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Abstract Particle-resolved direct numerical simulations of non-isothermal gas–solid flows have been per-
formed and analyzed from microscopic to macroscopic scales. The numerical configuration consists in an
assembly of randommotionless spherical particles exchanging heat with the surroundingmoving fluid through-
out the solid surface. Numerical simulations have been carried out using a Lagrangian VOF approach based
on fictitious domain framework and penalty methods. The entire numerical approach (numerical solution and
post-processing) has first been validated on a single particle through academic test cases of heat transfer by pure
diffusion and by forced convection for which analytical solution or empirical correlations are available from
the literature. Then, it has been used for simulating gas–solid heat exchanges in dense regimes, fully resolving
fluid velocity and temperature evolving within random arrays of fixed particles. Three Reynolds numbers and
four solid volume fractions, for unity Prandtl number, have been investigated. Two Nusselt numbers based,
respectively, on the fluid temperature and on the bulk (cup-mixing) temperature have been computed and
analyzed. Numerical results revealed differences between the two Nusselt numbers for a selected operating
point. This outcome shows the inadequacy of the Nusselt number based on the bulk temperature to accurately
reproduce the heat transfer rate when an Eulerian–Eulerian approach is used. Finally, a connection between
the ratio of the two Nusselt numbers and the fluctuating fluid velocity–temperature correlation in the mean
flow direction is pointed out. Based on such a Nusselt number ratio, a model is proposed for it.

1 Introduction

This study deals with the analysis and the modeling of the heat transfer in dense particle-laden flows. Such
a regime covers a wide spectrum of industrial applications dealing with energy conversion, manufacturing
processes,waste recycling, etc.Many of these applications need to recast their processes in order to complywith
new energy and climate targets, thus increasing efficiency while reducing gas emissions. Most of them involve
reactive flows in which the heat exchanged between the solid and gaseous phases, and between each phase and
the wall, plays a crucial role in the entire process. An understanding of the heat transfers in such complex flows,
a long-standing issue, is therefore essential to be able to enhance the performances of existing processes and
the development of new technologies. Accordingly, gas–solid heat exchanges have been extensively studied
over the years. The particle to fluid heat transfer coefficient in dense regimes (typically fixed or fluidized
beds) has been evaluated under theoretical and experimental studies. In the experiments, various methods,
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designs and operating conditions have been used to determine the heat transfer coefficient over a large range
of operating points [1]. However, experimental results exhibited a somewhat large disparity to each other
which may be attributed to different experimental techniques employed or, as suggested by Gunn [2], to the
different interpretations of raw data. The heat transfer coefficient is indeed the result of a model applied to the
experimental quantities, and it strongly depends on the assumptions made. For example, it has been shown
and extensively discussed that accounting or not for the axial dispersion in the modeling substantially affects
the estimation of the Nusselt number at low Reynolds numbers [1,2]. Moreover, experimental investigations
cannot provide a local view of the flow behavior and a deep understanding of the related microscopic features.
To overcome these limits, numerical simulationmay be used. The latter represents indeed a powerful alternative
to experimental investigations, as it is a non-intrusive method able to fully access the local quantities of the
particulate flows. To allow the numerical simulation to provide trustworthy heat transfer coefficients, a high
accuracy of the results has to be ensured. A high level of accuracy is subject to high resolution, which implies
very fine meshes and consequently high computational costs. With the development of high-performance
computing (HPC), the direct numerical simulation at microscopic scale (that is at a scale comparable to the
particle dimensions) is becoming affordable and thus usable for the investigation of heat exchanges in dense
suspensions. By the numerical simulation, Reynolds and Prandtl numbers may be easily changed over a range
of intermediate values, thus making it possible to provide Nusselt number correlations as a function of the
solid volume fraction and the two aforementioned dimensionless groups. High Reynolds and Prandtl numbers
are instead difficult to reproduce because of the small boundary layer thickness and therefore the requirement
of even more refined grids. In these last years, several studies using the direct numerical simulation (also
referred to as fully resolved or particle-resolved DNS) have been carried out in order to investigate the heat
transfer in dense regimes, over intermediate Reynolds and Prandtl numbers and solid concentration up to 50%.
These studies employed different numerical strategies for solving the flow interacting with the solid bodies.
For example, an immersed boundary method (IBM) for non-isothermal particulate flows was used by Feng
and Michaelides [3], Deen et al. [4] and Feng and Musong [5]. Tavassoli et al. [6] extended the approach
originally proposed by Uhlmann [7] to account for the heat transport in order to study the heat transfer in
particulate flows. These authors reported numerically assessed Nusselt numbers in a random array of fixed
spheres in which the fluid flows from an inlet boundary toward an outlet boundary exchanging heat with the
solid phase. They provided comparisons with the well-known Gunn correlation [2] and pointed out deviations
increasing with the solid volume fractions, considered consistent with the accuracy of such a correlation.
Deen et al. [8] reviewed the DNS methods and on the basis of available data refit the Gunn correlation and
thus provided a new correlation. The particle-resolved uncontaminated-fluid reconcilable immersed boundary
method (PUReIBM) was extended and used in non-isothermal conditions by Tenneti et al. [9] to perform direct
numerical simulations of gas–solid heat exchanges within an assembly of random spheres, by using a fully
periodic configuration based on a thermal similarity boundary condition for the temperature. Sun et al. [10]
suggested a new correlation for the Nusselt number as well as a correction factor to be used in the frame of
an Eulerian–Eulerian formulation. Kruggel-Eemden et al. [11] used a lattice Boltzmann method (LBM) to
investigate gas-particle heat transfers. Periodic boundary conditions for the flow together with constant and
adiabatic conditions at the streamwise boundaries for the temperature were used to simulate heat exchanged
in the assembly of random particles. Including the axial dispersion, by using the axial dispersion coefficient
proposed by Wakao [1], they obtained Nusselt numbers in good agreement with the correlation proposed
by Tavassoli et al. [12]. A new method combining immersed boundary and fictitious domain (referred to as
HFD-IB) was recently developed and used to investigate the heat transfer in bi-dispersed regimes byMunicchi
and Radl [13]. Focusing on the Euler–Lagrange approaches for particulate flows, these authors proposed a
closure for the particle Nusselt number as a function of the particle drag force. Alternative methods are also
emerging–see, for example, the PHYSALIS method extended to non-isothermal particulate flows by Wang
et al. [14]. In the present work, a Lagrangian VOF approach using fictitious domains and penalty methods
[15] is used to perform particle-resolved numerical simulations of gas–solid heat transfers. In Sect. 2, such
an approach is briefly recalled. A preliminary study devoted to validate the entire methodology (including
post-processing strategies) is described in Sect. 3. Direct numerical simulations of gas–solid heat exchanges
in arrays of random motionless particles are finally presented in Sect. 4. In the latter, numerical results on two
Nusselt numbers based, respectively, on the fluid temperature and on the bulk (cup-mixing) temperature are
presented and discussed. Finally, a connection between the ratio of such Nusselt numbers and the fluctuating
fluid velocity–temperature term appearing in the energy conservation equation is pointed out. On the basis of
this Nusselt number ratio, a model is proposed for it.
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2 Numerical modeling

2.1 Governing equations and solution methods

A Lagrangian VOF approach using fictitious domains and penalty methods is used in the present work. It is
based on an Eulerian formulation of the Navier–Stokes equations discretized on a fixed structured grid. This
approachwas initiated byRitz andCaltagirone [16] for handlingparticulateflows.Tomodel the behavior of fluid
and solid phases, the one-fluid model of Kataoka [17], initially devoted to deformable interfaces and fluid/fluid
two-phase flows, was extended to flows interacting with moving finite-size particles by Ritz and Caltagirone
[16]. These authors considered the solid particle phase as a continuous phase with high viscosity, requiring
a treatment of discontinuities especially for density and viscosity at the interface. With an arithmetic average
for the density and a harmonic average for the viscosity at the fluid–solid interfaces, the Stokes flow around a
circular cylinder and two-dimensional sedimentation of particles were simulated [16]. This methodology has
undergone several improvements, and now, its originality comes from the reformulation of the stress tensor[
μ

(∇u + (∇T u)
)]

as proposed by Caltagirone and Vincent [18]. It consists of a decomposition of the stress
tensor for Newtonian fluids in order to distinguish the contributions of tearing, shearing and rotation. With the
help of a phase function C (= 0 in fluid medium and = 1 in solid medium), which describes the solid phase
shape evolution through an advection equation (Eq. (2)), classical Navier–Stokes equations are solved for both
phases, taking into account the phase behavior:

∇ · u = 0,

ρ

(
∂u
∂t

+ (u · ∇)u
)

= −∇ p + ∇ ·
[
μ

(
∇u + (∇T u)

)]
+ ρg + Fsi . (1)

In the above system, u = (
→
u ,

→
v ,

→
w) and g are, respectively, the velocity and the gravity vectors, p is the

pressure field, ρ and μ are the density and the dynamic viscosity and Fsi is the force ensuring coupling
between the phases. The spatial and temporal evolution of the phase function then writes:

∂C

∂t
+ u · ∇C = 0. (2)

Equation (2) is solved in a Lagrangian manner. The shape of the particles is tracked by a Lagrangian mesh
made of triangles in 3D. For spherical particles as in the present work, the advection of the solid phase is
satisfied with the Lagrangian tracking of the barycenter of the sphere, using a Runge–Kutta method of second
order. The Eulerian phase function is finally obtained at each time step by projecting the Lagrangian meshes of
all particles on the Eulerian grid with a kind of Monte Carlo approach. All these procedures are detailed [15].
According to the penalty method acting on the viscosity, no tearing, no shearing and constant rotation could
be imposed, for example, to the solid phase. By this approach, the divergence of the viscous stress tensor is
indeed written using the decomposition

∇ ·
[
μ

(
∇u + (∇T u)

)]
= ∇ · [κ�(u)] + ∇ · [ζ�(u)] − ∇ · [η�(u)] , (3)

whichmakes easier the implementation of a penaltymethod by imposing separate viscosity coefficients such as
the tearing viscosity, κ , the shearing viscosity, ζ , and the rotation viscosity, η, appearing in Eq. (3). The implicit
tensorial penalty method (ITPM) for solid behavior and incompressibility constraint is a new evolution, of
second-order convergence in space, of the viscous penalty method. Details about this method may be found in
Vincent et al. [15]. It is implemented together with an augmented Lagrangian method first proposed by Fortin
and Glowinski [19]. Before explaining the specificity of ITPM, we recall the time discretization employed
for solving the Eulerian system (1). The temporal derivatives are approximated with implicit finite volume
schemes which does not require a stability condition; either Euler or Gear schemes are used depending on the
complexity of the problem.A second-order centered scheme is employed to approximate the spatial derivatives.
Time derivatives may be written as

∂u
∂t

� f (un+1, un, un−1)

Δt
, withΔt the time step, (4)

according to the following schemes:



544 E. I. Thiam et al.

• Euler: f (un+1, un, un−1) = un+1 − un ,
• Gear: f (un+1, un, un−1) = 3

2un+1 − 2un + 1
2un−1.

If the Gear scheme is used, the inertial term is linearized by an Adams–Bashforth scheme as follows:
un+1 · ∇un+1 ≈ (2un − un−1) · ∇un+1. The augmented Lagrangian method is used to satisfy the incom-
pressibility constraint through a velocity–pressure (u, p) coupling, by solving a minimization problem. The
approximation of the solution by an Uzawa-like scheme reads:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

while ‖∇ · un+1,k‖ > ε1

ρ
(

f (un+1,un ,un−1)
Δt + ((un+1,k−1 · ∇)un+1,k

)
− ∇(r∇ · un+1,k) = −∇ pn,k−1 + ρg

+ ∇ · [
μ

(∇un+1,k + (∇T un+1,k)
)] + Fn+1,k

si ,

pn+1,k = pn,k−1 − r∇ · un+1,k .

(5)

In the above system, k is the iterative index for the Uzawa optimization algorithm and n the physical time
iterative index. The significant parameter in Eq. (5) is the augmented Lagrangian parameter r . In the standard
form of the algorithm, r is constant; improvements proposed in [20] used instead a spatial and time parameter
r(x, y, z, t) linked to a fixed initial a priori constant value to get a satisfactory solution. Further improvements
by Vincent et al. [21] proved that an algebraic parameter r is suitable to fully carry out incompressibility and
solid constraints in an optimal way. This algebraic parameter is defined according to the discretization matrix
containing the viscous penalty contributions. To implement the penalty method for the viscosity, thanks to the
viscous stress tensor decomposition (3), and in order to impose no shearing, no tearing and constant rotation
for solid particles, a dual grid (points located at the center of the grid cells) is introduced [15]; the latter
allows the specification of shearing and rotation viscosities, while the elongation viscosity is defined on the
pressure nodes. Linked to the previous algebraic parameter, solid constraints are ensured at the same time as
incompressibility with second-order convergence in space. Then, physical properties at fluid–solid interfaces
are defined by using a harmonic average for the viscosities and an arithmetic average for the density. The
particle interaction force Fsi accounting for particle–particle and particle–wall collisions was implemented
and validated by Brändle de Motta et al. [22]. Details about particle tracking and four-way coupling may be
found elsewhere [15].

When the particle velocities are not a priori known, ITPMmakes it possible to ensure both incompressibility
and solid constraints, while, for fixed particles, a simpler penalty method may be employed. The latter, referred
to as Darcy penalty method (DPM) [23], is an approach typically used in porous media in order to solve the
Navier–Stokes equations accounting for the interactions with a solid object. It consists in considering an
additional term in the momentum equation based on a local permeability parameter:

ρ

(
∂u
∂t

+ u · ∇u
)

+ μ

K
u = ∇ ·

[
μ

(
∇u + ∇T u

)]
− ∇ p + ρg. (6)

The permeability K tends to+∞ in the fluidmedium and to zero in the solidmedium. Thismethod is employed
to impose a zero velocity inside the solid. Similarly, a constant temperature can be imposed to the solid. In the
energy conservation equation,

ρCp

(
∂T

∂t
+ u · ∇T

)
+ β(T − Ts) = ∇ · [kf∇T ], (7)

where T is the phase temperature (with Ts the solid one). Cp is the mass heat capacity and kf is the thermal
conductivity; their respective values are set equal for both the phases in this work. The supplementary term
β(T − Ts) is only active in those zones in which the phase function is equal to unity (C = 1) and β → +∞.
In the fluid domain, C = 0 and β = 0. The finite volume discretization scheme for the energy conservation
equation is based on an explicit total variation diminishing (TVD) scheme for the convection terms, while
an implicit centered scheme is used for the conductive terms. An implicit Euler time discretization is used
for time derivatives. Linear systems resulting from all discretizations (augmented Lagrangian terms, Navier–
Stokes equations, energy equation) are treated with a BiCGSTAB II solver and a modified and incomplete LU
preconditioner [15].
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2.2 Heat transfer rate computation over a sphere

According to the well-known Newton’s law of cooling, the heat transfer rate from a body (at constant temper-
ature Ts) immersed in a infinite fluid (at temperature Tf ) relies on a heat transfer coefficient hf which is defined
as a proportionality constant:

Qb→f = hf A (Ts − Tf) . (8)

Such a coefficient, hf , may be obtained by the numerical simulations by computing the rate of heat exchanged
throughout the body surface A. For a spherical particle (b = p) of surface area A = Sp, the heat transfer rate
is written according to Fourier’s law modeling the heat flux as

Qp→f =
∫∫

Sp

−kf∇T · n dS, (9)

where kf is the conductivity of the fluid and n is the unit vector normal to the solid surface and pointing
outward. Numerically, the computation of Qp→f needs a discretization of the sphere surface. The fictitious
domain framework, using staggered grid, considers a phase function to locate all control volumes occupied
by a particle. In practice, a spherical object is defined, i.e., the particle, and then projected on the structured
grid which is used to solve the conservation equations. The surface of this object is discretized by Lagrangian
triangle elements. All the coordinates of the vertices of the triangles are recalculated in the real space. Based
on the knowledge of the Lagrangian surface particle mesh, the phase function is automatically generated by
using ray casting procedures [24]. The heat transfer rate computation can then be achieved by a numerical
integration as follows:

Qnum
p→f =

Nb∑

b=1

−kf∇T (xb, yb, zb) · n�S�, (10)

where Nb is the number of triangle elements over the sphere surface. The calculation algorithm consists of
four steps. Noting the coordinates as

• (xp, yp, zp): the cell centers of the structured Eulerian mesh (pressure nodes),
• (xv, yv, zv): the staggered coordinates of the cell faces of the structured Eulerian mesh (velocity nodes),
• (xb, yb, zb): the coordinates of the barycenter of each triangle element on the particle surface,

and defining n� and S� as, respectively, the normal vector and the surface of each triangle, the algorithm
consists in:

1. computing the temperature gradient on the staggered Eulerian grid nodes belonging to the fluid, and
interpolating the gradient components from the staggered Eulerian fluid nodes to the pressure fluid nodes

• ∇Txv = Ti+1, j,k−Ti−1, j,k
2Δxp

, ∇Txp = ∇Txvi+1, j,k +∇Txvi−1, j,k
2 ,

• ∇Tyv = Ti, j+1,k−Ti, j−1,k
2Δyp

, ∇Typ = ∇Tyvi, j+1,k +∇Tyvi, j−1,k
2 ,

• ∇Tzv = Ti, j,k+1−Ti, j,k−1
2Δzp

, ∇Tzp = ∇Tzvi, j,k+1+∇Tzvi, j,k−1
2 ;

2. computing n� and S�

• →
n � =

→
Ut1∧ →

Ut2

‖ →
Ut1∧ →

Ut2‖
, S� = 1

2

∥∥
∥∥

→
Ut1 ∧ →

Ut2

∥∥
∥∥

with
→

Ut1,2 the tangent vectors to triangle surface;

3. approximating ∇T (xb, yb, zb) by

• tracking of a fluid grid cell containing the barycenter of a given particle surface element;
• Taylor extrapolating ∇T (xb, yb, zb) from neighboring pressure fluid nodes. A fourth-order scheme is
used for the approximation of the first derivative in Taylor’s extrapolation equation:

f (x) = f (x0) + ( f ′(x))(x − x0) + O(h).
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In the implementation of this method, the tracking of a fluid grid cell containing the barycenter of a triangle
element represents the only difficult point when more than one particle is considered in the domain. Also, the
number of grid points to consider in the approximation of the first derivative in Taylor’s extrapolation scheme
depends on the thickness of the thermal boundary layer.

3 Heat transfer on isolated particle

3.1 Conduction

The first validation test case concerns the unsteady heat diffusion from a spherical particle in a quiescent
infinite fluid. A sphere of diameter dp = 2R is immersed at the center of a cubic domain of size 8dp. The
dimensionless temperature of the fluid is initially set as Tf = 0. A constant dimensionless temperature, Ts = 1,
is instead imposed as a boundary condition on the sphere surface, at all times, using the penalty method for
the energy equation described previously. Periodic boundary conditions are selected for the outer bounds of
the computational domain. The latter is large enough to be considered as infinite, while the thermal diffusion
is limited to the vicinity of the sphere (preventing interactions with the boundaries of the domain). Several
simulations are performed by varying the mesh size, according to the dimensionless parameter Nd = dp/Δ
where Δ = dx = dy = dz. A visualization of the fluid temperature on a plane taken in the middle of the cube
is shown in Fig. 1. The temporal evolution of the temperature profile in the vicinity of the sphere is given by

Ta(r, t) − Tf
(Ts − Tf)

= R

r

(
1 − erf

(
r − R√
4αt

))
, r ≥ R, (11)

where the thermal diffusivity is defined as α = kf/(ρfCp), where ρf is the fluid density. The dimensionless
Nusselt number modeling the heat transferred from the particle to the fluid is then defined as follows:

Nu = hfdp
kf

. (12)

The analytic solution of the Nusselt number can be obtained from Eq. (11), which gives

hf

kf
=

− ∂Ta(r,t)
∂r

∣∣
∣
r=R

Ts − Tf
, (13)

Fig. 1 Temperature field on a slice in the middle of the computational domain
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Table 1 Relative error on the temperature near the sphere

Grid size Nd max(〈ErT (r, t)〉t )

80 × 80 × 80 10 ∼ 22%
160 × 160 × 160 20 ∼ 13%
240 × 240 × 240 30 ∼ 9%
320 × 320 × 320 40 ∼ 6.5%
400 × 400 × 400 50 ∼ 2.23%
480 × 480 × 480 60 ∼ 0.57%
640 × 640 × 640 80 ∼ 0.4%

Table 2 Mean relative error 〈ErNu(t)〉t depending on grid size and number of elements

Nd Nb

320 4500 18,000

10 19.41 20.64 20.57 Error (%)
1.02 14.32 57.29 Nb/(π N 2

d )
20 9.17 7.89 7.93 Error (%)

0.25 3.58 14.32 Nb/(π N 2
d )

30 7.60 5.19 5.08 Error (%)
0.11 1.59 6.37 Nb/(π N 2

d )

and finally

Nu(t) = 2 + 2R√
παt

. (14)

This validation aims at verifying the ability of the entire approach to accurately predict the temperature field
near the sphere. The relative error between the temperature obtained by the numerical simulation, Tsim, and
the analytic solution (11) is computed at all nodes of the computational domain as

ErT (r, t) = |Tsim(r, t) − Ta(r, t)|
Ta(r, t)

. (15)

For different grid sizes, Nd spanning from 10 to 80, the maximum of the mean relative error 〈ErT (r, t)〉t is
computed and the results are reported in Table 1. (Results are time-averaged in the interval t∗ ∈ [1.84, 4.51]
where t∗ = dp/

√
παt is a dimensionless time.) Located at the interface between the fluid and the sphere

(r = R), the maximum error decreases when the mesh is refined, as expected. For grids coarser than Nd = 30,
the error is larger than 10%. It is instead sensibly small for the finest grid Nd = 80. A relative error between
predicted and analytic Nusselt numbers is also defined:

ErNu(t) = |Nusim(t) − Nu(t)|
Nu(t)

. (16)

First, the effect of the number of elements on the sphere surface is analyzed. Table 2 shows the mean (time-
averaged in the interval t∗ ∈ [2.26, 4.51]) relative error for three meshes Nd = 10, 20, 30 and three different
triangularizations of the sphere surface. Results show that 4500 elements are enough to obtain a converged
Nusselt number on a selected grid, allowing to perform a grid convergence analysis. Such a value is therefore
retained in the present study. In Table 2, the ratio between the surface elements (Nb) and the number of grid
cells over the particle surface (estimated as π N 2

d ) is also reported.1 Results seem to indicate that numerical
simulations become independent of Nb when at least one surface element is present for each cell over the
particle surface (i.e., Nb/π N 2

d > 1). Accordingly to the choice Nb = 4500, the effect of the mesh size on the
Nusselt predictions is analyzed. Figure 2 shows the temporal evolution of the analytic and computed Nusselt
numbers for Nd = 80. (Vertical lines correspond to the time interval used for assessing the mean error.) The
mean relative error as a function of the grid size is also plotted. The error decreases with the mesh refinement,
and from Nd = 20, it becomes smaller than 10%. The order of convergence is about 1 up to Nd = 40. Further,
as the time advances, the instantaneous error decreases even more (Table 3).

1 The authors thank the anonymous reviewer for the suggestion.
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Fig. 2 Analytic (solid line) versus numerical (symbols) Nusselt number for Nd = 80 (left). Mean relative error (right)

Table 3 Analytic versus predicted instantaneous Nusselt number for Nd = 80

t∗ Nusim Nu ErNu(t∗)

4.51 6.39 6.51 1.84%
2.61 4.53 4.60 1.52%
2.02 3.96 4.01 1.25%

Table 4 Parameters used for the numerical simulation of forced convection around a sphere

Parameter Value Unit

Fluid density 1 kg/m3

Fluid viscosity 1 × 10−5 Pa.s
Particle diameter 2 × 10−3 m
Domain size 7.5dp × 4dp × 4dp m3

Nd 10, 20, 40, 60, 80 –

Boundary conditions

Inlet Outlet Lateral faces

U∞ = 0.05, 0.25, 0.5 m/s ∂U/∂x = 0 Periodic
T∞ = 275 K ∂T /∂x = 0 Periodic

3.2 Forced convection

The second validation test case concerns the heat transfer occurring in a fluid at temperature T∞ flow-
ing at velocity U∞ over a sphere of diameter dp whose temperature is fixed to Ts. The Reynolds number
(Re = ρfU∞dp/μ) is varied by changing the inlet velocity, and the Prandtl number (Pr = μCp/kf ) is imposed
equal to unity. This corresponds to a case of forced convection around a fixed spherical particle. Using the
DPM approach, a no-slip condition at the particle surface is imposed, which implies zero velocity in all grid
points standing within the particle volume. The spherical particle is placed at 2dp from the fluid inlet bound-
ary and its temperature is fixed to 320 K. Physical and numerical parameters of the simulations are given in
Table 4. For Reynolds numbers 10, 50 and 100, by computing the heat transfer coefficient, we aim at determin-
ing the Nusselt number modeling the heat exchanged between the fluid and the particle surface and compare
it with the correlations from the literature. A visualization of the temperature field on a plane in the middle of
the computational domain is shown in Fig. 3. Before proceeding with the Nusselt number analysis, we first
check the total hydrodynamic drag force (Fpn ) acting on the sphere. The numerical integration of Eq. (17)
is performed in the same way as the heat flux by triangularization of the sphere surface using Nb = 4500
elements. The pressure and viscous stresses are extrapolated to the barycenter of triangular elements with a
fourth-order Taylor scheme.
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Fig. 3 Temperature spatial distribution with flow streamlines around the hot sphere at Re = 100
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Fpn =
∫∫

Sp

(
−pI +

[
μ

(
∇u + (∇T u)

)])
· n dS. (17)

The drag coefficient [Eq. (18)] is compared to the well-known Schiller–Naumann’s correlation (Eq. (19)) for
grid sizes Nd = 10, 20 40, 80:

Cd =
∣∣∣∣Fpn

∣∣∣∣
π
8 d2

p ρf U 2∞
, (18)

Cd = 24

Re

(
1 + 0.15Re0.687

)
. (19)

In Fig. 4, the convergence is shown for all the Reynolds numbers we tested. A ∼ 5% deviation from the
Schiller–Naumann correlation is observed for Re = 10, while results agree very well with such a correlation
for higher Reynolds number from 40 grid cells per particle diameter. The heat transfer coefficient corresponds
to the ratio between the total heat transfer rate and the difference between the solid temperature and the
undisturbed fluid temperature multiplied by the total exchanging area:

hf = Qp→f

(Ts − T∞)(4π R2)
. (20)
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Fig. 5 Comparison of Nusselt numbers Nuf and Nup at Re = 10 �, Re = 50 ©, and Re = 100 � as a function of the grid
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From the heat transfer coefficient (Eq. (20)), the Nusselt number may be obtained. To compute the heat transfer
rate Qp→f from the simulations, two methods are tested. First, Qp→f (referred to as Qf ) is estimated from an
inlet–outlet integral heat balance as

Qf =
∫∫

SIn

ρfCpT u · n dS +
∫∫

SOut

ρfCpT u · n dS, (21)

where SIn and SOut are, respectively, the inlet and the outlet cross-sectional areas of the computational domain.
This gives Nuf = Qfdp/(kf(Ts − T∞)(4π R2)). Then, Qp→f (referred to as Qp), is computed by the heat
flux integrated over the sphere surface (Eq. (9)) with the algorithm described in Sect. 2.2, leading to defining
Nup = Qpdp/(kf(Ts − T∞)(4π R2)). By the numerical simulations, we study the sensitivity of both theNusselt
numbers Nuf and Nup to the grid size. Results are shown in Fig. 5. Comparison between the two quantities
reveals that the two ways of computations are very similar. Results also show that the larger is the Reynolds
number the higher should be the grid resolution, as expected. This depends on the thickness of the boundary
layer which decreases with the Reynolds number. Grids even more refined should be employed when the
Prandtl number increases (Pr � 1) because of the decrease in the thermal boundary layer thickness. The
grid convergence analysis indicates that for Re = 10, 20 cells per particle diameter are sufficient to get quite
converged values of the Nusselt number, while for Re = 50 and Re = 100, at least 40 and 60 cells per particle
diameter, respectively, are required. In this configuration of forced convection, different correlations of the
Nusselt number are reported in the literature. Some of them are listed below:
Frossling [25]

Nu = 2 + 0.552(Pr)1/3(Re)1/2, 2 < Re < 800, 0.6 < Pr < 2.7 (22)

Ranz and Marshall [26]

Nu = 2 + 0.6(Pr)1/3(Re)1/2, 2 ≤ Re ≤ 104, 0.6 ≤ Pr (23)

Whitaker [27]

Nu = 2+ (0.4Re1/2 +0.06Re2/3)P2/5
r

(
μf

μs

)1/4

, 0.71 ≤ Pr ≤ 380, 3.5 ≤ Pe ≤ 7.6×104, 1 ≤ μf

μs
≤ 3.2

(24)
Feng and Michealides [28]

Nu = 0.992 + (Pe)1/3 + 0.1(Pe)1/3(Re)1/3, 0.1 ≤ Re ≤ 4000, 0.2 ≤ Pe ≤ 2000. (25)

Recently, Tavassoli et al. [6], by using an IBM approach at Reynolds numbers ∈ [20 − 100] and Pr = 1,
obtained Nusselt numbers close to the correlation of Ranz andMarshall [26]. Kruggel-Eemden et al. [11], by a
LBM approach (Re ∈ [20−100]), obtained results which agree more with Feng andMichaelides’s correlation
[28] for Pr = 0.7, while for Pr = 1 results in between the correlations of Ranz and Marshall [26] and
Feng and Michaelides [28] were found. Figure 6 shows the evolution of the Nusselt number computed by
our numerical simulations using the finest computational grid and compared to the empirical aforementioned
correlations. Our results agree with Feng and Michaelides’s correlation [28] as well.
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Fig. 6 Nusselt number as a function of Reynolds number obtained by the numerical simulations, using Nd = 80, compared with
the correlations from the literature

4 Heat transfer in arrays of random motionless particles

4.1 Computing heat exchanges

We consider a fluid flowing through a static array of heated spherical particles. From the inlet, the fluid reaches
the particles, randomly distributed in the domain, with a velocity UIn and a temperature TIn. At the outlet,
Neumann conditions are imposed for the fluid velocity and temperature derivatives in the streamwise direction
(x). Periodic boundary conditions are instead used in the spanwise directions. Inside the array, the fluid
exchanges heat with the particles. The particle temperature is set larger than the fluid temperature, Ts > TIn,
and it is maintained constant during the numerical simulation using the penalization method detailed in Sect. 2
(Eq. (7)). Accordingly, the fluid leaves the domain warmer than when it entered. The method used to compute
the solid-to-fluid heat exchanges is presented below.
Let us start with the energy transport equation for the fluid written in a conservative form:

∂ρfCpT

∂t
+ ∇ · (ρfCpT u

) = ∇ · (kf∇T ). (26)

Multiplying Eq. (26) by the fluid phase function χ = 1 − C , and integrating over a volume of control V ,
makes it possible to obtain a local and instantaneous equation for the fluid, where the heat exchanged with the
particulate phase is taken into account at a scale larger than the microscopic scale (that is, at mesoscopic or
macroscopic scale, depending on the characteristic length scale of V). Assuming steady conditions, the volume
integration of the energy equation (26) leads to writing

∫∫∫

V
χ∇ · (

ρfCpT u
)
dV =

∫∫∫

V
χ∇ · (kf∇T ) dV, (27)

which, rearranged, gives
∫∫∫

V
∇ · (

χρfCpT u
)
dV −

∫∫∫

V

(
ρfCpT u

) · ∇χ dV =
∫∫∫

V
∇ · (χkf∇T ) dV −

∫∫∫

V
kf∇T · ∇χ dV.

(28)

The derivative of the fluid phase function verifies the relation ∇χ = −nσI δσI , where nσI is the unit normal
vector at the fluid–particle interface pointing outward from the fluid region and δσI is the Dirac distribution
associated with each interface σI [29,30]. According to the interface boundary conditions, without interface
mass transfer, u · ∇χ = 0 at each σI . In Eq. (28), the second term on the left-hand side (l.h.s.) is therefore
null everywhere in the domain. The last term on the right-hand side (r.h.s.) represents the heat transfer rate
between the solid and the fluid phase and may be written as

Qp→f = −
∫∫∫

V
kf∇T · ∇χ dV =

∫∫

ΣI

kf∇T · nσI dS, (29)
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where ΣI is the whole fluid–solid interface within the selected volume V . If the Np particles are entirely
contained into the volume of control V , the heat exchanged between the solid and the fluid may be estimated
by integrating over all the particles within V , namely

Qp→f =
Np∑

k=1

Q(k)
p . (30)

From Eq. (28), using the divergence theorem, Qp→f may also be obtained as follows:

Qp→f =
∫∫

Σ

χρfCpT u · n dS −
∫∫

Σ

χkf∇T · n dS, (31)

whereΣ is the boundary surface of the volume of control V . Equations (30) and (31) are strictly equivalent and
should provide equivalent results, unless inaccuracy of numerical approximations. They will be both employed
for computing Qp→f . Results will be shown in Sect. 4.3.

4.2 Modeling heat transport and transfer

Fully resolved particle numerical simulations make it possible to estimate the heat exchanged between the
solid and the fluid phases. However, this quantity needs to be modeled, at mesoscopic or macroscopic level,
when direct numerical simulations are not feasible and fluid and particle equations require closure laws. In
this study, we will focus on the macroscopic modeling and investigate the Nusselt number to being used in an
Eulerian–Eulerian approach. In order to proceed with the analysis, we introduce a mean (volume-averaged)
energy transport equation, on the basis of the previous notations. Defining the mean volume fraction of the
fluid within the control volume V as

φf = 1

V

∫∫∫

V
χ dV, (32)

the volume average of the generic quantity, ψ , then writes

φf〈ψ〉f = 1

V

∫∫∫

V
χψ dV. (33)

From Eq. (28), assuming that integral and derivative operators commute and assuming constant fluid density,
heat capacity and conductivity, the first term on the l.h.s. may be reformulated as follows:

1

V

∫∫∫

V
∇ · (χρfCpT u

)
dV = ∇ · (

φfρfCp〈T u〉f
) = ∇ · (

φfρfCpTb · Uf
)
, (34)

where Uf = 〈u〉f is the mean (volume-averaged) fluid velocity and Tb is a bulk temperature tensor defined
as Tb,i j = (〈T ui 〉 f U f, j )/||Uf ||2. In the mean flow direction, when the mean flow is aligned to the mean
heat flux, only one component of this tensor prevails. This component corresponds to the well-known bulk (or
cup-mixing) temperature, Tb, as classically defined in the literature.
The first term on the r.h.s. in Eq. (28) is also rewritten using mean quantities as

1

V

∫∫∫

V
∇ · (χkf∇T ) dV = ∇ · (

φfkf〈∇T 〉 f
) � ∇ · (φfkf∇Tf) 2 (35)

with Tf = 〈T 〉f the mean (volume-averaged) fluid temperature. At the steady state, the local equation modeling
the fluid at macroscopic scale takes the form

∇ · (
φfρfCpTb · Uf

) = ∇ · (φfkf∇Tf) + Q∗
p→f , (36)

2 Generally, 〈∇ψ〉 f �= ∇〈ψ〉 f . The corresponding difference is referred to as tortousity in the literature and usually modeled
in porous media [29,30].
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where Q∗
p→f is the heat transfer rate per unit volume. This formulation makes appear different temperatures

which cannot be used in a macroscopic model without any additional assumption. Equation (36) may be
rearranged as follows:

∇ · (
φfρfCpUf Tf

) = ∇ · (φfkf∇Tf) + Q∗
p→f + ∇ · (

φfρfCp(TfI − Tb) · Uf
)
. (37)

The last term may be written by expressing Tb,i j on the basis of mean and fluctuating quantities as

Tb,i j = 〈T ui〉f Uf, j

||Uf ||2 = Tf
U f,iU f, j

||Uf ||2 + 〈T ′u′
i 〉f

U f, j

||Uf ||2 ; (38)

the generic fluctuation is defined asψ ′ = ψ− < ψ >f and its average is null over the domain V , by definition.
From Eqs. (37), (38) may be formulated as follows:

∇ · (
φfρfCpUf Tf

) = ∇ · (φfkf∇Tf) + Q∗
p→f − ∇ · (

φfρfCp〈T ′u′〉f
)
. (39)

Equation (39) has the form of the energy balance equation commonly used in an Eulerian–Eulerian approach,
although it is here obtained by a volume average instead of an ensemble average. Each term in Eq. (39)
should be statistically evaluated over a large number of two-phase flow realizations in order to account for
the random effect originating from the different particle arrangements. The last term in Eq. (39) represents
the energy transport by the velocity–temperature covariance. It intrinsically accounts for all the correlations
between fluctuating velocity and temperature in the fluid, irrespective of their nature. In the frame of RANS
Eulerian–Eulerian approach, when the fluid is mainly dominated by turbulent effects at large scale with respect
to the particle size, this term may be closed using a turbulent thermal diffusivity, derived from a Boussinesq
eddy-viscosity assumption, in which the effect of the particles on the fluid is accounted for by using a modified
turbulent viscosity [31]. For low Reynolds number and high solid volume fraction, it rather accounts for the
correlations induced by the microstructure of the particulate flow and by the particle wake interactions. Such
a contribution is modeled in porous media, for example, throughout effective properties (see, for example, the
references [32,33]). Instead, it is generally neglected in the Eulerian–Eulerian approaches for fluid–particle
flows. Recently, Sun et al. [34] used the fully resolved particle numerical simulation for characterizing this
contribution (referred to as pseudo-turbulent heat flux) and proposed a closure for it. Such a closure is a gradient
model based on a pseudo-turbulent thermal diffusivity, derived by fitting their fully resolved particle numerical
results. In the present work, this contribution is investigated and related to the Nusselt number correlations
available from the literature.
In an Eulerian–Eulerian approach,Q∗

p→f is modeled on the basis of a relative (solid-to-fluid) temperature and
a heat transfer coefficient as follows:

Q∗
p→f = hfSp(Ts − Tf); (40)

Ts represents the temperature of the particulate phase, while Tf is the temperature of the fluid at the same
location (both being Eulerian quantities). This modeling cannot account for the undisturbed fluid temperature
seen by the particle since only themean temperature Tf is available at the corresponding Eulerian computational
node. In Eq. (40), Sp is the total surface of the solid phase per unit volume, which may be written as 6φs/dp,
where φs = 1− φf is the solid volume fraction; hf is the heat transfer coefficient estimated on the basis of the
aforementioned non-dimensional Nusselt number as hf = Nuf kf/dp. Using the above definitions, Eq. (40)
takes the form

Q∗
p→f = 6φskfNuf

d2
p

(Ts − Tf); (41)

the latter is closed provided that the Nusselt number is known. Conversely, using the fully resolved particle
numerical simulations, a heat transfer coefficient is estimated as

hf = Q∗
p→f

Sp(Ts − Tf)
, (42)

and a Nusselt number obtained as

Nuf = hf dp
kf

. (43)
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However, most of the studies in the literature are modeling the solid-to-fluid heat exchange using the bulk
temperature:

Q∗
p→f = 6φskfNub

d2
p

(Ts − Tb). (44)

Such a temperature corresponds to the trace of the tensorTb which reduces to the tensor component Tb = Tb,αα

when the flow mean velocity is aligned to the α direction. The related Nusselt number

Nub = hb dp
kf

(45)

is then based on a heat transfer coefficient defined as

hb = Q∗
p→f

Sp(Ts − Tb)
, (46)

which is different from that introduced in equation (42). The two definitions (41) and (44) lead to the following
relation

Nuf(Ts − Tf) = Nub(Ts − Tb). (47)

In the present work, Tb = Tb,xx since the x-axis represents the direction of the mean flow (streamwise
direction). Equation (47) will be verified by the direct numerical simulation. The difference between the bulk
and the mean fluid temperature will be investigated, as well as the two dimensionless Nusselt numbers and
their connection with the pseudo-turbulent heat flux.

4.3 Numerical simulations, results and discussions

The computational domain is composed of three zones: an entrance zone, a packed zone and an exit region,
as proposed by Tavassoli et al. [6]. Such a configuration allows the simulation to reproduce a fluid flowing
through a packed bed of fixed spheres, with uniform inlet velocity and temperature. The particles are randomly
distributed in the packed zone distant 2dp from the entrance and 2dp from the exit. In the present work,
numerical simulations with five different random particle seedings are performed, each one for three Reynolds
numbers (10, 50, 100) and four solid volume fractions (0.1, 0.2, 0.3, 0.4). Numerical simulations use a grid
size corresponding to the normalized grid resolution parameter Nd = 20. The latter was indeed found to be
a good compromise between accuracy and computational costs in fixed beds. For the solid volume fraction
φs = 0.1, 0.2, 0.3, the number of particles was set to Np = 98, 196, 294, respectively, within the same
geometrical domain. For the solid fraction φs = 0.4, the packed section was instead reduced in order to obtain
fast convergence of the random draw algorithm, and a number of particle Np = 166 was accordingly used. The
Reynolds number, Re = ρfUIndp/μ, was varied by changing the inlet velocity. The Prandtl number was fixed
equal to unity for all the simulations. A summary of the physical and numerical parameters is given in Table 5.

Table 5 Parameters used for simulation of flows through a fixed array of particles

Parameter Value Unit

Fluid density ρf 1 kg/m3

Fluid viscosity μf 1 × 10−4 Pa.s
Fluid mass heat capacity Cp 1 × 103 J/(Kg K)
Fluid thermal conductivity kf 1 × 10−1 W/(m K)
Particle diameter dp 1 × 10−3 m
Domain size (φs = 0.1, 0.2, 0.3) 12dp × 8dp × 8dp m3

Domain size (φs = 0.4) 10dp × 6dp × 6dp m3

Grid resolution Nd 20 –

Boundary conditions

Inlet Outlet Lateral faces

UIn = 0.1, 0.5, 1 m/s ∂U/∂x = 0 Periodic
TIn = 275 K ∂T /∂x = 0 Periodic
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Fig. 7 Solid volume fraction distribution along the axial flow direction, with box showing homogeneous regions of the bed where
heat transfer coefficients are computed

In the configuration chosen in this study, the temperature of the fluid increases in the streamwise direction
because of the heat transferred from the solid phase. In order to study the mean temperature evolutions in
space, we define a mean cross-sectional fluid temperature

Tf(x) =

∫∫

S
χ(x, y, z)T (x, y, z)dydz

∫∫

S
χ(x, y, z)dydz

, (48)

and a mean cross-sectional bulk temperature (with u the streamwise velocity component)

Tb(x) =

∫∫

S
χ(x, y, z)u(x, y, z)T (x, y, z)dydz

∫∫

S
χ(x, y, z)u(x, y, z)dydz

, (49)

by surface (instead of volume) integrals over the cross-sectional area S, which represents the section of the
computational domain orthogonal to the streamwise direction. The volume integral quantities approach the
surface integrals when dx → 0. The mean cross-sectional solid volume fraction and fluid velocity are then

φs(x) =
∫∫

S

(1 − χ)(x, y, z)dydz and Uf(x) =

∫∫

S
χ(x, y, z)u(x, y, z)dydz

∫∫

S
χ(x, y, z)dydz

. (50)

Figure 7 shows the streamwise profiles of the mean cross-sectional solid volume fraction for all the numerical
simulations. Entrance, packed and exit zones are clearly highlighted. In addition to the inlet and outlet x
coordinates, we define xmin = xIn + 1.5 dp and xmax = xOut − 1 dp as the coordinates of a domain containing
all the particles and for which the temperature gradient is null at the boundaries, and xa = xIn + 4 dp and xb =
xOut−3 dp as the coordinates of a reduced domain inside which the solid volume fraction may be considered as
homogeneous. Figure 8 shows the temperature and the streamwise velocity fields of the fluid flowing through
the fixed array of particles, at Reynolds number Re = 50 and solid volume fraction φs = 0.2, on a slice taken
in the middle of the box. The interactions of particle wakes, which modify the velocity and the temperature
fields, clearly appear on the visualizations. The temperature is higher inside the boundary layer around each
particle, and it is higher downstream of each particle because of the wake effects. Temperature and velocity are
anticipated to be correlated. High velocity between particles is expected because of mass flux conservation.
This participates to enhancement of heat transfer from the particle surface. In order to investigate this point,
the spatial occurrence density function (SDF), f (u∗, T ), and the average of the temperature conditioned on
the normalized streamwise velocity u∗ = u/UIn, < T |u∗ >f , are computed for the same case shown in Fig. 8.
Both statistical quantities are evaluated over a slice in the middle of the box, bounded between xa and xb in
order to avoid single phase zones, withdrawing the points at 320 K which correspond to the solid border and
its interior.
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Fig. 8 Temperature and streamwise velocity fields around the particles, at Re = 50 and φs = 0.2, in the middle of the box
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Fig. 9 Joint SDF of fluid streamwise velocity and temperature (left) and conditional average of fluid temperature on fluid
streamwise velocity (right) at Re = 50 and φs = 0.2

Results, displayed in Fig. 9, show that temperature and velocity are indeed correlated. Higher occurrences
are found in the zones corresponding to low fluid velocity that is close to the particle surface or between
neighboring particleswhose arrangement promote recirculation zoneswith stagnation points. High occurrences
are also found at the velocity corresponding to the flow rate (0.5 m/s) and near to the exit region. Decreasing the
solid volume fraction makes to move the maximum of occurrences toward high-velocity and low-temperature
zoneswhich corresponds to those regions inwhich the particle–particle interactions are low,whereas increasing
the solid volume fraction increases the occurrence at very low fluid velocity and high temperatures, as shown in
Fig. 10. Temperature–velocity correlations also varywith theReynolds number, as shown inFig. 11.Correlation
coefficients between temperature and velocity were found to be−0.65,−0.78 and−0.81 at Reynolds numbers
10, 50 and 100, respectively, for φs = 0.2. These differences are expected as they rely on the residence time
of the fluid within the fixed assembly of particles, at the different Reynolds numbers simulated in this study.
The transient evolution of the mean cross-sectional bulk temperature Tb(x) and the mean cross-sectional fluid
temperature Tf(x) are plotted in Fig. 12, for the case Re = 50 and φs = 0.4. Results show that a steady state
is reached for these laminar conditions. Results also point out some differences in the two steady temperature
profiles. Within the fixed bed, Tf turns out to be greater than Tb and less smooth. This is consistent with the two
different definitions. Tb is indeed obtained from aweighted average by the local fluid velocity. It was previously
shown that higher temperatures correspond to lower velocities in the bed. Moreover, low velocity zones mainly
correspond to those zones in which particle wakes interact with each others because of the particle proximity;
these interactions break down the flow and lead to recirculation effects which affect the fluid flowing through
the fixed array, and the temperature as well. It is reasonable to suppose that such interactions induce some
disturbances in the spatial evolution of the fluid temperature, leading to a less smooth profile.

Keeping these results in mind, we now compute the heat transferred from the solid to the fluid phase in
order to further evaluate the two Nusselt numbers (Eqs. 43, 45) which make it possible to model such a heat
exchange. The heat transfer ratemay be computed using two differentmethods (Eqs. 30, 31) which should yield
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identical results provided that the same domain is used and the entire exchanging surface of each particle is
accounted for. In order to compare numerical simulations using different numbers of particles, Np, normalized
heat transfer rate are defined as follows: Q̂f = Qf/Np and Q̂p = Qp/Np, where Qp and Qf correspond

to Qp→f as defined by Eqs. (30) and (31), respectively. To compute Q(k)
p , for each particle k, the algorithm

presented in Sect. 3 cannot be used. Such an algorithm indeed requires a sufficient number of grid points in
the normal direction to each interface, in order to accurately approximate the temperature gradient on each
particle surface. For a quite coarse mesh, in the presence of particles very close to each others, such a number is
not ensured with the consequence that the numerical accuracy is low. Each particle heat rate is thus computed
using a cubic box of length dp + 2dx , centered on the particle mass center. The whole heat rate is obtained as
follows:

Qp =
Np∑

k=1

⎛

⎜
⎝

∫∫

Sbox

ρfCpT u · n dS +
∫∫

Sbox

−kf∇T · n dS

⎞

⎟
⎠ , (51)
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where Sbox is the total box surface. In order to compare the two methods (Eqs. (30), (31)) a domain bounded
by xmin, xmax is chosen and Qf computed as

Qf =
⎛

⎜
⎝

∫∫

Smin

χρfCpT u · n dS +
∫∫

Smax

χρfCpT u · n dS

⎞

⎟
⎠ , (52)

where Smin = S and Smax = S are, respectively, the inlet and the outlet cross-sectional areas at the positions
xmin and xmax, since periodic boundary conditions in spanwise directions of the computational domain are
imposed. At such locations, the temperature gradient is almost zero and the heat transfer rate may be computed
without accounting for the conduction contribution.
For all the numerical simulations of the present study, Q̂p and Q̂f are computed and averaged over five
realizations differing each other by the random particle arrangements. Averaged results and standard deviations
are presented in Fig. 13. The latter shows that for each Reynolds number and solid volume fraction, the two
methods give very close results and may be both employed for estimating the total heat transfer rate. The
method computing the heat exchanged from individual particle with the surrounding fluid is indeed useful for
analyzing the heat transfer rate statistical dispersion. The relative occurrence of Q(k)

p is computed over the five
realizations of each test case and results displayed in Fig. 14. Simulations show a large dispersion corresponding
to higher solid volume fractions, for all the Reynolds numbers, thus proving the limits of Eulerian or Lagrangian
methods to accurately reproduce such interactions at larger scales assuming homogeneous quantities in a same
volume of control. This is a clear signature of the interplay between local heat transfer and the microstructure
of the particle spatial distribution.

Alternatively to Eq. (30), Eq. (31) may be used for computing the heat transferred from the solid to the
fluid phase in a reduced domain where bounding surfaces cut the particle interface. In computing the total rate
of heat transfer in such a reduced domain, both the convection and the conduction contributions should be
taken into account. The two contributions

Q f cd =
∫∫

Sa

−χkf∇T · n dS +
∫∫

Sb

−χkf∇T · n dS, (53)

Q f cv =
∫∫

Sa

χρfCpT u · n dS +
∫∫

Sb

χρfCpT u · n dS (54)

are evaluated over the five realizations carried out for each numerical test case, within the domain bounding
by the streamwise coordinates xa and xb (with Sa = Sb = S). Their ratio is depicted in Fig. 15. It increases by
decreasing the Reynolds number and by increasing the solid volume fraction as well. For the lowest Reynolds
number simulated in this study, its mean value is found to be lower than 0.03, and even smaller for the two
higher Reynolds numbers (< 0.007,< 0.004). The conductive contribution is therefore small enough to be
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Fig. 14 Distribution of single particle heat transfer rate Q(k)
p

neglected in the present study (while it should not be for lower Reynolds number, as also recently demonstrated
by Sun et al. [34]). By the reduced domain, which is considered homogeneous with regard to the solid volume
fraction, the heat transfer coefficients may be estimated by Eqs. (42) and (46), defining the global solid surface
(instead of the surface per unit volume) as (6φs/dp)S(xb − xa), where φs is the averaged solid volume fraction
computed as φs = 1

xb−xa

∫ xb
xa

φs(x)dx (or, equivalently, by the volume average over the reduced volume). The
two Nusselt numbers are then obtained using their definitions (Eqs. (43), (45)).

In the literature, several correlations for the Nusselt number have been proposed. Three of them are recalled
below:
Gunn [2]

Nu = (
7 − 10φf + 5φ2

f

) (
1 + 0.7Re0.2Pr1/3

) + (
1.33 − 2.4φf + 1.2φ2

f

)
Re0.7Pr1/3, (55)

Deen et al. [8]

Nu = (
7 − 10φf + 5φ2

f

) (
1 + 0.17Re0.2Pr1/3

) + (
1.33 − 2.31φf + 1.16φ2

f

)
Re0.7Pr1/3, (56)

Sun et al. [10]

Nu = (−0.46 + 1.77φf + 0.69φ2
f

)
/φ3

f + (
1.37 − 2.4φf + 1.2φ2

f

)
Re0.7Pr1/3. (57)

These correlations are used for a comparison purpose and further employed for a modeling purpose. Nusselt
numbers are computed for all the numerical test cases by averaging over the five realizations of each case.
Figure 16 (left) shows the averaged Nusselt number Nub compared with the correlations proposed by Deen et
al. [8] and Sun et al. [10]. In Fig. 16 (right), the averaged Nusselt number Nuf is instead compared with Gunn’s
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Fig. 16 Nusselt numbers computed from our numerical simulations, compared with the correlations of the literature: Nub (45),
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correlation [2]. Results show that Nub estimated in the present study compares well with the correlations of
the literature, which are obtained by fully resolved particle numerical simulations using the same definition
(based on the bulk temperature). It is worth noting that Nuf computed in the present work is instead closer to
the Gunn correlation. Gunn [2] used the bulk temperature in his analytical approximated formulation to derive
asymptotic values for the Nusselt number. However, the proposed correlation was further obtained on the basis
of available data from the literature, while the definition of the temperature used in the Nusselt number estimate
is not clear.

Recent studies carried out on random fixed particle arrays [6,9–11] all showed that the correlation proposed
by Gunn [2] overestimates the numerical Nusselt predictions. These studies used the bulk temperature in the
Nusselt number formulation.ComparingNub with theGunn correlation, our results lead to the same conclusion.
However, when the Nuf is assessed, the Gunn correlation is found to overpredict only the lowest solid volume
fraction while globally agreeing with the numerical results. A good agreement with the Gunn correlation was
recently pointed out from the experiments by Buist et al. [35]. The sensitivity of the two Nusselt numbers in the
present configuration was investigated over three grid sizes and four test cases. Results are shown in Fig. 17.
In the worst case (Re = 50, φs = 0.4), extrapolating the predictions from Nd = 20 to Nd = 60, an error of
about 13% is found for Nuf . It is worth noting that the ratio Nuf/Nub is instead insensitive to the mesh size and
may be considered independent of numerical errors (only affected by statistical errors due to the sampling).

In Sect. 4.2, we demonstrated that the ratio between the two Nusselt numbers is strictly equivalent to the
ratio between the solid-to-fluid and the solid-to-bulk temperature differences. Equation (47) is indeed proved
by the numerical results shown in Fig. 18. The direct consequence of such a relation is that if Tf and the two
Nusselt numbers are known, then Tb is known as well. This information is extremely useful in the frame of
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an Eulerian–Eulerian approach as it provides a closure for the fluctuating velocity–temperature correlation
appearing in the energy conservation equation (39). From Eq. (38), we indeed obtained

−〈T ′u′〉f = (TfI − Tb) · Uf , (58)

which, according to the mean flow direction of our simulations, reduces to

−〈T ′u′〉f = (Tf − Tb)Uf , (59)
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with the fluid-to-bulk temperature difference modeled as

Tf − Tb = (Ts − Tf)

(
Nuf
Nub

− 1

)
. (60)

Therefore, knowing the ratio between Nuf and Nub makes it possible to close the pseudo-turbulent heat flux.
This reasonably applies to all those flows in which a main direction may be identified. Likewise, knowing Nuf
ensures a consistent formulation of the two-phase flow heat exchanges.

In a recent work, Sun et al. [10] proposed tomodel the solid-to-fluid heat transfer rate by using Nub together
with an extra term which relates the fluid temperature Tf to the bulk temperature Tb, obtained by fitting their
data. So doing, they in fact provided a model for Nuf from which the ratio Nuf/Nub may straightforwardly be
obtained as follows:

Nuf
Nub

= π

4
[
1 − 1.6φsφf − 3φsφ

4
f exp(−Re0.4φs)

] . (61)

Such a ratio is here assessed from the numerical simulations and results are displayed in Fig. 19. In the latter,
predictions obtained from Eq. (61) are also given for a comparison purpose. Figure 19 shows that the Nusselt
ratio decreases with the Reynolds number and increases with the solid volume fraction. This is explained by the
fact that the higher is the Reynolds number, the thinner is the particle boundary layer and therefore the smaller
is the difference between Tf and Tb. Conversely, the larger is the solid volume fraction, the higher are the wake
interactions, which promote stagnation zones between neighboring particles, thus leading to magnifying the
temperature difference. Figure 19 also shows that this trend is well captured by the model (Eq. (61)). Such a
model is therefore used in conjunction with the two aforementioned correlations [8,10] and compared with
the Nuf obtained by our numerical simulations. For the sake of conciseness, we will refer to as NuD for the
product between Nub proposed by Deen et al. [8] and the correlation Nuf/Nub given by Eq. (61), and to as
NuS for the product between Nub proposed by Sun et al. [10] and the same correlation. (The latter represents
the corrected model proposed by those authors, which we refer to as Nuf .) Results are displayed in Fig. 20.
A very good agreement is found between the numerical results and the correlations from the literature when
the fluid-to-bulk Nusselt ratio is used. Only slight differences are observed at the lowest solid volume fraction
and high Reynolds numbers. For very low volume fraction regimes, in the limit of φs → 0, the Nusselt ratio
correlation (Eq. (61)) should tend to unity, while it does not. When the solid volume fraction approaches
the typical values of dilute regimes (∼ 1%), using such a correlation would entail under-predicting the heat
exchanges between solid and fluid phases. In some industrial applications, these low volume fractions occur
in zones in which an accurate prediction of the heat transfers is crucial (for example, in the freeboard region
of reactive fluidized beds [36]). Having a suitable correlation which may be used in both dense and dilute
regimes is still an open question which should be addressed. Outside these regimes, the model provides very
satisfactory results in predicting Nuf based on the Nub from literature. Its ability to predict the fluctuating
velocity–temperature contribution, or pseudo-turbulent heat flux, is evaluated below. This quantity is assessed
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Fig. 20 Nuf as obtained by the present study compared with NuD and Nus computed by the correlations of the literature using
Eq. (61)

using our direct numerical simulations, and Eq. (59) is verified along the streamwise direction. Results are
shown in Figs. 21, 22 and 23 for Reynolds numbers 10, 50 and 100, respectively. For all the test cases, the
fluctuating velocity–temperature contribution increases with the solid volume fraction at the beginning of the
packed zone and then decreases toward the exit zone. This is consistent with a decrease in the temperature
gradient in the homogeneous region of the bed. Such a decrease is significant at the lowest Reynolds number
and the highest solid volume fraction; it is instead weaker at higher Reynolds numbers, especially for low
φs. Results also show that the higher is the Reynolds number and/or the solid volume fraction, the larger is
its intensity. This pseudo-turbulent heat flux indeed accounts for the correlation between fluid velocity and
temperature fluctuations induced by the particles and represents a local flow disturbance due to the wake
interactions of neighboring particles. Contrary to the turbulent effects, it is a small-scale phenomenon which
depends on the microstructure of the particulate flow, as well as on the solid volume fraction and the thermo-
hydrodynamic characteristics of the mixture. It may have a substantial effect on dense particle-laden flows
and should be taken into account in the modeling. The importance of this contribution was pointed out by a
recent work of Sun et al. [34]. The ability of the Nusselt number ratio to reproduce the pseudo-turbulent heat
flux is investigated by computing the fluctuating velocity–temperature correlations from Eqs. (59) and (60)
using Nuf/Nub estimated from the numerical simulations and modeled by Eq. (61). The latter is computed by
using the mean value of the solid volume fraction in the homogeneous packed zone. The former is obtained
using averaged Nusselt numbers (i.e., one value for each operating point). Obviously, integrating Eq. (36) over
the spanwise directions and alternately accounting for Eqs. (41) and (44) make it possible to obtain a Nusselt
ratio which is function of the streamwise coordinate. Using this ratio leads the exact reproduction of the actual
fluctuating velocity–temperature term (not shown). This operation is rather a numerical validation and it is not
interesting from a modeling point of view. This is why averaged Nusselt numbers over x are instead used. Both
the predictions are only evaluated within the packed zone. A comparison with the actual contribution computed
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Fig. 21 Pseudo-turbulent heat flux,−〈T ′u′〉f , computed using the numerical simulations from thefluctuating velocity–temperature
averages (solid line) and from (Tf − Tb)Uf according to Eq. (59) (symbols), and modeled by Eq. (60) using the ratio Nuf/Nub
estimated by the numerical simulations (dashed red line) and by Eq. (61) (dot dashed black line), at Re = 10

from the numerical simulations is given in Figs. 21, 22, 23. The modeling based on the ratio estimated from
the numerical simulations shows a very good agreement with the measured quantity. The modeling based on
Eq. (61) also provides satisfactory results even if slightly under-predicting the numerical measurements. We
observe, however, a larger underestimation corresponding to the lowest volume fraction for all the Reynolds
numbers. This observation is consistent with our previous considerations about the inability of the correlation
to reproduce volume fraction regimes corresponding to dilute regime φs → 0. We believe that this represents
an important point which deserves further studies characterizing such a transition from dilute to dense flows.

5 Conclusion

In the present study, particle-resolved direct numerical simulations were performed from a single sphere to an
assembly of randomparticles in order to characterize the heat transfer in dense gas-particle flows. ALagrangian
VOF approach using fictitious domains and combined with a penalty method was used to solve the fluid and
its interactions with the solid phase. This approach uses a Lagrangian tracking for the phase function together
with a second-order implicit tensorial penalty method (ITPM) when solving cases with moving particles. An
augmented Lagrangian method is also employed in order to ensure incompressibility when dealing with the
multiphase problems. In the present study, since fixed particles were simulated the alternatively Darcy penalty
method (DPM) was used. The first part of the present study concerned the validation of the numerical strategy
employed for obtaining the heat transfer coefficients and the related Nusselt numbers. The latter were analyzed
on a single solid sphere over two well-known test cases: a pure heat diffusion from a hot particle to a quiescent
cold fluid and a diffusion/convection heat transfer from a hot particle to a laminar fluid flow. The first test case,
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Fig. 22 Pseudo-turbulent heat flux. Same caption as in Fig. 21, at Re = 50

for which an analytical solution is available, made it possible to verify both the ability of the numerical method
to accurately solve the heat exchange near the interfaces and the ability of the post-processing algorithm to
compute the heat flux around the sphere. The second test case additionally allowed the verification of an
alternative method for estimating the heat transfer rate using an inlet–outlet integral heat balance. The second
part of this work was devoted to the analysis of the heat transfer occurring between the particles and the fluid
in an assembly of random motionless spherical particles. Using the fully resolved numerical simulation, three
Reynolds numbers (∈ [10, 100]) and four solid volume fractions (∈ [0.1, 0.4]), for unity Prandtl number,
were investigated. For each numerical test case, the heat transfer rate was computed and two Nusselt numbers,
based, respectively, on the fluid temperature and on the bulk (cup-mixing) temperature, were obtained and
analyzed. Numerical results revealed some differences between such Nusselt numbers for the same operating
point. The specificity of the two Nusselt numbers was put forward and the inadequacy of the one based on the
bulk temperature to close the heat exchanges between the phases in an Eulerian–Eulerian approachwas pointed
out. Finally, based on a Eulerian–Eulerian formulation of the fluid energy equation, a connection between the
ratio of the two Nusselt numbers and the fluid velocity–temperature covariance was identified. The latter (also
referred to as pseudo-turbulent heat flux in the literature) accounts for the velocity and temperature fluctuations
induced by the particles on the fluid and represents a small-scale phenomenon which depends on the local
microstructure of the particulate flow, as well as on the solid concentration and the thermo-hydrodynamic
characteristics of the mixture. Its connection with the Nusselt number ratio made it possible to obtain a closure
based on the available correlations from the literature. Such a closure was tested in the present configuration
corresponding to a mean steady flow aligned to the mean temperature gradient. Preliminary successfully tests
have also been carried out in fluidized beds. Further investigations are left to future work.
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Fig. 23 Pseudo-turbulent heat flux. Same caption as in Fig. 21, at Re = 100
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