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Abstract In this paper, we provide an analytical solution for the contact problem of an elastic belt extended
by two equal smooth rigid pulleys. The belt is treated as a Bernoulli–Euler rod, and the expressions for
pulley displacement and pulley reaction force are given in terms of Jacobi elliptical functions. Theoretical
considerations are enhanced by examples in tabular and graphical form.

1 Introduction

This report was motivated by the recent works of Belyaev et al. [1–3]. In these articles, the authors considered
an elastic belt stretched by a pair of equal smooth, rigid pulleys. In particular, they considered the belt as a
Cosserat flexible rod [3], a Cosserat extensible rod [1], and a Cosserat extensible and shearable rod [2]. From
general theory, they derived a set of first-order differential equations and formulated a boundary value problem
for which a numerical solution was obtained. Based on this approach, they obtained the deformed shape of
the belt, the internal reactions forces and moment, and the contact pressure between the belt and the pulley.
The authors devoted particular interest to the transition from the contact area to the belt free span. They found
that for a flexible and an extensible belt at the endpoint of the contact a concentrated reaction occurs but for a
shearable belt, the transition is smooth. More on contact problems of elastic rods and rigid surfaces, see [4–8]
and references there.

In this investigation, a flexible elastic belt [3] will be considered once again. The aim is to develop an
analytical solution to the problem. Here analytical solution means that instead of the numerical solution of the
governing differential equations we use their closed-form analytical solution and thus reduce the problem to
the solution of a system of two transcendental equations. Here analytical means that, in particular, it will be
shown that the point contact considered in [3], in which there is a gap between the belt and the pulley, is not
possible.

2 Governing equations

We treat the equilibrium condition of a belt of radius a set on two equal smooth rigid pulleys of radius b < a
(Fig 1). It is assumed that the lower pulley is fixed and the upper ismovable upward.We further stipulate that the
belt is weightless, inextensible and unshearable. Thus, the belt may be considered as a plane Bernoulli–Euler
rod [9,10]. In addition, we may discuss only a quarter of the belt because of the geometric symmetry of the
problem. In what follows, we thus consider a rod of length � = πa/2 with a constant flexural rigidity EI.
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Fig. 1 Initial configuration (left), final configuration (center), and the geometry of the contact (right)

The geometry of the rod is described by the following well-known equations:

dx

ds
= cos θ,

dy

ds
= sin θ,

dθ

ds
= κ (1.1–3)

where 0 ≤ s ≤ � is the arc-length, x (s) and y (s) are the coordinates of the rod base curve, θ (s) is the tangent
angle and κ (s) is the curvature. The equilibrium equations are [9]:

dN

ds
− κQ + n = 0,

dQ

ds
+ κN + q = 0,

dM

ds
+ Q = 0 (2.1–3)

where N (s) , Q (s), and M (s) are the internal normal force, shear force, and bending moment acting over the
cross section of the rod, and n (s) and q (s) are the load intensity in the directions of Nand Q, respectively. For
the following discussion related to the rod, the constitutive equation connects the moment with the curvature.
There are two possibilities [11]:

M = EI

(
κ − 1

a

)
; (3.1)

M = EIκ. (3.2)

In the case (3.1), the initial state of the belt is stressless, while in the case (3.2) the belt is bent into a circle
with the bending moment M = EI/a. In what follows, we will for M use (3.1), unless otherwise stated.

When the upper pulley is displaced by δ, the belt is stretched, and there is a reaction force F on each pulley.
For 0 ≤ δ ≤ δ0, where δ0 is some limiting value of the displacement which depends on b, the belt touches the
pulley at the apex point P0. For δ0 < δ ≤ δmax the belt is in contact with the pulley from P0 to the endpoint
P∗. We assume that this contact is conformal, i.e., full line contact. Therefore, the maximal displacement δmax
is:

δmax = (π − 2) (a − b) . (4)

In any case, the rod has two parts: the part that is in contact with the pulley and the portionwhich is unsupported.
We can thus divide the length of the rod � as:

� = �c + � f (5)

where 0 ≤ �c ≤ πb/2 is the length of the contact, and π (a − b)/2 ≤ � f ≤ πa/2 is the length of the free
span.

In what follows, Eqs. (1), (2), and (3) will be separately considered for the contact and the free span cases.
We will assume that the coordinates x , y, and the angle θ are continuous and differentiable functions of s, at
P∗. Also, we will suppose that at this point the normal force Nand bending moment M are continuous because
of the absence of a concentrated reaction tension and moment [1–3]. However, the shear force Q has a jump
at P∗ as shown in [1,3].
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Fig. 2 Equilibrium of forces acting on a quarter of the ring

3 The contact

The shape of the rod which is in contact with the lower pulley is given by:

x = b sin ϕ, y = b (1 − cosϕ) , (6)

where ϕ is the central angle. By differentiating (6) with respect to ϕ and then comparing the results with (1),
we find that:

ϕ = θ, κ = 1

b
, s = bθ, (7)

while the length of contact is:

�c = b
∫ θ∗

0
dθ = bθ∗. (8)

Because κ = const, M, and therefore the equilibrium equations (2) reduce to:

dN

ds
+ n = 0, q = −N

b
, Q = 0. (9)

The problem is thus indeterminate unless we make some assumptions regarding n, which in our case is related
to the friction intensity between the ring and the pulley. We assumed smooth pulleys, so we can set the
following:

n (s) = 0, (10)

and so, from (9), N = Nc = const. The part of the belt in contact with the pulley is thus subject to the constant
bending moment Mc and reaction intensity qc which are given by:

Mc = EI

(
1

b
− 1

a

)
, qc = Nc

b
, (11.1,2)

and the constant internal tension Nc, while the shear force Q vanishes.
To obtain Nc, we consider the equilibrium of the forces acting on the rod (Fig. 2). As previously indicated,

the supported part of the belt is subject to the internal tension Nc, while the free part is subject to the constant
internal force F/2, by assuming that the normal force is continuous. Consequently, the concentrated shear
reaction force Q∗ must arise at the end of the contact to maintain the overall equilibrium of the rod. We obtain
the expressions for Nc and Q∗ by considering the equilibrium of the forces in the horizontal and vertical
directions. We therefore have:
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−Nc + Q∗ sin θ∗ + b
∫ θ∗

0
qc sin θdθ = 0, (12)

F

2
− Q∗ cos θ∗ − b

∫ θ∗

0
qc cos θdθ = 0, (13)

where θ∗ is the contact angle. After integration and using (11.2) for qc, we obtain the following system of
equations:

Q∗ sin θ∗ − Nc cos θ∗ = 0, Q∗ cos θ∗ + Nc sin θ∗ = F

2
. (14)

The solution for Nc and Q∗ is therefore:

Nc = F

2
sin θ∗, (15)

Q∗ = F

2
cos θ∗. (16)

We summarize the results obtained in this Section as follows. The contact between the belt and the pulleys
is entirely determinate once the contact angle θ∗ and the reaction force F are known. In this case , we can
calculate the contact length �c from (8), internal tension force Nc by (15), shear reaction force Q∗ by (16),
and the internal bending moment Mc and contact intensity qc by (11). For the point contact when θ∗ = 0, we
have:

�c = 0, Nc = 0, Q∗ = F

2
, q = 0, (17)

while the bending moment Mc depends on the curvature of the rod at the apex.
The results presented in this Section were obtained by Belyaev and coauthors [3] in a slightly different

way.

4 The free span

For the free span, we have n = q = 0, so this part of the rod is subject only to a constant terminal force F/2.
For such a rod, the general solution for Eqs. (1), (2), and (3) is given in the “Appendix”. In our case, the force
inclination angle α and the rod initial coordinates x0, y0 are:

α = π

2
, x0 = b sin θ∗, y0 = b (1 − cos θ∗) . (18)

Using the expressions found in (47), (50), (51), (52), (53), we obtain the internal forces:

N = F

2
sin θ, Q = F

2
cos θ, (19)

the tangent angle

θ = −π

2
+ 2am

(
kωσ + C, k−1) , (20)

the curvature

κ = 2�−1
f ωkdn

(
kωσ + C, k−1) , (21)

and the coordinates

x = b sin θ∗ + � f
2k

ω

[
dn

(
C, k−1) − dn

(
kωσ + C, k−1)] , (22)

y = b (1 − cos θ∗) + � f

[(
2k2 − 1

)
σ + 2k

ω

[
ε
(
C, k−1) − ε

(
kωσ + C, k−1)]] , (23)
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where 0 ≤ σ ≡ s
� f

≤ 1 and ω is the load parameter (49) defined as:

ω2 ≡ F�2f

2E I
. (24)

The length of the free span � f using (8) for �c is given as:

� f = � − �c = πa

2
− bθ∗. (25)

The values of k,C , and θ∗ depend on the boundary conditions. In our case, these conditions are, by treating θ
and κ as functions of σ :

θ (0) = θ∗, θ (1) = π

2
, (26)

and when θ∗ > 0, we assume:

κ (0) = 1

b
. (27)

This last equation requires that at the endpoint P∗ the belt and the pulley have contact of order two, i.e., the
same tangent and the same curvature. For the Bernoulli–Euler rod, this also means that at P∗, the bending
moment is continuous.

Introducing the boundary conditions (26) into the expression (20) for θ and solving forC andω, we obtain:

C = am−1
(

π

4
+ θ∗

2
, k−1

)
, (28)

ω = k−1
[
K

(
k−1) − am−1

(
π

4
+ θ∗

2
, k−1

)]
. (29)

Introducing boundary condition (27) into expression (21) for κ , we obtain κ (0) = 2�−1
f ωkdn

(
C, k−1

) = 1/b
or, using (28) for C and (25) for � f , we have:

b

a
= π

2
(
θ∗ + √

2ω
√
2k2 − 1 − sin θ∗

) . (30)

With expression (29) for ω, we can calculate the reaction force F using (24). However, instead of force F,we
calculate the dimensionless load factor which we define as follows:

Fa2

EI
= 2a2ω2

�2f
= 2

k2

[
K

(
k−1

) − C

π − 2bθ∗/a

]2

. (31)

When k, θ∗ are known then we can calculate ω,C by (28), (29), and further we can calculate the coordinates
x and y of the rod using (22) and (23). In particular, the displacement δ is given by δ = 2 [y (1) − a] or in
explicit form

δ

a
= 2

[
b

a
(1 − cos θ∗) − 1

]
+ 2

(
π

2
− b

a
θ∗

) {
2k2

[
1 − E

(
k−1

) − ε
(
C, k−1

)
K

(
k−1

) − C

]
− 1

}
. (32)

At our disposal, we now have expressions (30), (31), (32) that contain five parameters: k, θ∗, b, F , and δ. Two
must be given, and the other three can then be calculated. However, only the case when b and either F or δ
are given, and k and θ∗ are to be calculated is of practical interest. In either case when θ∗ > 0, we must solve
a system of two nonlinear Eqs. (30) and (31), or (30) and (32).

The point contact when θ∗ = 0 reduces the expressions (31) and (32) to:
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Table 1 Results for the calculation for b/a = 0.5 when Fa2/EI = 5 (case 1, Fig. 4) and when δ/a = 0.5 (case 2, Fig. 5)

Case δ/a Fa2/EI Nc/F Q∗/F qa/F �c/a ω

1 0.217525 5 0.239154 0.485491 0.239154 0.120747 2.29273
2 0.5 8.25294 0.26333 0.42504 0.52665 0.277329 2.62751

Fa2

EI
= 8

π2k2
[
K

(
k−1) − am−1 (

π/4, k−1)]2 , (33)

δ

a
= π

{
2k2

[
1 − E

(
k−1

) − ε
(
am−1

(
π/4, k−1

)
, k−1

)
K

(
k−1

) − am−1
(
π/4, k−1

)
]

− 1

}
− 2, (34)

while formula (30) becomes:

b

a
= π

√
2

4
[
K

(
k−1

) − am−1
(

π
4 , k−1

)] √
2 − k−2

. (35)

If b is given, then we can calculate the limiting value of k0 from (35) for which the belt begins to come into
contact with the pulley. Thus, for k0 ≤ k < ∞, we have a point contact, while for 1 < k < k0, we have a line
contact. Once k0 is known, we can calculate the limiting force F0 and the limiting displacement δ0 by (33)
and (34).

We can summarize the results of this Section in the following algorithms:

given: b, F
solve (35) for k0
calculate F0by(33)
ifF < F0
solve (33) for k

else
solve (30) and (31) for k and θ∗

end

given: b, δ
solve (35) for k0
calculate δ0by(34)
ifδ < δ0
solve (34) for k

else
solve (30) and (32) for k and θ∗

end

Once k and θ∗ are obtained, all the other quantities can be calculated from (19)–(23).

5 Examples

For practical calculations, we used the Elfun18 library [12]. This library implements the double-precision
numerical model and thus can calculate K

(
k−1

)
only for k ≥ 1+ 0.5× 10−15. For the smallest k and θ∗ = 0,

we have b/a ≈ 0.0504843, ω ≈ 17.833600, Fa2
EI ≈ 257.791325, δ

a ≈ 0.5191998, and δmax
a ≈ 0.541980.

For values of k that are close to one, we used a Maple program for the calculation with the quad-precision
numerical model.

As seen in the previous Section, the solution to the problem can be reduced to the solution of a nonlinear
equation or a system of two nonlinear equations. Now, Eq. (35) is easily solved numerically for k by the false
position method for example, because b, given by (35), is a monotone function of k (Fig. 3). To accomplish
this, in (35) we replace k′ = k−1 and then seek a solution in the interval k′ ∈ [0, 1). Similarly, we can solve
Eqs. (33) and (34) for k. Inspection of the graphs shown in Figs. 4 and 5 indicates that the systems have a
unique solution for k′ ∈ [0, 1) and θ∗ ∈ [0, π/2).

Given the present solution, we can also easily construct various diagrams (Figs. 6, 7, and 8). From the
graphs shown in Fig. 6, where the dependence of the limiting displacement δ0 on b/a is represented, we can
see that when b/a ≤ 0.5 the belt is in point contact with the pulley for most of the displacement δ. As can be
seen from the graphs shown in Figs. 7 and 8 where the dependence of the load factor Fa2/EI and the contact
angle θ∗ on the displacement δ are shown, the belt becomes stiff once the line contact is reached. Moreover,
Fa2/EI → ∞ and θ∗ → π/2 as δ → δmax.

For verification of the present solution, we consider three cases. The first is a ring in tension [11,13]. In
this case, b = 0 and therefore θ∗ = 0. Therefore, we have to solve Eq. (33) for unknown k when F is given.
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Fig. 3 The inverse of the elliptic modulus k−1 as a function of the pulley radius b/a, the load factor Fa2/EI, and the displacement
δ/a when θ∗ = 0

Fig. 4 The intersection of (30) and (31) when b/a = 0.5 and Fa2/EI = 5. The intersection point is at k ≈ 1.0097410 and
θ∗ ≈ 0.2414942. Empty point near intersection is an initial guess. Corresponding belt shape (right)

Fig. 5 The intersection of (30) and (32) when b/a = 0.5 and δ/a = 0.5; k ≈ 1.0028281, θ∗ ≈ 0.5546579. Empty point near
intersection is an initial guess (left). Corresponding belt shape (right)

The results presented in Table 2 are in good agreement with those of Frisch-Fay [11] (Table 3 on page 122
therein).
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Fig. 6 Limiting displacement δ0 (solid line) and maximal displacement δmax (dotted line) as a function of pulley radius b/a. The
maximum difference between displacements (δmax − δ0)/a ≈ 0.098423 occurs at b/a ≈ 0.505249

Fig. 7 Load factor Fa2/EI as a function of the dimensionless displacement δ/a for various values of the dimensionless pul-
ley radius b/a. Dots indicate the beginning of the line contact. Dotted vertical lines indicate the maximum displacement for
corresponding b/a. (ex1a)

Fig. 8 Contact angle θ∗ as a function of dimensionless displacement δ/a for various values of dimensionless pulley radius b/a.
The dots indicate the beginning of the line contact. Dotted vertical lines indicate the maximum displacement for corresponding
b/a. (ex2)

The second example is from [2] where the authors consider extensible and shearable rods. However, we
consider only a flexular rod where the belt and the pulley radii are 0.25 m and 0.1 m, respectively, Young’s
modulus is 1 GPa, and the cross section of the rod is a square with a side of 0.01 m. The pulleys are separated
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Table 2 Ring in tension: a = 10, EI = 20. The calculated moments do not include the initial curvature

F/2 0.0313 1.682

M (1) M (0) x (1) y (1) M (1) M (0) x (1) y (1)

[11] − 1.884 − 2.191 9.782 10.2231 − 0.202 − 8.205 4.758 13.6848
Present* 1.8899 2.1963 9.7889 10.2246 0.2020 8.2049 4.7580 13.6923

Table 3 Comparison of calculations; a = 0.25 m, b = 0.1 m, E I = 0.83̇ Nm2, F = 200 N

θ∗ (rad) �c (m) δ (m) Nc (N) Q∗ (N) q(N/m) Mc (Nm)

Numeric [2]* 0.678 0.068 0.159 ∼ 58.5 ∼ 79 – ∼ 5
Present 0.62448 0.06245 0.15851 58.4674 81.1268 584.674 5

*Shearable and extensible rod. Values for N , Q, and M are estimated from Figs. 5 and 6 therein

Fig. 9 Normal force N , shear force Q, bending moment M , and tangent angle θ as a function of material coordinate s for the
data in Table 3

by a force of 200 N. The solution of Eqs. (30) and (31) for these data is k ≈ 1.00034 and θ∗ ≈ 0.624479. The
results of the calculation are given in Table 3, and Figs. 9 and 10. A comparison of the distribution of internal
forces and the moment along the rod is displayed in Fig. 9, where the graphs in Figs. 5 and 6 in [2] indicate
that the shear properties of the belt influence only narrow neighbors of the endpoint of the contact.

The last example is from [3]. The ring and the pulley radius are 0.55 m and 0.15 m, respectively. Young’s
modulus is 0.1 GPa, and the cross section is a square with a side of 0.01 m. The pulley displacement is 0.228 m,
which is very close to the maximum of ∼ 0.2283185m. In this case, k is very close to one, so for the solution
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Fig. 10 Belt and pulleys for the case from Table 3

Table 4 Comparison of calculation; a = 0.55 m, b = 0.15 m, EI = 0.083̇ Nm2, δ = 0.228 m

θ∗ (rad) � f (m) F (N) Q∗ (N) q(N/m)

Numeric [3] 1.28 0.672 87.6 12.5 280
Present 1.275776 0.672572 85.726670 12.4628941 273.409889
Difference % 0.33 0.08 1.02 0.30 2.41

of the equations, we use a Maple program with the number of digits set to 32. The solutions of Eqs. (30) and
(32) are:

k = 1.0000000000000024612148981650955
θ∗ = 1.2757764592145434757876907155969 , (36)

and from this

C = 2.6051913681753288856298889866486
ω = 15.253590055581034632534643842961 . (37)

The absolute error of the solution is 4.3× 10−23. As seen from Table 4, the relative discrepancy of the results
obtained in [3] by the numerical method and present analytical is within 2.5%.

Point contact
In [3] the authors numerically test the hypothesis that once the force For displacement δ is higher than the

limiting value F0 or δ0, the reaction force Q∗ splits the rod into two parts in such a way that there is a gap
between the pulley and the rod between, i.e., between the apex point P0 and the contact point P∗ (Fig. 11).
Therefore, the lower part of the rod has the shape of the elastic curve similar to the upper one. In order to
determine whether this curve intersects the pulley circle, it is sufficient to consider only the lower part of the
rod. The quantities that belong to this part of the rod will be in the sequel denoted by subscript 1.

The lower part is subject to the terminal load Q∗ that has the inclination angle given by:

α1 = −π

2
− θ∗. (38)

Using the solution given in “Appendix” we set σ = s
�1
, where �1 is the part length. The boundary conditions

are:

θ1 (0) = 0, θ1 (1) = θ∗. (39)

Introducing these into (50) we get:

C1 = −am−1
(

π

4
+ θ∗

2
, k−1

1

)
, ω1 = k−1

1

[
am−1

(
π

4
+ θ∗

2
, k−1

1

)
− am−1

(π

4
, k−1

1

)]
. (40)



Elastic belt extended by two equal rigid pulleys 3835

Fig. 11 Assumed shape of the rod for the point contact

Fig. 12 The nondimensional vertical position of the apex y0/b of the rod as a function of the inverse of the elliptic modulus k−1

for various values of contact angles θ∗

To obtain �1 and the coordinates x01 and y01 of P0, we need three equations. Becausex1 (0) = 0, we have
x01 = 0. Next, the contact with the pulley requires

x1 (1) = b sin θ∗, y1 (1) = b (1 − cos θ∗) . (41)

By substituting these into (52), (53), we find:

�1 = −b
sin θ∗

ξ̂1 sin θ∗ + η̂1 cos θ∗
, (42)

y01 = b (1 − cos θ∗) + �1

(
−ξ̂1 cos θ∗ + η̂1 sin θ∗

)
(43)

where

ξ̂1 = 2k1
ω1

[
ε
(
k1ω1 + C1, k

−1
1

)
− ε

(
C1, k

−1
1

)]
− (

2k21 − 1
)
, (44)

η̂1 = 2k1
ω1

[
dn

(
C1, k

−1
1

)
− dn

(
k1ω1 + C1, k

−1
1

)]
. (45)

Now, if y01 < 0 then there is a gap between the rod and the pulley, and if y0 > 0, then the curve intersects
the pulley circle. For small θ∗ > 0 the expansion of (43) in a power series gives:

y01
b

= θ3∗
24

(
2k2 − 1

)
[
1 + θ∗

2
(
2k2 − 1

) + · · ·
]

> 0. (46)
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For larger θ∗, the situation is presented graphically in Fig. 12 where the graph of y01 given by (43) is shown for
various values of θ∗. The characteristic of these graphs is that y01 > 0 for 0 < k−1

1 < 1 and 0 < θ∗ < π/2. On
the basis of these results, we conclude that the rod intersects the pulley circle. This conclusion means that the
starting assumption of point contact is invalid; once the load is higher than some limiting value, we obtain full
line contact between the belt and the pulley. A similar result was obtained in [3] using numerical integration.
However, the authors did not make a general conclusion.

6 Conclusions

In this report, we analytically solve the contact problem for a belt with pulleys. For actual calculations, instead
of solving the boundary value problem for a set of differential equations, it is necessary to solve one or two
nonlinear equations. The present results for the calculations are in good agreement with those reported in the
literature. We also show that for a force larger than a limiting force F0, the belt comes into full line contact
with the pulley; i.e., a point contact is not possible.

Appendix

In this Appendix, a solution is provided for Eqs. (1), (2), and (3) for the case when the rod is subject to a
terminal conservative force (Fig. 13).

We assume that EI is the rod bending stiffness, � is the rod length, and F is the force with an angle of
inclination α. Then, the solution of the force equilibrium equations (2.1,2) is given as:

N = −F cos (α + θ) , Q = F sin (θ + α) . (47)

With these solutions and either of the constitutive Eq. (3.1) or (3.2), the moment Eq. (2.3) becomes:

d2θ

dσ 2 + ω2 sin (θ + α) = 0 (48)

where 0 ≤ σ ≡ s
�

≤ 1 is the normalized arc-length parameter and ω is the load parameter which is defined
by:

ω2 ≡ F�2

EI
. (49)

The problem discussed in this paper assumes that the rod is bent only in one direction. This case is covered by
the non-inflectional solution of (48) which is [10,13,14,14–16]:

θ = −α + 2am
(
kωσ + C, k−1) . (50)

Once we know θ , we can calculate the curvature by (1.3):

κ = �−12ωkdn
(
kωσ + C, k−1) , (51)

Fig. 13 Equilibrium of the rod segment
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and the coordinates by integration of (1.1,2):

x = x0 + �
[
ξ̂ (σ ; k, ω,C, α) cosα + η̂ (σ ; k, ω,C, α) sin α

]
, (52)

y = y0 + �
[
−ξ̂ (σ ; k, ω,C, α) sin α + η̂ (σ ; k, ω,C, α) cosα

]
(53)

where x0 and y0 are some known coordinates of the rod, and

ξ̂ (σ ; k, ω,C) = 2k

ω

[
ε
(
kωσ + C, k−1) − ε

(
C, k−1)] − (

2k2 − 1
)
σ, (54)

η̂ (σ ; k, ω,C) = 2k

ω

[
dn

(
C, k−1) − dn

(
kωσ + C, k−1)] . (55)

In the preceding formulas, dn is the Jacobian elliptic function, am (x, k) ≡ ∫ x
0 dn (t, k) dt is the Jacobi’s

amplitude function, ε (x, k) ≡ ∫ x
0 dn2 (t, k) dt is the Jacobi’s epsilon function [17], k is the elliptic modulus,

and C is a constant of integration. We note that all the aforementioned elliptical functions are symmetric with
respect to k, so we chose:

k > 1. (56)

Also, because the function am is periodic with a period of 2K , we can always choose C to lie in the interval

− K ≤ C < K (57)

where K
(
k−1

)
is the elliptic integral of the first kind. If we suppose that ω ≥ 0 and k > 1 then κ > 0. The

solution (50) thus describes the rod that is bent only in one direction as required. The shape of the rod depends
on k, C , ω while its location and orientation depend on x0, y0, and α.

In an initial state when ω = 0 the solution of Eq. (48) subject to a condition θ (0) = 0 is

θ = s

a
(58)

where θ ′ = 1/a is the curvature. In this case, from (1), we obtain, when x (0) = y (0) = 0,

x = a sin θ, y = a (1 − cos θ) . (59)

Thus, the rod has the shape of a circular arc lying on the circle with radius a. When a = ∞ the arc becomes a
straight line. We note that from (50) that we obtain a circular arc when k = ∞ and a straight line when k = 0
[14].
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