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Abstract The present work highlights the attempt to develop a two-dimensional mathematical modelling of
thermal characteristics in malignant tissues under a regional hyperthermia therapy based on the bi-dimensional
local thermal non-equilibrium bioheat model. In the arena of biological heat transfer, a local thermal non-
equilibrium model is preferred over a local thermal equilibrium approach, as skin tissues are a combination of
highly non-uniform non-homogeneous structure of fluid and solid media (porous structure). The solution of
the thermal response has been determined analytically by employing a ‘hybrid scheme’ composed of ‘shift of
variables’ and ‘finite integral transform’ with the therapeutic boundary conditions and actual local coordinates
dependent on the initial condition. The thermal behavioural study has been conducted with the influence of
oscillating and constant heat flux imposed on the exposed surface of the diseased tissue. The results have
been validated with the published experimental work. From the research output, it has been noticed that the
sinusoidal therapeutic heat flux is better for the longer time of treatment in comparison with the constant heat
flux heating. The treatment protocols of regional hyperthermia suggest that the size of the affected tissue (or
organ) is larger in comparisonwith the localized hyperthermia. Hence, themulti-dimensionalmodelling should
give better glimpse of results than the 1-D form of analysis. From the constructed 2-D thermal contours, it
may be noted under the regional hyperthermia circumstance that the heat propagation in the living tissue is
in two-directional nature, and thus 2-D analysis is necessary for predicting an accurate temperature response.
The present analysis also highlights that a temperature range of 38–44 ◦C is possible to maintain in a prolonged
therapeutic exposure time instead of maintaining 50 ◦C for 30 min described in the existing literature. Hence,
this positive aspect obtained in the present work can avoid the collateral damage of healthy tissues in human
bodies during the regional hyperthermia therapy.

Nomenclature

A, B Dimensionless constant, defined in Eq. (16)
Bi Biot number (hL/k)
cb, ct Specific heat of blood and tissue, see Eqs. (1) and (2), respectively

(
J kg−1 ◦C−1

)

C1,C2 Dimensionless constant, see Eq. (41)
C3,C4 Dimensionless constant, see Eq. (48)
C5,C6 Dimensionless constant, see Eq. (52)
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dpore Pore diameter of blood vessels, see Eq. (3) (mm)
D, E Dimensionless constant, defined in Eq. (20)
F Dimensionless therapeutic exposure (Fourier number), see Eq. (8), αt/L2

g Dimensionless constant, mentioned in Eq. (20)
G Coupling factor, refer Eq. (3)

(
Wm−3 ◦C−1

)

h Heat transfer coefficient
(
Wm−2 ◦C−1

)

J Dimensionless constant, see Eq. (38)
k Thermal conductivity

(
Wm−1 ◦C−1

)

L Length of the physical domain along both x- and y-directions, refer Table 1
m, n Non-negative integers in series (0, 1, 2, 3 . . .), introduced in Eq. (26)
q Heat flux imposed on top of the skin surface

(
Wm−2

)

q0 Constant heat flux
(
Wm−2

)

Q dimensionless heat flux
qm Rate of metabolic heat generation, see Eq. (2)

(
Wm−3

)

qS Rate of spatial heating, Eq. (1)
(
Wm−3

)

Q∗
m Dimensionless metabolic heat generation, see Eq. (8)

t Exposure time of therapeutic heating (s)
Tt Local temperature of tissue inside human body (◦C)
Tb Arterial blood temperature of human body (◦C)
TSteady Initial steady-state condition of skin tissue dependent on space coordinate (◦C)
Tr Reference skin surface temperature of imposed heat flux (◦C)
T∞ Surrounding temperature in which skin tissue is exposed (◦C)
�v Blood velocity vector inside the vessels;

(
mms−1

)
, see Eq. (1)

Veq, VeT Vernotte number (dimensionless) for heat flux and temperature gradient, respectively, see Eq. (8)
Wn Dimensionless frequency, refer Eq. (10.3)
x, y Spatial coordinates in 2-D domain (m)
X, Y Dimensionless spatial coordinates, x/L, y/L , see Eq. (8)

Greek letters

α Thermal diffusivity of the tissue, k/ρcp
(
m2 s−1

)

β Dimensionless coupling factor, see Eq. (8)
βk Non-dimensional constant, refer Eq. (20)
ρ Density of the tissue

(
kgm−3

)

θt Dimensionless local temperature of skin tissue, (Tt − Tb)/(Tr − Tb)
θSteady Dimensional initial condition of skin tissue,

(
TSteady − Tb

)
/(Tr − Tb)

τq, τT Thermal relaxation time lags of heat flux and temperature gradient, respectively (s)
ωb Blood perfusion rate (s−1)
ωn Frequency of oscillating heat flux

(
rads−1

)

ϕ Phase angle of oscillating heat flux (rad)
μ, δ Anonymous variables, see Eq. (13)
η, ξ Anonymous variables, see Eq. (17)
�, 
 Variables utilized for the purpose of shift, refer Eq. (23)

 ′′ Transformed variable, see Eq. (26)
ε Porosity of biological media
� Differential operator declared for characteristics equation, refer Eq. (35)

Subscripts

t Tissue
b Blood
e f f Effective
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1 Introduction

Several types of tumour therapy including chemotherapy and radiotherapy are utilized to treat cancer disease.
However, the research work suggests that elevated temperature can have the ability to damage cancerous cells
without the issue of harmful toxicity and radiations [1]. The biomedical researchers suggest that in any type
of hyperthermia, the prime objective is to deliver a specific amount of energy to the infected portion of the
cancer tumour with the appropriate control of energy propagation to ensure the eradication of malignant cells
with un-alteration of healthy tissues [2]. The regional hyperthermia therapy (RHT) is a kind of therapeutic
treatment for malignant diseases in deeper tissues, i.e. larger size of tumour. It can be achieved by increasing
the perfusion in organs by heating of blood or by irrigation of body cavities [3]. The dual phase lag (DPL)
theory was first developed by Xu et al. [4], and it is on the basis of local thermal equilibrium (LTE) in the
arterio-vascular region in the human body. This theory does not consider the local vascular geometry, and it
is developed with the absence of the energy interaction among the branches of arteriole–venule structure. The
DPL model is derived from the classical model (Fourier’s law of heat conduction) with the consideration of
different relaxation times [5]. To renovate more realistic bioheat models, Xuan and Roetzel [6] and Roetzel
and Xuan [7] proposed that the entire anatomical architecture of biological tissue is distinguished into two
distinct regions: vascular regime (blood vessels) and extravascular regime (solid matrix) (refer Fig. 1); and
the two regimes characterize as fluid saturated porous medium. These two regimes can be identified based
on the volume average theory (VAT) which is termed as local thermal non-equilibrium (LTNE) approach. In
many practical applications associated with the hyper-porous structures with a variable temperature difference
between fluid and solid media, LTE approach might not be an appropriate one, whereas LTNE scheme is
globally acceptable having an accurate analysis [8]. Alazmi and Vafai [9] and Khaled and Vafai [10] strongly
suggested in their works that the implementation of porous media theory in biological heat transfer arena is
most appropriate to avail the thermal non-equilibrium to exist between blood and peripheral tissues. Nakayama
and Kuwahara [11] evolved the mathematical development of bioheat equations based on the volume average
theory. Mahzoob and Vafai [12] carried out a comprehensive research work on the analytical modelling of
LTNE bioheat equations in relation with the hyperthermia. Yuan [13] investigated an equivalent heat transfer
coefficient between tissue and blood by the numerical simulation of biological porous media model. Zhang
[14] developed bioheat governing differential equations based on LTNE approach in a most pertinent form
with accurate mathematical expressions of two relaxation time lags. Afrin et al. [15] presented a numerical
simulation for laser-irradiated living tissues, effects of laser exposure time as well as laser irradiance, and
coupling factors. Yuan et al. [16] presented a numerical analysis of the spherical bioheat model with spherical
tissues. Liu and Chen [17] solved the LTNE bioheat model with a hybrid application of Laplace transform
method and modified discretization method. The coupling factors between blood and tissue, and porosity and
phase lag times were investigated, separately. Hooshmand et al. [18] solved LTNE bioheat energy equation
by the separation of variables. They used Duhamel’s integral method for both absorbing and scattering tissues

Fig. 1 Schematic diagram of tissue–vascular architecture with boundary conditions imposed for the present research work
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with the laser interaction. Jasiński et al. [19] conducted a numerical study of thermal processes in soft tissues
subjected to laser irradiation. Liu andChen [20] analysed the thermal behaviour of laser-irradiated living tissues
by implementing a hybrid approach based on theLaplace transformmethod andmodified discretizationmethod.
Monte and Haji-Sheikh [21] developed analytical solutions by the Green’s function to focus on the results for
the effects of thermal therapy.

The above-mentioned research work was developed based on the constant initial condition of skin tissue.
However, in the medical science of bio-thermomechanics, it is obvious that there is always thermal response in
living tissues propagated in a spatial domain [22] due to the highly non-homogeneous anatomical structure of the
human body. Dutta and Kundu [23–25] successfully established the concept of spatially based mathematical
formulation of bioheat modelling with LTE approach for the hyperthermia therapy in order to develop an
accurate study.

Encouraged by the advantageous LTNE approach, in this study two-dimensional mathematical modelling
of LTNE bioheat model subject to RHT has been established. Here, it is demonstrated that no analysis exists
for the multi-dimensional heat flow based on LTNE approach (from the authors’ best knowledge). However, in
a physical domain, there is always possibility to transfer heat in multi-dimensional mode in tissues. In addition,
when the bi-dimensional approach is dominant, the spatial domain of interest is large. From the biomedical
point of view, it can be well applicable in case of RHT where a larger therapeutic area is preferred for the
treatment of a large cancerous tumour. In the present study, a hybrid analytical scheme comprising ‘shift of
variables’ and ‘finite integral transform (FIT)’ has been employed to determine the thermal response of LTNE
2-D DPL bioheat model. The external heat sources have been imposed as ‘constant’ and ‘sinusoidal’ at the
exposed surface of the skin tissue, and other boundaries are considered to be at zero temperature gradient due
to the absence of net heat transfer across these boundaries from the symmetric aspect. A comparative study has
been conducted to analyse the benefits of thermobiological characteristics of the oscillating heat source over
the constant heat source on the basis of the treatment protocol. The isotherms have been generated to visualize
the thermal propagation in skin tissues, and it enables to predict the heat flow in the physical tissue domain. The
present mathematical modelling has been endeavoured to validate with the published experimental work [34].
Based on the literature survey conducted, Hooshmand et al. [18] andMonte andHaji-Sheikh [21] have provided
the exact solution of an LTNE bioheat model by the classical analytical scheme. In the current research work,
initiatives have been taken to establish an exact solution by a hybrid method with appropriate (realistic) initial
and boundary conditions to generate the thermal response in LTNE bioheat model applicable to the regional
hyperthermia therapy along with the influence of several therapeutically dependent parameters.

2 Mathematical genesis

Nakayama and Kuwahara [11] identified that blood and tissue temperatures are different as the equilibrium
concept of heat propagation is irrational. Therefore, two-temperature models (separately for fluid and solid
medium) are incorporated in the concept of LTNE in arterio-vascular structure. Themathematical development
of the two-temperature model can be presented for blood phase and tissue phase as [10,11]

ερbcb
[
∂Tb/∂t + �v · ∇Tb

] = εkb∇2Tb + G (Tt − Tb) + εqS; for blood phase (1)

and

(1 − ε) ρtct (∂Tt/∂t) = (1 − ε) kt∇2Tt + G (Tb − Tt) + (1 − ε) qm + (1 − ε) qS; for tissue phase. (2)

According to the local thermal equilibrium (LTE) approach, the blood perfusion term is represented by
ωbρbcb (Tb − Tt) in which ωb is defined as blood perfusion rate (s−1) of the tissue [7]. But in the LTNE
approach, the significant impact from blood flow direction, thermal diffusion, vascular geometry, and size has
been accounted by the convective heat transfer coefficient hb and specific area of the blood vessel in tissue ab.
The specific term which correlates blood flow, thermal diffusion, and size of the vascular geometry is termed
as the ‘coupling factor’, and mathematically, it can be expressed as G = abhb + ωbcb [refer Eqs. (1) and (2)]
[14], and it denotes the energy exchange between blood (perfused inside the vessel) and surrounding tissue.
The coupling factor can also be illustrated as a lumped convection–perfusion parameter [14]. The coupling
factor is one of the most significant evolutions of LTNE bioheat approach over LTE bioheat modelling due
to the consideration of vascular geometry along with the impact of blood perfusion rate. For more precise
estimation, for a bundle of vascular tubes of diameter dpore, the specific area and heat transfer coefficients are
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postulated as ab = 4ε/dpore and hb = Nu
(
kb/dpore

)
, respectively [11]. Implementing the consideration of ab

and hb, the modified form of the coupling factor becomes:

G =
(
4εkb/d

2
pore

)
Nu + ωbcb. (3)

In LTE bioheat models, the velocity of the flow field has not been considered in the model formulation as it was
assumed to be constant. But considering the practical aspects, blood velocity is not necessarily constant, and
also its magnitude and direction are very complex to estimate. The blood flow rate changes rapidly due to size
variation of arteries and vessels. In the LTNE bioheat model, the blood velocity has been incorporated (refer
Eq. (1)). Though the blood velocity is coupled, for the mathematical modelling it is very difficult to predict the
blood velocity inside the human body. So for the modification of the blood velocity term, Minkowycz et al.
[26] proposed a new theory where the directional blood flow is accounted by convective heat transfer between
blood and vessels, and mathematically, it can be formulated as

− ερbcb (�v · ∇Tt) ≈ G (Tb − Tt) . (4)

The second term in Eq. (1) composed of blood velocity is replaced by using Eq. (4). Now the governing
differential equation of LTNEDPL bioheat model has been derived in the form of tissue temperature [coupling
Eqs. (1) and (2)] as proposed by Zhang [14] with the help of a theory developed by Minkowycz et al. [26] as
referred in Eq. (4), and it can be mathematically represented as

τq
∂2Tt
∂t2

+ ∂Tt
∂t

= αeff

[
∇2Tt + τT

∂

∂t

(∇2Tt
)]+ G

(ρc)eff
(Tb − Tt)

+ (1 − ε) qm + qS
(ρc)eff

+ ερbcb
G (ρc)eff

[
(1 − ε)

∂qm
∂t

+ ∂qS
∂t

]
(5)

where the constitutional parameters are correlated as follows:

τq = ε (1 − ε) ρbcbρtct
G (ρc)eff

; τT = ε (1 − ε) ρbcbkt
Gkeff

; (ρc)eff = ερbcb + (1 − ε) ρtct;

keff = εkb + (1 − ε) kt; and αeff = keff
(ρc)eff

. (6)

Assuming qm = constant and qS = 0 [23], the dimensionless form of Eq. (5) can be addressed in the following:

∂2θt

∂X2 + ∂2θt

∂Y 2 + Ve2T
∂3θt

∂F∂X2 + Ve2T
∂3θt

∂F∂Y 2 − Ve2q
∂2θt

∂F2 − ∂θt

∂F
− β2θt + (1 − ε) Q∗

m = 0, (7)

and the dimensionless variables are defined as

θt = Tt − Tb
Tr − Tb

; β =
√
GL2

keff
; Q∗

m = qmL2

keff (Tr − Tb)
; F = αeff t

L2 ; Veq =
√

αeffτq

L2 ;

VeT =
√

αeffτT

L2 ; X = x

L
; andY = y

L
. (8)

The initial conditions for solving Eq. (7) have been predefined in non-dimensional form as

at F = 0, θt (X, Y , 0) = θsteady (X, Y ) ; (9.1)

at F = 0, ∂θt/∂F = 0. (9.2)

Here, it can be noted that the initial temperature of the physical domain before the therapeutic time can be
considered as a steady temperature, and this temperature as a function of spatial coordinates in the direction of
heat flow occurred for the metabolic heat generated in living tissues. In the duration of hyperthermia treatment,
the skin surface is under therapeutic conditions, and an external heat flux (in the form of both constant and
oscillating) has been imposed on the exposed skin surface (at x = 0). In other boundaries (at x = L , y = 0, and
y = L), zero temperature gradient has been imposed (refer Fig. 1). Apart from the exposed surface at x = 0,
other three unexposed boundary surfaces are seated at the inner core section of the tissue. Obviously, there is no
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chance for convective–conductive heat transfer at these unexposed surfaces. Again due to rigorousmicroscopic
and macroscopic energy exchange inside the human body, a constant temperature (boundary condition of first
kind) boundary condition at the inner core may be a mathematical case study but wouldn’t be feasible enough
from the practical point of view. Hence, zero thermal gradients (boundary condition of second kind) would
be a better choice for the selection of boundary conditions at the inner core sections of tissue due to the line
of symmetry for heat conduction, and it also signifies the possibility of maximum or minimum temperature
at the boundaries influenced by the external heat flux. Several authors [15,17,18,20] have used the aforesaid
boundary conditions at the inner core section of the skin tissue. Mathematically, the non-dimensional forms
of boundary conditions for the solution of Eq. (7) are taken as

in X -direction,

{
X = 0; ∂θt/∂X = −Q
X = 1; ∂θt/∂X = 0 (10.1)

and

in Y -direction

{
Y = 0; ∂θt/∂Y = 0
Y = 1; ∂θt/∂Y = 0 (10.2)

where

Q = qL/k(Tr − Tb); q =
{
q0
q0 sin(WnF + φ)

; and Wn = ωnL
2/α. (10.3)

In order to determine the initial temperature in skin tissues, θSteady (X, Y ) [as scripted in Eq. (9.1)], the
governing equation can be written from Eq. (7) with the independent time as

∂2θsteady

∂X2 + ∂2θsteady

∂Y 2 − β2θsteady + (1 − ε) Q∗
m = 0. (11)

Equation (11) is an expression of 2-D steady-state LTNE bioheat model. Before the application of therapeutic
exposure, it is assumed that the skin surface is exposed to the surrounding ambience, and obviously the
convective heat transfer takes place from the body to the surrounding. Therefore, for the solution, Eq. (11) is
subjected to the following non-therapeutic boundary conditions expressed in dimensionless form below:

along X -direction,

{
X = 0; ∂θsteady

∂X = Bi
(
θsteady − θc

)

X = 1; ∂θsteady
∂X = 0

(12.1)

and

alongY -direction,

{
Y = 0; ∂θsteady

∂Y = 0

Y = 1; ∂θsteady
∂Y = 0

(12.2)

where

θc = (T∞ − Tb)

(Tr − T∞)
, Bi = hL

k
, and θSteady =

(
Tsteady − Tb

)

(Tr − Tb)
. (12.3)

To solve Eq. (11) with the predefined boundary conditions as mentioned in Eqs. (12.1,2), it has been realized
that the solution of θSteady (X, Y ) would be impossible with the help of a classical analytical method due to a
similar kind of boundary conditions imposed along the Y-direction [24]. Hence, to get a converged solution,
the following approximate relation has been implemented:

θSteady (X, Y ) = μ (X) + δ (X, Y ) + exp (−βX) + exp (−βY ) . (13)

Equation (11) can be reformed with the implementation of Eq. (13) as

∂2μ

∂X2 − β2μ + (1 − ε) Q∗
m = 0 (14.1)



Exact analysis based on BDLTNE approach for thermal behaviour in living tissues 2859

and

∂2δ

∂X2 + ∂2δ

∂Y 2 − β2δ = 0. (14.2)

The solution of Eq. (14.1) with imposed non-therapeutic boundary conditions [refer Eqs. (12.1) and (12.2)] is
obtained in the following:

μ (X) = A cosh (βX) + B sinh (βX) + (1 − ε)
Q∗

m

β2 (15)

where

A =
β exp (−β) −

(
BiQ∗

m
β2 + β

)
cosh (β)

β sinh (β) + Bi cosh (β)
; B = Bi

β

{
A + (1 − ε)

Q∗
m

β2

}
+ 1. (16)

Now for solving Eq. (14.2), the following set of variables has been considered:

δ (X, Y ) = η (X) ξ (Y ) . (17)

Applying Eq. (17) in Eq. (14.2), it can be rearranged as follows:

∂2η

∂X2 − β2

2
η = 0 (18.1)

and

∂2ξ

∂Y 2 − β2

2
ξ = 0. (18.2)

The solution of Eqs. (18.1,2) can be presented with the boundary conditions mentioned in Eqs. (12.1) and
(12.2), respectively, as follows:

η (X) = D cosh (βkX) + E sinh (βkX) (19.1)

and

ξ (Y ) = g cosh (βkY ) + √
2 sinh (βkY ) (19.2)

where

D = −
√
2Bi (1 − θC) cosh (βk)

β sinh (βk) + √
2Bi cosh (βk)

; E =
√
2Bi

β
[D + 1 − θC] ;

g = √
2

{
exp (−β)

sinh (βk)
− coth (βk)

}
; and βk = β/

√
2. (20)

Hence, from Eq. (17),

δ (X, Y ) = {D cosh (βkX) + E sinh (βkX)}
{
g cosh (βkY ) + √

2 sinh (βkY )
}

. (21)

Now from Eqs. (13), (15), and (21), one obtains

θSteady (X, Y ) = A cosh (βX) + B sinh (βX) + (1 − ε)
Q∗

m

β2

+ {D cosh (βkX) + E sinh (βkX)}
{
g cosh (βkY ) + √

2 sinh (βkY )
}

+ exp (−βX) + exp (−βY ) . (22)

It is to mention that Eq. (22) is a steady-state temperature in tissues before the therapeutic application, and
therefore, this temperature can be used as an initial condition to determine the transient temperature response
in cancerous tumours during the hyperthermia treatment.
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3 Solution methodology by hybrid analytical scheme

We have employed a hybrid analytical scheme to solve Eq. (7) (LTNE DPL model) with the prescribed initial
and boundary conditions [refer Eqs. (22), (10.1) and (10.2)]. For this, we have taken the following set of
variables:

θt (X, Y, F) = � (X) + 
 (X, Y, F) . (23)

Combining Eqs. (7) and (23), we have

∂2�

∂X2 − β2� + (1 − ε) Q∗
m = 0 (24.1)

and

∂2


∂X2 + ∂2


∂Y 2 + Ve2T
∂3


∂F∂X2 + Ve2T
∂3


∂F∂Y 2 − Ve2q
∂2


∂F2 − ∂


∂F
− β2
 = 0. (24.2)

The solution of Eq. (24.1) can be delineated as

�(X) = Q

β

[
cosh (βX)

tanh (β)
− sinh (βX)

]
+ (1 − ε)

Q∗
m

β2 . (25)

The mathematical expression given in Eq. (24.2) consists of higher-order mixed partial derivatives (third and
fourth terms). The idea behind the implementation of finite integral transform (FIT) is to eliminate the higher-
order spatial functions, and subsequently, it will be converted into a lower-order partial differential equation
with the proper set of eigenfunctions. Some of the notable research papers on the applications of FIT approach
are mentioned here: analytical solution of LTE 2-D DPL bioheat modelling [27], exact bending solutions of
fully clamped orthotropic rectangular thin plates [28], and hybrid integral transform of LTE Fourier bioheat
modelling [29]. The pair of double finite integral transform can be written as follows [30]:


 ′′ (m, n, F) =
1∫

X=0

1∫

Y=0


 (X, Y, F) cos (mπX) cos (nπY )dXdY . (26)

With the help of the inverse theorem, the function 
 (X, Y, F) can be found as [30],


 (X, Y, F) = 4
∞∑

m=0

∞∑

n=0


 ′′ (m, n, F) cos (mπX) cos (nπY ). (27)

The appointment of the eigenfunction is dependent on the set of boundary conditions. For theNeumann (second
kind) boundary condition, the eigenfunction is of the order of ‘cosine form’, whereas for the Dirichlet (first
kind) boundary conditions, it is of ‘sine form’. In the present 2-D analysis, the imposed boundary conditions
are of Neumann condition (refer Eqs. (10.1) and (10.2)) [30]. Hence, the eigenfunction is used in the order of
‘cosine form’.

Now applying FIT approach to Eq. (24.2) with respect to ‘X’ and keeping ‘Y’ constant, it gives

1∫

X=0

∂2


∂X2 cos (mπX) dX+
1∫

X=0

∂2


∂Y 2 cos (mπX) dX + Ve2T
∂

∂F

⎡

⎣
1∫

X=0

∂2


∂X2 cos (mπX) dX

⎤

⎦

+Ve2T
∂

∂F

⎡

⎣
1∫

X=0

∂2


∂Y 2 cos (mπX) dX

⎤

⎦− Ve2q

1∫

X=0

∂2


∂F2 cos (mπX) dX −
1∫

X=0

∂


∂F
cos (mπX) dX

−β2

1∫

X=0


 cos (mπX) dX = 0. (28)
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With some intermediate steps of integral operations, Eq. (28) can be obtained as

∂2
 ′ (m, Y, F)

∂Y 2 − m2π2Ve2T
∂
 ′ (m, Y, F)

∂F
+ Ve2T

∂3
 ′ (m, Y, F)

∂F∂Y 2 − Ve2q
∂2
 ′ (m, Y, F)

∂F2

−Ve2q
∂2
 ′ (m, Y, F)

∂F2 − ∂
 ′ (m, Y, F)

∂F
− (

m2π2 + β2)
 ′ (m, Y, F) = 0 (29)

where the transformed function 
 ′ (m, Y, F) as referred in Eq. (29) is


 ′ (m, Y, F) =
1∫

X=0


 (X, Y, F) cos (mπX) dX . (30)

Again applying FIT approach in Eq. (29) with respect to ‘Y’, we obtain

1∫

Y=0

∂2
 ′

∂Y 2 cos (nπY ) dY − Ve2Tm
2π2 ∂

∂F

1∫

Y=0


 ′ cos (nπY ) dY + Ve2T
∂

∂F

1∫

Y=0

∂2
 ′

∂Y 2 cos (nπY ) dY

−Ve2q
∂2

∂F2

1∫

Y=0


 ′ cos (nπY ) dY − ∂

∂F

1∫

Y=0


 ′ cos (nπY ) dY − (
β2 + m2π2)

1∫

Y=0


 ′ cos (nπY ) dY = 0.

(31)

After rearranging, the final form of Eq. (31) can be written as

Ve2q
d2
 ′′ (m, n, F)

dF2 + (
m2π2Ve2T + n2π2Ve2T + 1

) d
 ′′ (m, n, F)

dF

+ (m2π2 + n2π2 + β2)
 ′′ (m, n, F) = 0 (32)

where


 ′′ (m, n, F) =
1∫

Y=0


 ′ (m, Y, F) cos (nπY ) dY . (33)

Here, it can be noted that Eq. (24.2) is converted into Eq. (32) with the help of FIT approach. It has been noticed
in Eq. (32) that it is a linear second-order homogeneous differential equation, and third-order terms (available
in Eq. (24.2)) have completely vanished. Now from Eq. (32), the characteristic equation is determined as

Ve2q�
2 + (

m2π2Ve2T + n2π2Ve2T + 1
)
� + (

m2π2 + n2π2 + β2) = 0 (34)

where

� = d
 ′′ (m, n, F)

dF
. (35)

The roots of characteristic equation are obtained from Eq. (34) in the following:

� = −
(
m2π2Ve2T + n2π2Ve2T + 1

)

2Ve2q
±
√√
√√
(
m2π2Ve2T + n2π2Ve2T + 1

)2 − 4Ve2q
(
m2π2 + n2π2 + β2

)

2Ve2q
.

(36)

For solving Eq. (32), three different distinct roots have appeared from Eq. (36), and three conditions have been
used to determine 
 ′′ (m, n, F) in the following.
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1st condition:
(
m2π2Ve2T + n2π2Ve2T + 1

)2−4Ve2q
(
m2π2 + n2π2 + β2

)
> 0 (for two different real roots).

Based on the standard procedure of solving the second-order linear ordinary differential equation, for two
distinct real roots from Eq. (36) and using the first condition, the solution of Eq. (32) is written as [31]:


 ′′ (m, n, F) = exp

{

−
(
m2π2Ve2T + n2π2Ve2T + 1

)

2Ve2q
F

}

(C1 cosh (J F) + C2 sinh (J F)) (37)

where

J =
√(

m2π2Ve2T + n2π2Ve2T + 1
)2 − 4Ve2q

(
m2π2 + n2π2 + β2

)

2Ve2q
. (38)

Now based on the inverse theorem concept of FIT expressed in Eq. (27), Eq. (37) is redefined as


 (X, Y, F) = 4
∞∑

m=0

∞∑

n=0

exp

{

−
(
m2π2Ve2T + n2π2Ve2T + 1

)

2Ve2q
F

}

(C1 cosh (J F)

+C2 sinh (J F)) cos (mπX) cos (nπY ) . (39)

To find out the unknown constants C1 and C2 from Eq. (39), Eq. (9.2) can be used. The shift of variables as
depicted in Eq. (23) gives

at F = 0,
∂


∂F
= 0. (40)

Now from Eqs. (39) and (40),

C2 = −
(
m2π2Ve2T + n2π2Ve2T + 1

)

2JV e2q
C1. (41)

Implementing Eq. (41) on Eq. (39) delivers


 (X, Y, F) = 4
∞∑

m=0

∞∑

n=0

exp

{

−
(
m2π2Ve2T + n2π2Ve2T + 1

)

2Ve2q
F

}

C1

[

cosh (J F) +
{

−
(
m2π2Ve2T + n2π2Ve2T + 1

)

2JV e2q

}

sinh (J F)

]

cos (mπX) cos (nπY ) . (42)

For finding out the unknown constantC1 from Eq. (42), the initial condition (see Eq. (9.1)) is applied according
to Eq. (23) as

at F = 0, 
 (X, Y, 0) = θSteady (X, Y, 0) − � (X) . (43)

Implementing Eqs. (22) and (25) on Eq. (43) gives

∞∑

m=0

∞∑

n=0

C1 cos (mπX) cos (nπY ) = A cosh (βX) + B sinh (βX) + (1 − ε)
Q∗

m

β2

+ {D cosh (βkX) + E sinh (βkX)}
{
g cosh (βkY ) + √

2 sinh (βkY )
}

+ exp (−βX) + exp (−βY )

−Q

β

[
cosh (βX)

tanh (β)
− sinh (βX)

]
− (1 − ε)

Q∗
m

β2 . (44)
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To find out the unknown constant C1, the orthogonal property relations [31,32] can be implemented by

multiplying
1∫

X=0
cos (mπX) dX and

1∫

Y=0
cos (nπY ) dYon both sides of Eq. (44), and this gives

∞∑

m=0

∞∑

n=0

1∫

X=0

1∫

Y=0

C1 cos
2 (mπX) cos2 (nπY )dXdY

=
1∫

X=0

1∫

Y=0

[{
A cosh (βX) + B sinh (βX) + (1 − ε)

Q∗
m

β2

}

+
{
(D cosh (βkX) + E sinh (βkX))

(
g cosh (βkY ) + √

2 sinh (βkY )
)}

+ exp (−βX) + exp (−βY )

−Q

β

{
cosh (βX)

tanh (β)
− sinh (βX)

}
− (1 − ε)

Q∗
m

β2

]
cos (mπX) cos (nπY ) dXdY . (45)

Now proceeding with the integral operations in Eq. (45), the mathematical expression ofC1 can be represented
as follows:

C1 =
[

Dg
βk sinh (βk) cos (mπ)

β2
k + m2π2

βk sinh (βk) cos (nπ)

β2
k + n2π2

]

+
[

gE
βk cosh (βk) cos (mπ) − βk

β2
k + m2π2

βk sinh (βk) cos (nπ)

β2
k + n2π2

]

+
[√

2D
βk sinh (βk) cos (mπ)

β2
k + m2π2

βk cosh (βk) cos (nπ) − βk

β2
k + n2π2

]

+
[√

2E
βk cosh (βk) cos (mπ) − βk

β2
k + m2π2

βk cosh (βk) cos (nπ) − βk

β2
k + n2π2

]

. (46)

Hence, for the 1st condition, the transient thermal response of the skin tissue can be depicted mathematically
as

θt (X, Y, F) = Q

β

[
cosh (βX)

tanh (β)
− sinh (βX)

]
+ (1 − ε)

Q∗
m

β2

+4
∞∑

m=0

∞∑

n=0

exp

{

−
(
m2π2Ve2T + n2π2Ve2T + 1

)

2Ve2q
F

}

C1

[

cosh (J F) +
{

−
(
m2π2Ve2T + n2π2Ve2T + 1

)

2JV e2q

}

sinh (J F)

]

cos (mπX) cos (nπY ) .

(47)

2nd condition:
(
m2π2Ve2T + n2π2Ve2T + 1

)2 − 4Ve2q
(
m2π2 + n2π2 + β2

) = 0 (for two repeated roots).

The solution of Eq. (32) (second-order linear ordinary differential equation) for two similar roots is
expressed as [31]


 ′′ (m, n, F) = exp

{

−
(
m2π2Ve2T + n2π2Ve2T + 1

)

2Ve2q
F

}

(C3 + C4F) . (48)

From the inversion theorem as stated in Eq. (27), Eq. (48) can be represented as follows:


 (X, Y, F) = 4
∞∑

m=0

∞∑

n=0

exp

{

−
(
m2π2Ve2T + n2π2Ve2T + 1

)

2Ve2q
F

}

(C3 + C4F) cos (mπX) cos (nπY ).

(49)
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Now to find out the unknown constants C3 and C4 from Eq. (49), Eq. (9.2) has been utilized. This provides

C4 = −
(
m2π2Ve2T + n2π2Ve2T + 1

)

2Ve2q
C3. (50)

To find out the unknown constantC3, the same procedure has been followed as considered in the first condition
(refer Eqs. (43)–(46)), and it has been found that C3 = C1. Hence, the transient thermal response of the skin
tissue can be expressed mathematically for the second condition as

θt (X, Y, F) = Q

β

[
cosh (βX)

tanh (β)
− sinh (βX)

]
+ (1 − ε)

Q∗
m

β2

+4
∞∑

m=0

∞∑

n=0

exp

{

−
(
m2π2Ve2T + n2π2Ve2T + 1

)

2Ve2q
F

}

C1

{

1 −
(

−
(
m2π2Ve2T + n2π2Ve2T + 1

)

2Ve2q

)

F

}

cos (mπX) cos (nπY ) . (51)

3rd condition:
(
m2π2Ve2T + n2π2Ve2T + 1

)2 − 4Ve2q
(
m2π2 + n2π2 + β2

)
< 0 (for no real roots).

The solution of Eq. (32) of the second-order linear ordinary differential equation for non-real (imaginary)
roots is [31]


 ′′ (m, n, F) = exp

{

−
(
m2π2Ve2T + n2π2Ve2T + 1

)

2Ve2q
F

}

(C5 cos (J F) + C6 sin (J F)) . (52)

Combining Eqs. (27) and (52), we obtain,


 (X, Y, F) = 4
∞∑

m=0

∞∑

n=0

exp

{

−
(
m2π2Ve2T + n2π2Ve2T + 1

)

2Ve2q
F

}

(C5 cos (J F) + C6 sin (J F)) (53)

Again the application of Eqs. (9.2) and (53) yields,

C6 = −
(
m2π2Ve2T + n2π2Ve2T + 1

)

2JV e2q
C5. (54)

In a similar way, by the application of the initial condition (refer Eq. (9.1)) along with the orthogonal property
relation as depicted for the first and second conditions, the unknown constant C5 is found exactly similar to
C1. Thus,

C5 = C1. (55)

Then, the transient tissue temperature is obtained for the third condition as

θt (X, Y, F) = Q

β

[
cosh (βX)

tanh (β)
− sinh (βX)

]
+ (1 − ε)

Q∗
m

β2

+4
∞∑

m=0

∞∑

n=0

exp

{

−
(
m2π2Ve2T + n2π2Ve2T + 1

)

2Ve2q
F

}

C1

[

cos (J F) +
{

−
(
m2π2Ve2T + n2π2Ve2T + 1

)

2JV e2q

}

sin (J F)

]

cos (mπX) cos (nπY ) .

(56)

It can be highlighted from the combined form of Eqs. (47), (51), and (56) that the solution of the 2-D transient
tissue temperature θt on the basis of LTNE bioheat model is dependent on several therapeutic variables such as
blood perfusion parameter (β), two different thermal relaxation time lags (Veq and VeT), porosity factor (ε),
imposed external heat flux (Q), constant metabolic heat generation rate (Qm*), and therapeutic exposure time
(F). Now the impact of these dependent variables on the 2-D thermal response in viewpoint of the regional
hyperthermia treatment is analysed and the sustainability of such analysis in relation to the thermal therapy is
discussed in the following Sections.
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4 Results and discussion

The most significant disadvantage of chemotherapy are treatment-related side effects. According to National
Cancer Institute [33], individuals undergoing chemo frequently report experiencing additional symptoms such
as nausea, vomiting, loss of appetite, constipation, or diarrhoea. The most challenging part of chemo patients
is to adapt with the induced impacts of toxicity of cytotoxic drugs on human immune system. Thus, from the

Table 1 Constant thermogeometric properties as input variables bestowed in the present hybrid analytical computation

Parameter Value

Length of skin tissue (L × L) 100mm × 100mm
Arterial temperature (blood) (Tb) 37.1 ◦C
Surrounding temperature of tissue under non-therapeutic condition (T∞) 30 ◦C
Rate of metabolic heat generation (qm) 368.1Wm−3

Biot number (Bi) 0.1
Heat flux (q0) 50Wm−2
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Fig. 2 a Comparison of present theoretical research work on human body with published experimental research work [34] on
pig, and b error distribution of thermal response with time between present theoretical work and published experimental work
[34]
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Fig. 3 Isotherms generated in physical domain for constant heat flux of q0 = 50Wm−2 at ωb = 0.1 s−1, ε = 0.005, dpore =
0.001m, Nu = 1 for different therapeutic exposures

sustainability point of view, chemotherapy treatment may be a bit questionable. But the research work carried
out on hyperthermia indicates that it doesn’t have any report of toxic effects on the patients’ body. Malignant
cells are particularly vulnerable by heating. In vivo studies suggest that the temperature in the range of 40–44 ◦C
causes selective damage to the tumours [3]. Protein denaturation is the prime molecular event to be occurred in
this temperature range led by hyperthermia. The thermal dose to be targeted for a particular malignant tissue
inside the human body is based on the heat energy alone. The combined effort of particular thermal dose and
the specific predefined therapeutic exposure (heating time) accomplishes the successful hyperthermia therapy.

Particularly, the regional hyperthermia therapy is much more complex than the localized heating due to a
wide variation in therapeutic properties of body tissues. Since in regional hyperthermia energy is delivered to
the deep-seated diseased tumour in a focused manner, energy is also delivered to the adjacent normal tissues.
Under such prevailing conditions, the selective heating of tumours is feasible only when the heat dissipation by
blood flow through the normal tissue is higher than the malignant tissue [1,2]. Preserving all these biological
rationales in mind, we have incorporated a large structure of tissue 100mm× 100mm to justify the aspect of
regional hyperthermia. Here, it can be noted fromEq. (7) that τq and τT are purely dependent on thermophysical
properties of tissue and blood, porosity, and coupling factor. Hence, depending upon the magnitude of these
variables, thermal relaxation time lags are determined as output variables, whereas for LTE bioheat models, τq
and τT values are to be assumed based on the realistic data [4]. The thermophysical properties of human tissue
and blood are considered in the present study as [13]: ρt = ρb = 1050 kgm−3, kt = kb = 0.5Wm−1 ◦C−1,
and ct = cb = 3770 Jkg−1 ◦C−1. Several other input therapeutic variables are given in Table 1. The results
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Fig. 4 Thermal contour in physical domain of skin tissue for sinusoidal heat flux of q = q0 sin(ωnt +ϕ) at q0 = 50Wm−2,ωb =
0.1 s−1, ε = 0.005, dpore = 0.001m, ωn = 0.1 rad s−1, ϕ = 0.01rad, and Nu = 1 for different therapeutic exposures
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Fig. 5 Spatiotemporal 3-D surface evolution of thermal response for q = q0
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Fig. 6 Spatiotemporal 3-D surface evolution of thermal response for q = q0 sin(ωnt + ϕ)

have been generated in such a manner that the sustainability of the regional hyperthermia therapy would be
rationalized by implementing the two-temperature energy model as proposed by LTNE approach.

The first objective of this research work is to validate the present output with the published results. From the
literature survey, it has been already noticed that most of the theoretical 2-D bioheat models are created based
on localized hyperthermia not targeting the RHT. Hence, we have focused on the experimental research work.
Again the literature review indicates that currently no research work exists on living tissues of human body
subjected to thermal therapies. Though a few experimental studies have been conducted on artificial tissue
phantom, the thermophysical properties of living tissue and dead tissue (immediately after rigour mortis) are
entirely different, and it would not be so logical to compare with these research outputs. In these instances, the
temperature measurement has been carried out on tissue phantom. Ware et al. [34] developed a hyperthermia
device to provide the thermal dose for cancer surgery, and the experimentation has been conducted on pig
by using the ‘pancreatic ductal adenocarcinoma’ (PDAC) model. This research work assessed that a mild
hyperthermia therapy with the temperature range of 41–46 ◦C would be better for eradicating cancerous cells
by preserving the healthy cells. As the experimental work on live tissues is being considered to be real-time
data, we have plotted the temperature distribution curve with the therapeutic exposure time for the present
work and results generated by Ware et al. [34]. Figure 2a indicates that the variation in thermal response of
the present 2-D analytical modelling is in line with the experimental output. This validation would also be a
useful comparison of the bioheat modelling of flesh products. A minute deviation of temperature distribution
in Fig. 2a is observed as the real-time data consist of many nonlinearities which is very difficult to capture in
the theoretical investigation. For the validation purpose, the therapeutic variables with constant heat flux are
considered as dpore = 0.001m,ωb = 0.15 s−1, ε = 0.005, Bi = 0.1, Nu = 0.05 at the location of x = 0.05m
and y = 0.05m. Based on these input variables, the thermal relaxation time lags and coupling factor have
been found from Eq. (6) as: τq = τT = 12.38s and G = 965.5Wm−3 oC−1. In Fig. 2b, the error distribution
of tissue temperature between the present and the published work [34] is displayed, and it has been noted that
the maximum temperature deviation is 2.26%. However, the present work emphasized the therapeutic heating
exposure of longer time duration with both the constant and sinusoidal heating for the lower peak temperature
of entire surgery as well as better assurance of less damage of healthy tissues inside the human body. Hence,
from the graphical representation depicted in Fig. 2, it can be highlighted that the present analytical model is
best suited with the real-time analysis, and the correctness of the in-house computer programming (carried out
in FORTRAN language) is also well justified keeping the experimental work [34] as the benchmark.

We have created 3-D surface isotherms for different therapeutic exposure times for both the constant and
sinusoidal heat flux. This observation has been studied to understand the two-dimensional temperature field
produced during RHT. In Fig. 3 for maintaining a constant heat flux at the therapeutic surface, it can be
noted that the temperature gradually drops along the inner core of the malignant tissue. Obviously, a higher
dimension impact is available due to the large size of the tissue as heat propagates in both x- and y-directions.
Also it has been noticed that the temperature profile of the entire tissue has been decreased with the increase
in therapeutic heating time (tends to be stabilized). It is clear that thermal contour lines are perpendicular to
the boundaries at x = L (0 ≤ y ≤ L), y = 0 (0 ≤ x ≤ L), and y = L (0 ≤ x ≤ L). From the mathematical
and physical points of view, this trend shows the correctness of the present model because all the boundary
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conditions at their boundaries satisfy zero temperature gradient except at the therapeutic surface boundary. At
x = 0 (0 ≤ y ≤ L), the therapeutic boundary condition (nonzero temperature gradient) has been imposed,
and it shows that the curves incline at the boundary. For the results depicted in Fig. 3, the input therapeutic
variables are taken as q0 = 50Wm−2,ωb = 0.1 s−1, ε = 0.005, dpore = 0.001m, and Nu = 1. Based on these
variables, the thermal relaxation times and coupling factor are determined (based on Eq. (6)) as τq = 1.897s,
τT = 1.897s, and G = 10376.99Wm−3 ◦C−1.

In Fig. 4 for the oscillating heat flux, the same physical phenomena as illustrated in Fig. 3 are examined,
and a slight variation in the contour curves is obtained. Finally, based on the boundary conditions used for the
present work, it can be highlighted that the isotherms are correctly generated in the x- and y-directions of the
physical domain of amalignant tissue. The fundamental objective behind implementing oscillating (sinusoidal)
heat flux is to ensure the safety of healthy tissues inside the human body. Due of waveform heating, a specific
portion of the tissue is not exposed to fixed temperature for a certain period. If temperature oscillates, then
chances of development of thermal injuries inside the human body reduces. This studymay also help to validate
the present mathematical model. For the research output given in Fig. 4, the input therapeutic variables are used
as q0 = 50Wm−2, ωb = 0.1 s−1, ε = 0.005, dpore = 0.001m, Nu = 1, ωn = 0.1 rad s−1, and ϕ = 0.01 rad.
Based on these variables, the thermal relaxation times, and the coupling factor are evaluated (based on Eq. (6))
as τq = 1.897 s, τT = 1.897 s, and G = 10376.99Wm−3 ◦C−1. From Figs. 3 and 4, it can also be highlighted
that for the prediction of temperature response under the regional hyperthermia treatment, the present 2-D
model will have an ability to determine the temperature response correctly in comparison with the existing 1-D
model [25]. Finally, as the present 2-D model has predicted an accurate result for the temperature, it can be
used in the practical implementation for knowing the actual heat propagation in living tissues with a predefined
external heat source to provide the proper treatment protocol in destructing malignant tumours.

The final objective of this research work is to analyse the spatiotemporal behaviour of thermal response
in the physical domain for both constant and sinusoidal heat flux imposed on the skin surface. For this study,
input therapeutic variables are dpore = 0.001m, ωb = 0.15 s−1, Bi = 0.1,Nu = 0.05, and ε = 0.005
(for other process variables, refer Table 1). Figure 5a depicts the temperature distribution for the constant
heat flux along the x-direction at y = 0.05 m, and Fig. 5b represents the thermal response along the y-
direction at x = 0.05m. The temperature range has been found as 38–44 ◦C and 40–41.4 ◦C along x-direction
and y-direction, respectively. In both cases, thermal oscillations have been observed, and prime causes is
implementation of LTNE approach which is the modified version of DPL bioheat model. As two thermal
relaxation time lags are involved, it is evident to produce hyperbolic characteristics of thermal behaviour [4].
From such spatiotemporal investigation of thermal behaviour, it has been noticed that temperature along y-axis
deviates around 1.8–2 ◦C in the physical domain of skin tissue, and this can suggest that the consideration of
two-dimensionalmodelling is essential rather than 1-D analysis formore accurate and appropriate analysis. The
magnitude of temperature deviation is higher along x-direction (6 ◦C) due to the involvement of external heating
along this direction. In Fig. 6 the same phenomenon is observed for sinusoidal heat flux where the oscillating
parameters are taken asωn = 0.1 rad s−1and ϕ = 0.5 rad. It has been noticed that the nature of the temperature
field remains same with a longer therapeutic exposure due to the impingement of the sinusoidal nature of the
heat flux on the boundary surface as compared to the constant heat flux. Such oscillating kind of therapeutic
heating might be preferable for a prolonged period of thermal therapy with the moderate temperature range
as exposed in the present work, and it will help to reduce the possibility of collateral damage of skin tissue
induced by thermal injury. The coupling factor and the relaxation times in the present analysis with both the
constant and oscillating heat flux have been determined as τq = τT = 18.48 s and G = 1065.5Wm−3◦C−1.

5 Conclusions

The concluding statements can be summarized based on the research output as follows:

(a) It has been attempted to establish the exact analytical solution of the temperature distribution of LTNE
DPL bioheat model in the bi-dimensional form subjected to the regional hyperthermia therapy. The
implementation of the present hybrid scheme comprising ‘shift of variables’ and ‘finite integral transform’
has been well justified and validated.

(b) The concept of implementing the porous media approach in the skin tissue is more realistic due to its
highly non-homogeneous structure, and this work completes the successful application with the spatially
dependent initial condition as suggested by the medical science. It has been noticed in the present research
work that the larger the blood vessels (pore diameter), the higher the impact of LTNEmodelling. The higher
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the porosity, the better the DPL waveform has been found. Such aspects actually glorify the acceptance
of the LTNE modelling over the LTE modelling in the arena of biological heat transfer.

(c) We have proposed the concept of a medium range of tissue heating 38–44 ◦Cwith the prolonged treatment
time to avoid internal injury (tissue trauma). In case of the regional hyperthermia, first of all the size of
the affected tissue is very large, and the location is interior of the body as compared to the localized
hyperthermia [3]. So the external energy to be delivered to a particular organ has to pass through several
healthy (non-malignant) tissues. To avoid any possibility of tissue trauma or thermal damage, we strongly
recommend maintaining the temperature range of 38–44 ◦C for the regional hyperthermia therapy. The
results indicate that the larger skin tissue would be preferred for the LTNE model. The sinusoidal heat
flux is proved to be a better alternative than the constant heat flux when a longer therapeutic exposure is
necessary to kill the cancer cells completely.
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