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Abstract The interactions of the slow flow induced by the entrainment of axisymmetric jets and plumes
with the surrounding geometry may result in the appearance of azimuthal swirling motion. This swirling flow
evolves as it approaches the jet (or plume) as a result of the action of viscous forces on the solid surfaces
bounding the fluid domain. When the initial size of the jet or plume a is much smaller than the characteristic
radial distance R∞ at which the swirl is generated, the evolution of the flow leads to a self-similar description
with weak swirlingmotion, valid at intermediate radial distances R such that a � R � R∞ and axial distances
L from the source such that a � L � R∞. In the present investigation of both laminar and turbulent jets
and plumes, it is found that the circulation Γ is described by a self-similar solution of the second kind, with
the exponent λ in the radial decay rate Γ ∝ (R/R∞)λ obtained as an eigenvalue. The resulting azimuthal
velocity distributions can find application in mathematical formulations of jet and plume problems involving
interactions with ambient swirl, relevant in studies of dust devils and fire whirls.

1 Introduction

Swirling jets and plumes are central elements in a number of technological applications and natural phenomena.
The interactions of the swirling motion with the streamwise motion play an important role in many interesting
fluid-mechanical phenomena, an example being vortex breakdown [1,2], and are responsible for the emergence
of tornadoes [3], dust devils [4], and fire whirls [5].

In technological applications pertaining to combustion, the swirling motion is imparted in the jet stream
[6]. By way of contrast, in fire whirls the swirling motion is generated in the surrounding ambient atmosphere.
Depending on the topography andwind conditions, different mechanisms can be responsible for the production
of swirl in realistic scenarios, including flows channeled by topological features, interactions of multiple fires
or plumes, or vortices formed in the wake of a hill or ridge [5]. In laboratory studies of dust devils and fire
whirls, for example, the azimuthal velocity component is generated by the direct interaction of the relatively
slow flow induced in the meridional plane by the entrainment of the developing plume with geometrical
constraints placed at large radial distances. Different experimental arrangements are preferred by different
groups, including a rotating cylindrical screen [7], a set of long vertical flow vanes placed at a certain angle
with respect to the radial direction [8] and two slightly offset semi-cylindrical surfaces that leave two small
slits for the tangential inflow of the entrained air [9].

The present analysis addresses the swirling motion induced in configurations, often found in experiments,
where the constraints used to redirect the radial flow driven by entrainment are located at distances R∞ much
larger than the initial size of the jet or plume a (e.g., the injector radius of the jet or the size of the hot
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region generating the plume). Under those conditions, in a region where the axial distance from the source
L is neither too small nor too large, such that a � L � R∞, the circulation Γ is expected to evolve for
decreasing radial distances R to reach a solution at a � R � R∞ that is largely independent of the details
of the swirl-generation process. Information about these intermediate solutions is essential in understanding
the fluid-mechanical interactions occurring in the near field R ∼ a and in enabling rigorous mathematical
formulations of the associated dust-devil and fire-whirl problems to be completed.

The analysis will consider laminar and turbulent jets and also laminar and turbulent plumes. At the edges
of axisymmetric laminar plumes and of axisymmetric jets (laminar or turbulent), the entrainment rate per unit
axial length (per azimuthal radian) Φ is constant and can be expressed in the form Φ = Kν, where ν is
the kinematic viscosity of the fluid, but it varies with axial distance for turbulent plumes. The dimensionless
entrainment constant K assumes values of order unity for laminar jets and also for laminar plumes, but it
would be anticipated to be large for turbulent jets. When K is of order unity, the surrounding flow has an
effective Reynolds number of order unity, as was shown by Schneider [10], who found an exact self-similar
solution of the axisymmetric Navier–Stokes equations without circulation satisfying the no-slip condition at a
circular-conical wall.

The Schneider solution was subsequently used in matched asymptotic expansions to construct higher-order
descriptions of laminar jets [11] and also in a multiple-scale analysis to account for the slow momentum decay
that occurs in the jet in the presence of the outer flow [12]. At large distances from the inlet, the jet has lost
a significant fraction of its initial momentum, but the jet is still slender, and continues to entrain outer fluid
with the same constant rate, up to extremely large distances from the jet exit that scale with the exponential of
the jet Reynolds number squared. At these distances, the jet merges with the outer flow, giving rise to a large
recirculating toroidal eddy whose description necessitates numerical integration of the full Navier–Stokes
equations. The associated parameter-free problem has not been investigated yet, although an approximate
description, obtained by extending the near-field asymptotic expansion outside its range of applicability, is
given in [12,13], with results in agreement with experimental observations [14]. Since the length associated
with jet momentum loss is typically many orders of magnitude larger than the characteristic size R∞, this
additional complicating effect does not need to be accounted for when analyzing the swirling motion induced
by jets.

Schneider also considered the flow induced by turbulent jets [10], as well as the associated slow decay
of the jet momentum flux [12], which has been observed in laboratory experiments [15]. The turbulent jet is
bounded by a well-defined surface, across which the entrainment of non-turbulent fluid occurs [16], the flow
induced in the surrounding atmosphere being laminar. Unlike laminar jets, however, the entrainment constant
of a turbulent jet assumes a value K � 1 of the order of the jet Reynolds number, and the flow surrounding
the jet is effectively inviscid and irrotational, outside a thin boundary layer located near the bounding wall. For
axisymmetric turbulent plumes, the entrainment rate increases with the two-thirds power of the axial distance
to the origin, and in the absence of swirl the surrounding flow also is potential outside a near-wall boundary
layer. The potential-flow solutions describing the flow induced by turbulent jets and by turbulent plumes are
due to Taylor [17].

These previous analyses did not consider the presence of azimuthal swirling motion, which is to be
investigated here, with specific attention given to the intermediate-asymptotic solutions arising at distances
a � R � R∞. After formulating the problem, we begin by considering the cases of laminar jets and laminar
plumes. It is shown that the circulation, decreasing for decreasing radial distances R, is given by a self-similar
solution of the second kind proportional to Rλ, with the exponent λ obtained as an eigenvalue. Solutions are
also given for the self-similar swirling flow induced by a turbulent jet and (later) by a turbulent plume. In these
cases, determination of the rate of radial decay requires consideration of the structure of the viscous flow in
the near-wall boundary layer, such boundary layers not occurring in the fully viscous laminar problems.

2 Formulation

Although jets and plumes often emerge perpendicular to a flat wall, for generality our analysis considers the
fluid domain to be bounded by a truncated conical wall of semi-angle π − α, whose axis of symmetry is
directed downstream along the jet or plume axis, as indicated in Fig. 1. Following Schneider, attention is given
to angles 0 < α < π with the case α = π/2 representing the flow above a flat wall. Although the flow exiting
from a straight pipe will be different in that the radius a plays an additional role, there nevertheless is some
interest in the limit α = π . The solution is described most conveniently in spherical polar coordinates (r, θ),



Swirling flow induced by jets and plumes 2223

r

2a

α

Φ(  )

θ

r

Fig. 1 Schematic illustration of the configuration and the adopted coordinate system

where r = R/sin θ is the distance from the apparent apex of the cone and θ is the angular distance from the
positive axis. For simplicity, in terms of the azimuthal component of velocity we introduce the circulation
per unit azimuthal angle Γ = r sin θ vϕ for describing the azimuthal swirling motion and employ the Stokes
stream function ψ for the meridional motion, so that the radial and polar-angle components of velocity are

vr = 1

r2 sin θ

∂ψ

∂θ
and vθ = − 1

r sin θ

∂ψ

∂r
. (1)

It is convenient to eliminate the pressure by writing the momentum equation in terms of the azimuthal com-
ponent of the vorticity ωϕ , giving

Ω = r sin θ ωϕ = −L(ψ), (2)

involving the axisymmetric Stokesian operator,

L() = ∂2

∂r2
+ 1 − ξ2

r2
∂2

∂ξ2
, (3)

where ξ = cos θ . In terms of the streamfunction and azimuthal vorticity, the axisymmetric Navier–Stokes
equations governing the swirling motion reduce to

−∂ψ

∂ξ

∂

∂r

[
Ω

r2(1 − ξ2)

]
+ ∂ψ

∂r

∂

∂ξ

[
Ω

r2(1 − ξ2)

]

− 1

r2(1 − ξ2)

(
1

r

∂Γ 2

∂ξ
+ ξ

1 − ξ2

∂Γ 2

∂r

)
= ν

1 − ξ2
L(Ω), (4)

−∂ψ

∂ξ

∂Γ

∂r
+ ∂ψ

∂r

∂Γ

∂ξ
= νr2L(Γ ). (5)

The set of boundary conditions for the far-field flow include the no-slip condition at the conical wall

∂ψ

∂r
= 0,

∂ψ

∂ξ
= 0, Γ = 0 at ξ = ξw, (6)

where ξw = cosα, together with the conditions along the axis of symmetry

∂ψ

∂r
= Φ, (1 − ξ)1/2

∂2ψ

∂ξ2
= 0, (1 − ξ)1/2

∂Γ

∂ξ
= 0 as ξ → 1, (7)

corresponding to matching with the velocity profile in the jet or plume, the quantity Φ = −r sin θ vθ repre-
senting the entrainment rate that may vary with the axial distance.
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3 Swirling flow induced by laminar jets and laminar plumes

3.1 Schlichting and Yih velocity solutions

The structure of a submerged jet of initial radius a depends on the value of the Reynolds number Re =
(J/π)1/2/ν, where J is the jet kinematic momentum flow rate (the integral of the square of the exit fluid
volume flow rate over the jet exit area). For moderately large values of Re, the resulting slender laminar jet
remains stable and can be calculated with errors of order Re−2 by integrating the boundary-layer form of the
conservation equations. The solution includes a jet-development region with characteristic length Re a, which
has been described numerically with the boundary-layer approximation in [18], followed by a self-similar
region where the solution corresponds to the flow induced by a point source of momentum, obtained in closed
analytical form by Schlichting [19]. The resulting stream function is given by ψ = νr FS(s), with

FS = 4s2

64/3 + s2
(8)

involving the rescaled transverse coordinate s = Re θ . Since −r sin θvθ = νFS, as follows from Eq. (1), the
entrainment rate is given in this case by Φ = νFS(∞) = 4ν.

As shown by Zel’dovich [20], the solution for laminar plumes far above the heat source (i.e., at distances
sufficiently larger than the size of the heat source) can also be described using approximations of the boundary-
layer type. The formulation of the self-similar problem, first written by Yih [21], involves the stream function
ψ = νr FY(y) and the similarity coordinate y = (Br2/ν3)1/4θ , where B, widely termed the specific buoyant
flux, is the (assumed constant) time rate of supply at the source of the weight (product of mass and acceleration
of gravity) deficiency with respect to the ambient fluid (presumed to have constant density at the source level),
divided by the ambient fluid density (resulting in units of B being the product of acceleration and volume per
unit time) [22]. This supply rate at the source is a consequence of the axial force associated with the pressure
gradient at the source differing from that in the ambient atmosphere. The solution depends on the Prandtl
number Pr. With the exception of the two cases

FY = 6y2

12
√
2π + y2

(Pr = 1) and FY = 4y2

16
√
2π/5 + y2

(Pr = 2), (9)

the solution requires in general numerical integration [23]. The resulting constant entrainment rate Φ = Kν,
with K = FY(∞), decreases with increasing Pr from the large value K 	 5/Pr for Pr � 1 to reach a
minimum value K 	 3.2 for Pr � 1 [24], with the intermediate values K = 6 and K = 4 corresponding to
Pr = 1 and Pr = 2, respectively, as follows from Eq. (9).

3.2 Preliminary considerations

The flow induced in the surrounding atmosphere by the constant entrainment rate Φ = Kν of self-similar
laminar jets (K = 4) and plumes involves small characteristic velocities vr and vθ of order ν/r . Correspond-
ingly, the presence of geometrical constraints at large radial distances R ∼ R∞ � a can be expected to induce
swirling velocities of order vϕ ∼ ν/R∞, corresponding to values of the circulation Γ ∼ ν. The specific dis-
tribution of Γ depends on the swirl-generation mechanism. For example, in experiments using vertical vanes
to deflect the flow the inclination angle of the vanes with respect to the radial direction α determines the local
value of the circulation Γ = R∞(vr sin θ + vθ cos θ) tan α in terms of the local velocity component perpen-
dicular to the jet or plume (vr sin θ +vθ cos θ). We investigate below the existence of intermediate-asymptotic
solutions for axial distances a � L � R∞, at radii a � R � R∞, independent of the specific details of the
geometrical constraints that are responsible for redirecting the flow at R ∼ R∞.

It is instructive to begin by investigating the existence of self-similar solutions of the first kind involving the
velocity scalings vr ∼ vθ ∼ ν/r and Γ ∼ ν, which apply in the swirl-generation region R ∼ R∞. Introducing
the self-similar stream function ψ = Kνr f̃ (ξ) and associated circulation Γ = Kνh(ξ) into Eqs. (4) and (5)
leads to

K−1[(1 − ξ2) f̃ ′′′′ − 4ξ f̃ ′′′] − f̃ f̃ ′′′ − 3 f̃ ′ f̃ ′′ − 2hh′/(1 − ξ2) = 0, (10)

K−1(1 − ξ2)h′′ − f̃ h′ = 0, (11)
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to be integrated with the boundary conditions
{
f̃ = f̃ ′ = h = 0 at ξ = ξw,

f̃ − 1 = (1 − ξ)1/2 f̃ ′′ = (1 − ξ)1/2h′ = 0 as ξ → 1.
(12)

In the notation employed throughout the paper, the prime denotes differentiation of functions of one variable
(for example, differentiation with respect to ξ in the above equations).

It is found that the solution to the above problem involves necessarily a zero circulation h = 0. To see this,
one may integrate Eq. (11) once to write

h′(ξ) = h′(ξw) exp

(∫ ξ

ξw

K f̃ (x)

1 − x2
dx

)
. (13)

The integrand in the exponential is non-integrable as ξ → 1. Therefore, for any finite-valued function f̃ (ξ)
satisfying Eq. (12), the slope at the wall h′(ξw) must vanish in order to satisfy the analyticity condition at the
axis of symmetry, so that h′(ξ) is identically zero everywhere, as follows from Eq. (13). Since only solutions
with constant h are admissible, consideration of the no-slip condition at ξ = ξw leads to the anticipated result
h = 0, while the solution for f̃ reduces to Schneider’s stream function f , obtained by integrating

K−1[(1 − ξ2) f ′′′′ − 4ξ f ′′′] − f f ′′′ − 3 f ′ f ′′ = 0 (14)

with boundary conditions
f = f ′ = 0 at ξ = ξw,

f − 1 = (1 − ξ)1/2 f ′′ = 0 as ξ → 1.
(15)

3.3 The self-similar solution of the second kind

The above considerations indicate that the magnitude of the circulation Γ at intermediate distances a � R �
R∞ is negligible compared with ν. Hence, the motion in the meridional plane, with characteristic velocities
vr ∼ vθ ∼ ν/r given by Schneider’s stream function ψ = Kνr f (ξ), is accompanied by a much weaker
swirling motion, whose magnitude decays with decreasing radial distance as a result of the action of the
viscous forces on the wall. The associated solution for the circulation is a self-similar solution of the second
kind [25] of the form

Γ = ArλΛ(ξ), (16)

where the exponent λ > 0 and the function Λ(ξ), defining the rate of radial decay and the angular distribution
of the azimuthal swirl, respectively, are determined by solving the eigenvalue problem

K−1[(1 − ξ2)Λ′′ + λ(λ − 1)Λ] − f Λ′ + λ f ′Λ = 0
Λ = 0 at ξ = ξw; (1 − ξ)1/2Λ′ → 0 as ξ → 1

}
(17)

as follows from Eq. (5). Without loss of generality, in looking for nontrivial solutions of Eq. (17) the normal-
ization condition Λ(1) = 1 is added to the computation of Λ. As is common in self-similar solutions of the
second kind [25], the constant factor A ∼ ν/Rλ∞ defining in Eq. (16) the magnitude of the circulation, whose
value depends on the details of the swirl-generation process occurring at R ∼ R∞, remains undetermined in
the analysis.

The self-similar structure identified here is reminiscent of that encountered previously in connection with
the axisymmetric flow surrounding a swirling jet discharging into a cylindrical coaxial confinement [26]. For
that configuration, the surrounding recirculating flow exhibits near the backstep wall a self-similar solution of
the first kind for the radial and axial velocity components and a self-similar solution of the second kind for
the azimuthal velocity, with a constant factor corresponding to A in the above description affecting the latter,
determined in that case by matching with the numerical solution found in the main recirculating region.

The solution of the eigenvalue problem defined in Eq. (17), obtained numerically by a shooting method
with an expansion of the solution about ξ = 1 employed to begin the integration and the value of λ adjusted
iteratively to satisfy the first boundary condition in Eq. (17), depends on the entrainment constant K and on the
angle α. Nontrivial solutions exist for a discrete set of positive values of λ. Since larger values of λ correspond
to swirl velocities that decay at a faster rate with decreasing radial distances, the eigenmode with the smallest
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Fig. 2 The exponent λ of the radial decay rate of the circulation as a function of the angle α, for various values of the dimensionless
entrainment constant K
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Fig. 3 Left: transverse distributions of circulation inside the laminar jet (ΛS) and the laminar plume with Pr = 1 (ΛY) obtained
from integration of Eqs. (18) and (19) for three values of λ = (0.68, 0.8, 0.95). Right: profiles of self-similar circulation Λ(ξ)
obtained by integration of Eq. (17) with K = 4 for different values of α

eigenvalue ultimately dominates the azimuthal motion as the axis is approached, so it is this value that is shown
in Fig. 2. It is seen that λ increases with increasing α and is not very sensitive to changes in K , especially near
the planar-wall value α = π/2, where the resulting differences in λ are quite small, as is shown in an inset.
The eigenfunctions Λ corresponding to the leading eigenvalues plotted in Fig. 2 decrease monotonically with
increasing θ . The resulting distributions, almost linear in the coordinate ξ = cos θ , are shown on the right-hand
side of Fig. 3 for K = 4, corresponding to a laminar jet or a laminar plume with Pr = 2.

3.4 Jet and plume swirl structures and uniformly valid solutions

The previous analysis provides in particular the axial distribution Γ = Arλ along θ = 0, corresponding to
the circulation surrounding the jet or plume. Since the circulation vanishes at the axis, the azimuthal velocity
must evolve across the jet or plume rapidly compared with its rate of change outside. The resulting distribution
of Γ is determined by integrating Eq. (5), employing convective terms evaluated with the corresponding self-
similar velocity. For the plume, a solution for λ = 0, corresponding to constant circulation in the surrounding
atmosphere, was obtained by Thomas and Takhar [27]. We give here solutions for values λ > 0 corresponding
to our self-similar distributions.

For the jet, described by the similarity coordinate s = Re θ , the solution for the circulation Γ = ArλΛS(s)
is obtained by integration of

sΛ′′
S + (FS − 1)Λ′

S − λF ′
SΛS = 0; ΛS(0) = ΛS(∞) − 1 = 0, (18)
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Fig. 4 Streamlines (dashed curves) and iso-contours of circulation (solid curves) corresponding to a laminar jet with Re = 20 as
obtained for α = π/2 and α → π from the uniformly valid composite expansions given in Eqs. (20) and (22). Results are given
for equally spaced values of the dimensionless stream function ψ/ν ranging from ψ/ν = 1 (bottom curve) to ψ/ν = 12 (top
curve) and also for equally spaced values of the circulation Γ/A = 0.1−1.5

where FS is the Schlichting stream function shown in Eq. (8). Similarly, for the plume the distribution of
circulation Γ = ArλΛY(y) is obtained in terms of the transverse coordinate y = (Br2/ν3)1/4θ from

yΛ′′
Y + (FY − 1)Λ′

Y − λF ′
YΛY = 0; ΛY(0) = ΛY(∞) − 1 = 0, (19)

where FY(y) is Yih’s stream function [21], given in Eq. (9) for Pr = 1 and Pr = 2. For λ = 0, this equation
reduces to the equation for constant outer circulation, considered in [27], as it must.

The self-similar solutions for the circulation inside laminar jets or laminar plumes are plotted on the left-
hand side of Fig. 3 for three selected relevant values of the eigenvalue λ. These results can be combined with
the circulation in the surrounding atmosphere to construct the composite expansions

Γ = Arλ[Λ(cos θ) + ΛS(Re θ) − 1] (20)

for the jet and
Γ = Arλ[Λ(cos θ) + ΛY(B

1/4r1/2θ/ν3/4) − 1] (21)

for the plume. These expressions, together with the composite expansion for the stream function obtained
previously by Schneider [10], provide a uniformly valid description for the far-field velocity of laminar jets
and laminar plumes. Sample results are shown in Fig. 4 for a jet with Re = 20, including the streamlines
(dashed curves), evaluated from the expression

ψ/ν = 4r

[
(Re θ)2

64/3 + (Re θ)2
+ f (cos θ) − 1

]
. (22)

4 Swirling flow induced by turbulent jets

In the absence of swirl, turbulent jets are known to display a self-similar solution including a mean mass flow
rate that increases linearlywith distance, corresponding to a constant entrainment rate. In this case, however, the
entrainment rate Φ = Kν is proportional to the square root of the kinematic momentum flow rate of the jet J ,
yielding K ∝ Re � 1 [28]. This linear proportionality has been verified in direct experimental measurements
of entrainment [29], with the resulting constant of proportionality being somewhat smaller than that predicted
theoretically by combining a simple turbulence model with measurements of the jet width [28]. Because of the
large value of the entrainment rate, the solution for the induced flow can be obtained by taking the limit K � 1
in Eq. (14). Integration of the resulting equation subject to f (1) − 1 = f (ξw) = 0 yields Taylor’s potential
solution [17] f = (ξ − ξw)/(1− ξw). Effects of viscous forces are confined to a thin near-wall boundary layer
of characteristic thickness K−1/2 � 1, which can be described by introducing the rescaled variables

η = K 1/2(ξ − ξw)

(1 − ξw)(1 + ξw)1/2
(23)
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and

F = K 1/2 f

(1 + ξw)1/2
, (24)

yielding the parameter-free problem

F ′′′ − FF ′′ + 1 − F ′2 = 0,

{
F = F ′ = 0 at η = 0,
F ′ → 1 as η → ∞.

(25)

The presence of swirl requires in principle modifications to the above solution. In the large-Reynolds-
number flow that surrounds the turbulent jet, the circulation is conserved along streamlines, as follows from
Eq. (5), so that the spatial distribution of circulation necessarily depends on the specific manner in which swirl
is introduced in the far field. If the resulting circulation is non-uniform, then azimuthal-vorticity production
through vortex-line stretching becomes important, as seen in Eq. (4), with the result that the flow in the
meridional plane differs in general from that described by Taylor’s potential solution. The resulting flow, which
lacks in general a self-similar solution, includes a viscous boundary layer where the radial pressure gradient
associated with the swirling motion can be expected to induce a strong radial inflow, thereby complicating
further the flow structure. For example, Burggraf, Stewartson, and Belcher [30] have shown that a potential
vortex with its axis perpendicular to a flat wall induces a viscous boundary layer on the wall that grows as the
radius decreases, reaches a maximum thickness, then decreases to zero thickness when the radius reaches zero,
thereby generating azimuthal vorticity in the flow external to the boundary layer as the axis is approached.

The previous discussion suggests that the swirling motion induced by turbulent jets exhibits in general
a complicated structure at intermediate radial distances a � R � R∞, including regions lacking a self-
similar solution that require numerical integration of partial differential equations to obtain proper matching
conditions. The solution simplifies in configurations where the flow deflection from the radial direction at the
external boundary is small, leading to weak swirl. If the deflection does not involve generation of azimuthal
vorticity, then the inviscid outer flow remains irrotational everywhere, and the meridional motion is given by
Taylor’s potential solution [17] f = (ξ − ξw)/(1 − ξw) at intermediate radial distances a � R � R∞,
whereas the self-similar structure of the accompanying viscous boundary layer is described by Eq. (25). Even
in this case of weak swirl, self-similar solutions of the formΓ = ArλΛ(ξ), analogous to those identified above
for laminar jets and plumes, can be encountered only in special cases, for which it can be seen by integrating
Eq. (17) for K � 1 that

Λ =
(

ξ − ξw

1 − ξw

)λ

(26)

in the outer inviscid region. Since this self-similar solution must be compatible with the distribution of swirl
introduced at the external boundary, its existence requires that the swirl-generation mechanism be adjusted
to produce exactly the needed circulation distribution. That special case, a notably simple one, is the case
considered here, and a corresponding simplification will be addressed for turbulent plumes in the following
section. It is important to recognize this limitation and to realize that alternative analyses of swirling turbulent
jets and plumes are warranted in the future.

The exponent λ in the self-similar solution Γ = ArλΛ(ξ) is determined in this case by considering the
distribution of circulation in the boundary layer, given by the solution to the eigenvalue problem

Λ′′ − FΛ′ + λF ′Λ = 0,

{
Λ = 0 at η = 0,
ηΛ′ − λΛ → 0 as η → ∞,

(27)

independent of α. This mathematical problem was encountered earlier in [30] when describing the circulation
in the near-wall viscous sublayer induced by a potential vortex. The eigenvalue was found to be λ = 0.6797,
with associated distributions of F(η) and Λ(η) shown as dashed curves in Fig. 5.

The prediction λ = 0.6797 for K → ∞, represented by a horizontal dashed line in Fig. 2, can be compared
with the values of λ obtained for finite values of K � 1 by integration of the eigenvalue problem defined in
Eq. (17). As can be seen, although the value of λ tends to approach λ = 0.6797 for increasing K , the departures
remain significant for configurations with cone angles approaching α = π (i.e., values of ξw → −1). As can
be anticipated from Eqs. (23) and (24), investigation of cases with 1+ξw � 1 requires introduction of rescaled
boundary-layer variables. In the distinguished limit K−1 ∼ 1 + ξw, the selections

γ = K (ξ − ξw) and F̃ = 2K f (28)
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Fig. 5 Self-similar stream function and circulation inside boundary layer for turbulent jets.Dashed curves correspond to integration
of Eqs. (25) and (27), whereas the solid curves are obtained from Eqs. (29) and (30)

Fig. 6 The variation with c = K (1+ ξw) of the eigenvalue λ obtained from Eq. (30) for turbulent jets with K−1 ∼ 1+ ξw � 1

are seen to yield the modified problem

4[(γ + c)F̃ ′′]′ − F̃ F̃ ′′ + 1 − F̃ ′ 2 = 0,

{
F̃ = F̃ ′ = 0 at γ = 0,
F̃ ′ → 1 as γ → ∞,

(29)

and

4(γ + c)Λ′′ − F̃Λ′ + λF̃ ′Λ = 0,

{
Λ = 0 at γ = 0,
γΛ′ − λΛ → 0 as γ → ∞,

(30)

where c = K (1 + ξw) carries the dependence of the problem on K and α. Sample profiles of stream function
F̃ and circulation Λ are shown in Fig. 5, while the variation of λ with c is given in Fig. 6. In agreement with
the results for K = 100 and K = 500 shown in Fig. 2, which give values of λ increasing as α approaches π ,
the value of λ obtained from Eq. (30) decreases with increasing c, asymptotically approaching for c � 1 the
limiting value λ = 0.6797 corresponding to the prediction for K → ∞.

5 Swirling flow induced by turbulent plumes

As can be shown on the basis of dimensional arguments [22], for turbulent plumes the mass flow rate in the
far field is proportional to r5/3, consistent with an entrainment rate increasing with r2/3 [31]. This can be
expressed in the form Φ = (5/3)CB1/3r2/3 in terms of the specific buoyancy flux B and a dimensionless
order-unity constant (5/3)C , the latter including an inconsequential factor 5/3 that simplifies the following
expressions for the stream function. In the absence of swirl, the flow induced is inviscid and potential, as
described by Taylor [17], except in a near-wall boundary layer whose thickness is proportional to r−1/3. In the
inviscid region, the stream function takes the self-similar form ψ = CB1/3r5/3g(ξ), where the function g is
determined by integration of

(1 − ξ2)g′′ + 10

9
g = 0; g(ξw) = g(1) − 1 = 0. (31)
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Fig. 7 Self-similar stream functionG and circulation Λ̂ inside the near-wall boundary layer obtained from integration of Eqs. (35)
and (37) for the case of turbulent plumes

The solution is

g = π√
3

√
1 − ξ2

[
P1
2/3(−ξw)

P1
2/3(ξw)

P1
2/3(ξ) − P1

2/3(−ξ)

]
, (32)

where P1
2/3 is the associated Legendre function of the first kind, with degree 2/3 and order 1. As previously

indicated, this is the special case to be addressed here for our swirling flows. Note that the specific expressions
given by Taylor [17] for the cases α = π/2 and α = π , involving derivatives of Legendre functions of degree
2/3, can be readily recovered from the general solution given in Eq. (32) by using the fact that the associated
Legendre function of order m can be expressed in terms of the mth derivative of the Legendre function of the
same degree.

Near the bounding wall, the solution is of the form g = (ξ − ξw)g′
w, where

g′
w = g′(ξw) = −2π

3
√
3
√
1 − ξ2w

[
P1
2/3(−ξw)

P1
2/3(ξw)

P1
5/3(ξw) + P1

5/3(−ξw)

]
, (33)

(g′
w �= 0 for all α), thereby yielding a nonzero slip velocity vr = −CB1/3g′

wr
−1/3. If the circulation in the

potential region is assumed to be proportional to rλ with λ > 2/3, then straightforward integration of the
inviscid form of Eq. (5) yields

Γ = Drλg3λ/5, (34)

where D ∼ B1/3R2/3−λ∞ is an unknown constant whose value carries information of the far-field region
R ∼ R∞. As in the case of turbulent jets, the exponent λ is obtained by consideration of the boundary-layer
region.

In the boundary layer, the stream function can be rewritten in the form ψ = [CB1/3νg′
w(1 −

ξ2w)]1/2r4/3G(ζ ), where the function G satisfies the boundary-value problem,

G ′′′ − 4

3
GG ′′ + 1

3
(1 − G ′2) = 0; G(0) = G ′(0) = G ′(∞) − 1 = 0, (35)

with the prime denoting here differentiation with respect to the rescaled coordinate ζ = [g′
w/(1 −

ξ2w)]1/2(CB1/3/ν)1/2r1/3(ξ − ξw). The circulation inside the boundary layer can be expressed in the form

Γ = Dr4λ/5[g′
w(1 − ξ2w)ν/(CB1/3)]3λ/10Λ̂(ζ ) (36)

in terms of the similarity function Λ̂(ζ ), which satisfies

Λ̂′′ − 4

3
GΛ̂′ + 4

5
λG ′Λ̂ = 0,

{
Λ̂ = 0 at ζ = 0,
ζ Λ̂′ − 3

5λΛ̂ → 0 as ζ → ∞.
(37)

The smallest eigenvalue describing the circulation is found to be λ = 1.0453. For completeness, the solutions
of the boundary-value problems given in Eqs. (35) and (37) are shown in Fig. 7.
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6 Concluding remarks

The analyses of the four swirling-flow problems that have been presented here offer further illustrations of
ways in which considerations of intermediate asymptotics may result in self-similar solutions of the second
kind. The scaling considerations that were required help to clarify the range of swirling-flow conditions that
may be encountered under different circumstances. The complex flow fields that occur in the vicinity of swirl-
producing vanes have been shown to evolve to self-similar flows that persist over most of the intermediate
region, where the radial distance from the source location is small compared with the radius of the swirl-
producing devices but large compared with the size of the source. The range of circulation treated here is of
the order of the kinematic viscosity of the fluid, with augmentation by the jet Reynolds number or by the
plume Grashof number (the latter expressed through the buoyancy flux in the analysis). It would be of interest
to investigate other possible scalings for which different flow regimes may arise. Such future investigations
might expand our comprehension of swirling-flow phenomena beyond the present knowledge.
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