrations

Aifantis and Lam strain gradient elasticity theories are exploited here to analyze the elastostatic behavior of
Bishop nano-rods subjected to a variety of loading systems and kinematic boundary conditions. To suitably
compare the size-dependent response of Bishop nano-rods consistent with the modified and simplified strain
gradient models, the effects corresponding to each gradient parameter in the Lam SGT are first examined
independently. Afterward to analyze the size-dependent axial displacement of Bishop nano-rods, the length-
scale parameters 
0, 
1, and 
2 of Lam SGT, characterizing dilatation, stretch, and rotation gradient, are
assumed to be equal, 
0 = 
1 = 
2.

The non-dimensional parameters: axial abscissa x̄ , characteristic parameter λ, axial displacement ū as well
as the radius of gyration ρ̄ are defined, for a nano-rod subjected to uniform axial load intensity p̄, by

x̄ = x

L
, λ = 


L
, ū (x̄) = u (x)

E A

p̄L2 , ρ̄ = ρ

L
. (14)

For a nano-rod subjected to a concentrated tensile tip-load N̄ , the non-dimensional axial displacement ū is
introduced as

ū (x̄) = u (x)
E A

N̄ L
. (15)

To examine the elastostatic behavior of Bishop strain gradient nano-rods, the differential condition of equi-
librium Eq. (7.1) should be first integrated. The axial force field can be accordingly obtained in terms of an
integration constant �1 as

N (x) = −
∫ x

0
p (ζ )dζ + �1. (16)

The axial strain field ε may be afterward determined by solving the constitutive differential equation of Lam
SGT Eq. (11.1) or Aifantis SGT Eq. (13.1) in terms of the integration constants {�2, �3, �4, �5} as
ε (x) = �2exp (−α1x) + �3exp (α1x) + �4exp (−α2x) + �5exp (α2x)

+ exp (α1x)
∫ x

0
exp (−α1ξ1)

N (ξ1) α1α
2
2

E A(2α2
1 − 2α2

2)
dξ1 − exp (−α1x)

∫ x

0
exp (α1ξ2)

N (ξ2) α1α
2
2

E A(2α2
1 − 2α2

2)
dξ2

+ exp (−α2x)
∫ x

0
exp (α2η1)

N (η1) α2
1α2

E A(2α2
1 − 2α2

2)
dη1 − exp (α2x)

∫ x

0
exp (−α2η2)

N (η2) α2
1α2

E A(2α2
1 − 2α2

2)
dη2

(17)

with ± α1, ± α2 being the roots of the characteristic equation of Lam SGT as

1 −
(

ν2ρ2

2 (1 + ν)
+ 
20

(1 − 2ν)2

(1 + ν)
+ 
21

2 (1 + 2ν)2

5 (1 + ν)

)
α2 +

(

21

4ν2ρ2

15 (1 + ν)
+ 
22

ν2ρ2

8 (1 + ν)

)
α4 = 0 (18)

and Aifantis SGT as

1 −
(

ν2ρ2

2 (1 + ν)
+ 
2s

)
α2 +

(

2s

ν2ρ2

2 (1 + ν)

)
α4 = 0. (19)

Lastly, integrating the differential condition of kinematic compatibility Eq. (2.1), the axial displacement field
u can be detected in terms of the integration constant �6 as

u (x) =
∫ x

0
ε (ζ )dζ + �6. (20)

Prescribing the standard kinematic and static boundary conditions (BC) Eq. (7.2) together with the new consti-
tutive boundary conditions (CBC), Eqs. (11.2,3) of Lam SGT and Eqs. (13.2,3) of Aifantis SGT, the integration
constants �i (i = 1 . . . 6) can be determined. The proposed solution method is variationally consistent pro-
viding exact elastic solutions by integrating differential equations of lower order when compared with those of
literature. The proposed technique is simple and adequate also for solving awide variety of structural problems.

Three case studies will be studied including a fixed-free nano-rod under a tensile axial force at the free end
in addition to uniformly loaded nano-rods with fixed-fixed and fixed-free ends.
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5.1 Tip-loaded nano-rod with fixed-free ends

For a strain gradient Bishop rod with fixed-free ends subjected to a tensile concentrated axial force N̄ at the
free end, the classical BCs are well established to be

u (0) = 0, N (L) = N̄ . (21)

The non-dimensional axial displacement can be evaluated employing the proposed solution method while
imposing the classical BCs and CBCs of Aifantis and Lam SGTs as

ūSGTLam (x̄) = ūSGTAifantis (x̄) = x̄ (22)

which coincides with the results of the classical elastic model of slender rods. It can be inferred from Eq.
(22) that the elastic axial response of a tip-loaded strain gradient nano-rod with fixed-free ends for both the
modified and simplified strain gradient theories is not only independent of the characteristic parameter λ but
also independent of the dimensionless gyration radius ρ̄.

5.2 Uniformly loaded nano-rod with fixed-free ends

In case of a uniformly loaded strain gradient Bishop rod with fixed-free ends, the classical BCs are expressed
by

u (0) = 0, N (L) = 0. (23)

The axial displacement of the nano-rod is detected employing the aforementioned solutionmethod, prescribing
the classical BCs and corresponding CBCs of Aifantis and Lam SGTs. It may be shown that the maximum
value of the axial displacement field for both the modified and simplified strain gradient theories is given by

ūSGTLam

∣∣
max = ūSGTAifantis

∣∣
max = 1

2
. (24)

The maximum axial deformation of the strain gradient Bishop rod at the free end, according to Aifantis and
Lam SGTs, is coincident with the one obtained by the classical local elasticity model of slender rods. It is
independent of both the characteristic parameter λ and non-dimensional gyration radius ρ̄. The value of the
axial displacement field at the mid-span of the rod is therefore examined for numerical illustrations.

5.3 Uniformly loaded nano-rod with fixed-fixed ends

When a strain gradient Bishop rod is subjected to the uniform axial load with fixed-fixed ends, the kinematic
BCs are expressed as

u (0) = 0, u (L) = 0. (25)

In consequence of exploiting the proposed solution procedure while prescribing the classical BCs and corre-
sponding CBCs of Aifantis and Lam SGTs, the axial displacement of the nano-rod can be determined.

5.4 Numerical results and discussion

Since the axial response of strain gradient elastic Bishop rods subjected to tensile axial tip-force, in accordance
with both the modified and simplified gradient theories, is coincident with the axial response of classical elastic
slender rods, it has been omitted from illustrations.

The dependency of the characteristic parameter λ on the non-dimensional maximum axial displacement
corresponding to the modified and simplified strain gradient theories for uniformly loaded nano-rods with
fixed-fixed and fixed-free ends is depicted in Figs. 1 and 2. Since the maximum axial deformation of uniformly
loaded Bishop rods, associated with both Aifantis and Lam SGTs, coincides with the results of the classical
elastic model of slender rods, the value of the axial displacement field at the mid-span of the rod is illustrated
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Fig. 1 Uniformly loaded nano-rod with fixed-fixed ends: effects of λ on ūmax for ρ̄ = 0.5

Fig. 2 Uniformly loaded nano-rod with fixed-free ends: effects of λ on ū(x̄=1/2) for ρ̄ = 0.5

in Fig. 2. Also in the framework of Aifantis and Lam strain gradient theories, 3D plots of variations of the non-
dimensional axial displacement ū versus the non-dimensional abscissa x̄ and characteristic parameter λ are
shown in Figs. 3 and 4 for uniformly loaded nano-rods with fixed-fixed and fixed-free ends. The characteristic
parameter λ is assumed to range in the interval ]0, 1[, and the non-dimensional gyration radius is assumed to
be ρ̄ = 0.5. To examine the effects of the characteristic parameter λ on axial responses of Bishop nano-rods,
the Poisson ratio ν = 1/4 is considered in all illustrations.

It is inferred from Figs. 1 through 4 that the nano-rod axial displacement field will decrease as the char-
acteristic parameter λ increases, and therefore, both modified and simplified strain gradient elasticity theories
exhibit a stiffening behavior in terms of the characteristic parameter λ for a given value of ρ̄. While the gradient
parameter 
2 characterizing the rotation gradient exhibits the less stiffening effect, the gradient parameter 
1
reflecting the stretch gradient shows the dominant stiffening effect of gradient parameters in the Lam SGT.

As expected, the modified strain gradient theory with equal gradient parameters 
0 = 
1 = 
2 has the
maximum decreasing effect on the axial displacement field in comparison with individual gradient parameters
of Lam SGT. Furthermore, the stiffening effect of the characteristic parameter in the framework of Aifantis
SGT is more noticeable in comparison with the Lam SGT with 
0 = 
1 = 
2. For vanishing non-dimensional
characteristic parameter λ → 0+, the size-dependent elastostatic response of a strain gradient Bishop nano-rod
is also coincident with the one of a classical Bishop elastic thick rod. Numerical values of the non-dimensional
axial displacement ū at the mid-span of uniformly loaded nano-rods with fixed-fixed and fixed-free ends for
each of the described conditions in the Lam strain gradient theory as well as the Aifantis strain gradient theory
are, respectively, collected in Tables 1 and 2 in terms of the characteristic parameter λ.

Variations of the non-dimensional axial displacement at the structural mid-span, associated with the mod-
ified and simplified strain gradient theories, for uniformly loaded nano-rods with fixed-fixed and fixed-free
ends in terms of gyration radius ρ̄ are given in Figs. 5 and 6. Furthermore, 3D plots exhibiting the effects of
the gyration radius ρ̄ on the axial deformation ū versus the axial abscissa x̄ for uniformly loaded nano-rods
with fixed-fixed and fixed-free ends are, respectively, illustrated in Figs. 7 and 8 for both Aifantis and Lam
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Fig. 3 Uniformly loaded nano-rod with fixed-fixed ends: ū versus x̄ and λ for ρ̄ = 0.5

Fig. 4 Uniformly loaded nano-rod with fixed-free ends: ū versus x̄ and λ for ρ̄ = 0.5

SGTs. While the gyration radius is ranging in the interval ]0.1, 0.5[, the characteristic parameter λ is assumed
to be λ = 0.2. Once more, the Poisson ratio is assumed as ν = 1/4 in all illustrative results.

It is deduced fromFigs. 5 through 8 that the axial displacement field for bothAifantis and LamSGTs reveals
a stiffening behavior in terms of the gyration radius. A larger ρ̄ involves a smaller displacement ū for a given
value of λ. The numerical values of the maximum axial displacement ūmax of a uniformly loaded nano-rod
with fixed-fixed ends for modified and simplified SGTs are reported in Table 3 in terms of the gyration radius
ρ̄.

In case of uniformly loaded nano-rods with fixed-free ends, since the maximum axial deformation of strain
gradient Bishop rods at the free end is independent of both the characteristic parameter and gyration radius,
numerical values of the axial displacement at the structural mid-span in terms of the gyration radius ρ̄ are
given in Table 4 for both Aifantis and Lam SGTs.

6 Concluding remarks

The major outcomes of the present study may be summarized as follows.

• The contributions in literature on Bishop’s rod model, based on strain gradient elasticity theory, suffer
from the lack of suitable prescription of constitutive boundary conditions. This point has been addressed
for both Lam and Aifantis models by making recourse to a consistent variational approach with suitably
selected test fields.
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Table 1 Uniformly loaded Bishop nano-rod with fixed-fixed ends: ūmax versus λ and ρ̄ = 0.5

λ ūmax

Lam SGT 
0 �= 0 Lam SGT 
1 �= 0 Lam SGT 
2 �= 0 Lam SGT 
0 = 
1 = 
2 Aifantis SGT

0+ 0.118772 0.118772 0.118772 0.118772 0.118772
0.1 0.116817 0.111781 0.118747 0.109898 0.109126
0.2 0.111182 0.094201 0.118635 0.088847 0.086771
0.3 0.102703 0.074333 0.1184 0.067097 0.064459
0.4 0.092649 0.057326 0.118106 0.04993 0.047363
0.5 0.082215 0.044283 0.117818 0.037562 0.035313
0.6 0.072233 0.034643 0.117566 0.028831 0.026935
0.7 0.063151 0.027554 0.117355 0.022618 0.021036
0.8 0.055143 0.02229 0.117184 0.018113 0.016793
0.9 0.048209 0.018323 0.117045 0.014777 0.013668
1.0 0.042267 0.015283 0.116933 0.012255 0.011315

Table 2 Uniformly loaded Bishop nano-rod with fixed-free ends: ūx=1/2 versus λ and ρ̄ = 0.5

λ ūx=1/2

Lam SGT 
0 �= 0 Lam SGT 
1 �= 0 Lam SGT 
2 �= 0 Lam SGT 
0 = 
1 = 
2 Aifantis SGT

0+ 0.368772 0.368772 0.368772 0.368772 0.368772
0.1 0.366817 0.361781 0.368747 0.359898 0.359126
0.2 0.361182 0.344201 0.368635 0.338847 0.336771
0.3 0.352703 0.324333 0.3684 0.317097 0.314459
0.4 0.342649 0.307326 0.368106 0.299929 0.297363
0.5 0.332215 0.294283 0.367818 0.287562 0.285313
0.6 0.322233 0.284643 0.367566 0.278831 0.276935
0.7 0.313151 0.277554 0.367355 0.272617 0.271036
0.8 0.305143 0.27229 0.367184 0.268113 0.266793
0.9 0.298209 0.268323 0.367045 0.264777 0.263668
1.0 0.292267 0.265282 0.366933 0.262255 0.261314

Fig. 5 Uniformly loaded nano-rod with fixed-fixed ends: effects of ρ̄ on ūmax for λ = 0.2

• The developed strain gradient formulations have been shown to be well posed and therefore are able to
describe the size-dependent static behavior of Bishop nano-rods.

• The proposed solution procedure, being variationally consistent, has the advantage of providing analytical
solutions by integrating differential equations of lower order.

• Elastostatic axial responses of Bishop nano-rodsmade of Aifantis and Lam strain gradient materials exhibit
a stiffening behavior for smaller and smaller structures.

• The gradient parameters 
2 and 
1, respectively, characterizing rotation and stretch gradients in Lam SGT,
demonstrate the minimum andmaximum stiffening effects of the gradient parameters in the modified strain
gradient theory.

• Themodified strain gradient theory with equal scale parameters 
0 = 
1 = 
2 has themaximum decreasing
effect on the axial displacement field in comparison with individual gradient parameters of Lam SGT.
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Fig. 6 Uniformly loaded nano-rod with fixed-free ends: effects of ρ̄ on ū(x̄=1/2) for λ = 0.2

Fig. 7 Uniformly loaded nano-rod with fixed-fixed ends: ū versus x̄ and ρ̄ for λ = 0.2

Fig. 8 Uniformly loaded nano-rod with fixed-free ends: ū versus x̄ and ρ̄ for λ = 0.2
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Table 3 Uniformly loaded Bishop nano-rod with fixed-fixed ends: ūmax versus ρ̄ and λ = 0.2

ρ̄ ūmax

Lam SGT 
0 �= 0 Lam SGT 
1 �= 0 Lam SGT 
2 �= 0 Lam SGT 
0 = 
1 = 
2 Aifantis SGT

0.1 0.116817 0.099006 0.12475 0.093398 0.091317
0.2 0.116093 0.098377 0.124003 0.092798 0.090712
0.3 0.114897 0.09735 0.122753 0.09182 0.089732
0.4 0.11325 0.095947 0.120966 0.090492 0.088405
0.5 0.111182 0.094201 0.118635 0.088847 0.086771

Table 4 Uniformly loaded Bishop nano-rod with fixed-free ends: ūx=1/2 versus ρ̄ and λ = 0.2

ρ̄ ūx=1/2

Lam SGT 
0 �= 0 Lam SGT 
1 �= 0 Lam SGT 
2 �= 0 Lam SGT 
0 = 
1 = 
2 Aifantis SGT

0.1 0.366817 0.349006 0.37475 0.343398 0.341317
0.2 0.366093 0.348377 0.374003 0.342798 0.340712
0.3 0.364897 0.34735 0.372753 0.34182 0.339732
0.4 0.36325 0.345947 0.370966 0.340492 0.338405
0.5 0.361182 0.344201 0.368635 0.338847 0.336771

• The stiffening effect of the characteristic parameter according to the simplified strain gradient theory is
more noticeable in comparison with the modified strain gradient theory with equal gradient parameters.

• Both the modified and simplified strain gradient elastic models of the Bishop rod lead to the results of the
classic Bishop rod local model for vanishing scale parameters.

• As physically expected, the gyration radius has the effect of decreasing the axial deformation of the Bishop
rod in both Aifantis and Lam strain gradient elasticity theories.

• In bothmodified and simplified strain gradientmodels, themaximumaxial deformation of uniformly loaded
nano-rods with fixed-free ends is independent of scale parameters and gyration radius and coincides with
the classical elastic local deformation of slender rods.

• In the frameworks of Aifantis and Lam SGTs, the elastic axial response of tip-loaded nano-rods with
fixed-free ends is independent of characteristic parameters and gyration radius, being coincident with the
one of classical slender rods.

• The contributed results provide a useful guide for the design of small sensors and actuators for current
nanotechnological applications.

References

1. Acierno, S., Barretta, R., Luciano, R., Marotti de Sciarra, F., Russo, P.: Experimental evaluations and modeling of the tensile
behavior of polypropylene/single-walled carbon nanotubes fibers. Compos. Struct. 174, 12–18 (2017). https://doi.org/10.
1016/j.compstruct.2017.04.049

2. Barretta, R., Brcic, M., Canadija, M., Luciano, R., Marotti de Sciarra, F.: Application of gradient elasticity to armchair carbon
nanotubes: size effects and constitutive parameters assessment. Eur. J. Mech. A Solids 65, 1–13 (2017). https://doi.org/10.
1016/j.euromechsol.2017.03.002

3. Romano, G., Barretta, R.: Nonlocal elasticity in nanobeams: the stress-driven integral model. Int. J. Eng. Sci. 115, 14–27
(2017). https://doi.org/10.1016/j.ijengsci.2017.03.002

4. Faghidian, S.A.: Reissner stationary variational principle for nonlocal strain gradient theory of elasticity. Eur. J. Mech. A
Solids 70, 115–126 (2018). https://doi.org/10.1016/j.euromechsol.2018.02.009

5. Faghidian, S.A.: On non-linear flexure of beams based on non-local elasticity theory. Int. J. Eng. Sci. 124, 49–63 (2018).
https://doi.org/10.1016/j.ijengsci.2017.12.002

6. Faghidian, S.A.: Integro-differential nonlocal theory of elasticity. Int. J. Eng. Sci. 129, 96–110 (2018). https://doi.org/10.
1016/j.ijengsci.2018.04.007

7. Barretta, R., Marotti de Sciarra, F.: Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams. Int. J.
Eng. Sci. 130, 187–198 (2018). https://doi.org/10.1016/j.ijengsci.2018.05.009

8. Zhang, L., Guo, J., Xing, Y.: Nonlocal analytical solution of functionally graded multilayered one-dimensional hexagonal
piezoelectric quasicrystal nanoplates. Acta Mech. (2019). https://doi.org/10.1007/s00707-018-2344-7

9. Attia, M.A., Mohamed, S.A.: Coupling effect of surface energy and dispersion forces on nonlinear size-dependent pull-in
instability of functionally graded micro-/nanoswitches. Acta Mech. (2019). https://doi.org/10.1007/s00707-018-2345-6

https://doi.org/10.1016/j.compstruct.2017.04.049
https://doi.org/10.1016/j.compstruct.2017.04.049
https://doi.org/10.1016/j.euromechsol.2017.03.002
https://doi.org/10.1016/j.euromechsol.2017.03.002
https://doi.org/10.1016/j.ijengsci.2017.03.002
https://doi.org/10.1016/j.euromechsol.2018.02.009
https://doi.org/10.1016/j.ijengsci.2017.12.002
https://doi.org/10.1016/j.ijengsci.2018.04.007
https://doi.org/10.1016/j.ijengsci.2018.04.007
https://doi.org/10.1016/j.ijengsci.2018.05.009
https://doi.org/10.1007/s00707-018-2344-7
https://doi.org/10.1007/s00707-018-2345-6


2810 R. Barretta et al.

10. Gharahi, A., Schiavone, P.: Edge dislocation with surface flexural resistance in micropolar materials. Acta Mech. (2019).
https://doi.org/10.1007/s00707-018-2338-5

11. Genoese, A., Genoese, A., Salerno, G.: On the nanoscale behaviour of single-wall C, BN and SiC nanotubes. Acta Mech.
(2019). https://doi.org/10.1007/s00707-018-2336-7

12. Bunoiu, R., Gaudiello, A., Leopardi, A.: Asymptotic analysis of a Bingham fluid in a thin T-like shaped structure. J. Math.
Pures Appl. 123, 148–166 (2019). https://doi.org/10.1016/j.matpur.2018.01.001

13. Zhang, Y.P., Challamel, N., Wang, C.M., Zhang, H.: Comparison of nano-plate bending behaviour by Eringen nonlocal plate,
Hencky bar-net and continualised nonlocal plate models. Acta Mech. (2018). https://doi.org/10.1007/s00707-018-2326-9

14. Romano, G., Barretta, R., Diaco, M.: Iterative methods for nonlocal elasticity problems. Continuum Mech. Thermodyn. 31,
669–689 (2019). https://doi.org/10.1007/s00161-018-0717-8

15. Rashahmadi, S., Meguid, S.A.: Modeling size-dependent thermoelastic energy dissipation of graphene nanoresonators using
nonlocal elasticity theory. Acta Mech. (2018). https://doi.org/10.1007/s00707-018-2281-5

16. Bahreman, M., Darijani, H., Bahrani Fard, A.: The size-dependent analysis of microplates via a newly developed shear
deformation theory. Acta Mech. (2018). https://doi.org/10.1007/s00707-018-2260-x

17. Zhang, G.Y., Gao, X.L.: A non-classical Kirchhoff rod model based on the modified couple stress theory. Acta Mech. (2018).
https://doi.org/10.1007/s00707-018-2279-z

18. Lembo, M.: Infinitesimal deformations and stability of rods made of nonlocal elastic materials. Acta Mech. (2018). https://
doi.org/10.1007/s00707-018-2315-z

19. Radgolchin, M., Moeenfard, H.: Size-dependent nonlinear vibration analysis of shear deformable microarches using strain
gradient theory. Acta Mech. 229, 3025–3049 (2018). https://doi.org/10.1007/s00707-018-2142-2

20. Sidhardh, S., Ray, M.C.: Element-free Galerkin model of nano-beams considering strain gradient elasticity. Acta Mech. 229,
2765–2786 (2018). https://doi.org/10.1007/s00707-018-2139-x

21. Chen, H., Qi, C., Efremidis, G., Dorogov, M., Aifantis, E.C.: Gradient elasticity and size effect for the borehole problem.
Acta Mech. 229, 3305–3318 (2018). https://doi.org/10.1007/s00707-018-2109-3

22. Gaudiello, A., Panasenko, G., Piatnitski, A.: Asymptotic analysis and domain decomposition for a biharmonic problem in a
thin multi-structure. Commun. Contemp. Math. 18, 1550057 (2016). https://doi.org/10.1142/S0219199715500571

23. Koutsoumaris, C.C., Eptaimeros, K.G.: A research into bi-Helmholtz type of nonlocal elasticity and a direct approach to
Eringen’s nonlocal integral model in a finite body. Acta Mech. 229, 3629–3649 (2018). https://doi.org/10.1007/s00707-018-
2180-9

24. Sidhardh, S., Ray, M.C.: Inclusion problem for a generalized strain gradient elastic continuum. Acta Mech. 229, 3813–3831
(2018). https://doi.org/10.1007/s00707-018-2199-y

25. Fan, H., Xu, L.: Love wave in a classical linear elastic half-space covered by a surface layer described by the couple stress
theory. Acta Mech. 229, 5121–5132 (2018). https://doi.org/10.1007/s00707-018-2293-1

26. Polyanskiy, A.M., Polyanskiy, V.A., Belyaev, A.K., Yakovlev, Y.A.: Relation of elastic properties, yield stress and ultimate
strength of polycrystalline metals to their melting and evaporation parameters with account for nano and micro structure.
Acta Mech. 229, 4863–4873 (2018). https://doi.org/10.1007/s00707-018-2262-8
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