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Abstract Stiffened panels buckle under compressive loads which would degrade load-bearing capabilities of
the structures. Fast yet accurate estimations of buckling loads and associated mode shapes are critical in the
early stages of design and optimization. This paper presents a method based on the mechanics of structure
genome (MSG) for the global buckling analysis of stiffened composite panels. The original geometrically
nonlinear problem is mathematically reduced to a geometrically linear constitutive modeling of the structure
genome and a geometrically nonlinear formulation of the macroscopic plate analysis. Validation case studies
show thatMSG is highly accurate and efficient as compared to the detailed finite element analysis. The buckling
behaviors of stiffened panels under various boundary conditions and loadings are investigated.

1 Introduction

Stiffened panels have been widely used in many engineering systems. By adding stiffeners to plates, buckling
strengths of the structures are significantly enhanced without significant increase in weight. Buckling analysis
of stiffened panels has been a subject of interest for many years. Depending on the stiffness and patterns of
stiffeners and the space between stiffeners, buckling modes are generally seen in two types: global buckling
and local buckling (Fig. 1). In global modes, skins and stiffeners are lifted together, while in local modes only
the skins between the stiffeners are lifted. According to the failure mode map [1], global buckling is considered
to be a major failure mode for stiffened plates/shells under axial compression and/or external pressure [2] and
one of the design objectives for optimization [3].

Amongworks on global buckling analysis of stiffened panels, extensive studies are focused onfinite element
method (FEM) and smeared stiffener method (SSM). The FEM enables accurate results without limitations
regarding boundary conditions, stiffener shapes, or layup sequences. However, studies showed that modeling
stiffeners using two-dimensional (2D) elements resulted in significant error in predicted buckling loads in
comparison with using three-dimensional (3D) elements [4]. Accurate simulations of buckling of stiffened
panels generally need high computational effort and long simulation time, prohibiting efficient evaluations of
different configurations and materials needed for preliminary design and optimization [5].

The smearing techniques for plate and shell analysis have been summarized by Szilard [7]. The basic idea
is to smear the stiffness of stiffeners into plates and compute effective plate/shell properties. The SSMs are
in general computationally efficient to execute; however, most of the existing SSMs either lack precision or
are restricted to stiffened panels with specific stiffened patterns or materials. The extension-bending coupling
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(a) Global mode (b) Local mode

Fig. 1 Two main types of buckling modes of stiffened panels. Reprinted from [6] with permissions

interaction caused by the eccentricity of stiffeners was neglected in the study by Chen et al. [8], which resulted
in imprecise predictions of the buckling behaviors [9]. The SSM proposed by Jaunky et al. [10] only applied
to symmetric laminates. Byklum et al. [11] proposed an SSM to study stiffened panels with stiffeners in
longitudinal and transverse directions. The resultant forces and moments were assumed to be decoupled,
which made this approach difficult to use for composite panels. Kidane et al. [12] superimposed the forces
and moments of stiffeners on those of shells to compute effective shell properties. The method modeled the
stiffeners as Euler–Bernoulli beams without considering transverse shear stiffness, and it neglected skin–
stiffener interactions. Xu et al. [13] considered the skin–stiffener interactions and proposed another SSM. This
SSMwas applied to various stiffened patterns but only included longitudinal moduli of stiffeners in the theory.
Besides, numerical-based SSMs were developed to combine the efficiency of SSM with the accuracy of FEM
[8,14,15]. Recently, the development of new materials such as functionally graded material (FGM) initiated
active research on buckling behaviors of a stiffened FGM structures. Ninh et al. [16] studied torsional buckling
and post-buckling of stiffened FGM toroidal shell. The same authors [17] also investigated dynamic buckling
of a stiffened FGM toroidal shell under fluid dynamic pressure. Dung et al. [18–20] studied buckling and
post-buckling of FGM truncated conical shells reinforced by orthogonal stiffeners under thermomechanical
loads. Theoretical formulations in these research studies [16–20] are derived based on SSMs and classical thin
shell theory with geometrical nonlinearity in the von Kármán sense.

Due to the fact that most of the SSMs are developed for specific grid-patterns or materials, applicabilities
of SSMs for covering various stiffener patterns are often challenging [15]. Homogenization methods do not
have such limitations regarding stiffener patterns or materials. By using the asymptotic expansion with the
assumption of periodicity, all physical quantities are treated at two scales, i.e., the macroscopic scale which
denotes slow variation and the microscopic scale which denotes rapid oscillations [21]. Homogenization
methods have been widely used in calculating effective properties of heterogeneous media [22–24]. However,
studies of using homogenization methods in buckling analysis of stiffened panels are scarce [25].

Motivated by the advantages of using homogenization theories to study buckling behaviors of stiffened
panels, the authors hereby present and evaluate a homogenization theory named the mechanics of structure
genome (MSG) [26]. It is a unified homogenization theory that provides the constitutive modeling of 3D
structures, beams, and plates/shells [27–30]. The term genome is generalized from the representative volume
element (RVE) concept in micromechanics. RVE is defined as a material volume entirely typical of the whole
mixture on average and contains sufficient heterogeneity for the apparent overall properties to be effectively
independent of the boundary conditions [31]. A structure genome (SG) is defined as the smallest mathematical
building block of a structure (e.g., cross section of a beam, transverse normal line of a composite laminate,
unit cell of a periodic structure) which can be used to compute constitutive relations for the macroscopic
structural model. Particularly for stiffened panels, as shown in Fig. 2, the concept of SG enables us to decouple
the original 3D problem into a constitutive modeling over the SG and a 2D plate analysis over the reference
surface. Since SG is the smallest mathematical building block, SG could be a 2D domain (for blade- or hat-
stiffened panels) or a 3D domain (for orthogrid- or isogrid-stiffened panels) as long as one can use the SG to
mathematically build the entire structure. However, RVE will require a 3D domain for all these cases. MSG
bridges the microstructure with the macroscopic structural analysis and provides a unified way to compute
effective structural properties for 3D structures, beams, plates, and shells in terms of microstructures, while
RVE is usually used to compute effective 3D properties. Furthermore, multiple analyses of RVE are needed
for computing the complete set of properties, while only one analysis is needed for SG. More details can be
found in [26], and its application to stiffened panels will be demonstrated in this paper.
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Fig. 2 Analysis of stiffened panels approximated by a constitutive modeling over the SG and a corresponding 2D plate analysis:
a blade-stiffened panel, b hat-stiffened panel, c orthogrid-stiffened panel, d isogrid-stiffened panel

It should be pointed out that there aremanymultiscalemethods in the literature. Besides the homogenization
theories mentioned above [21,25,32], the multiscale finite element method (MsFEM) [33–36] also attracted
significant attention. The main idea of MsFEM is to construct multiscale finite element base functions by
discretizing the microstructure with a fine mesh while keeping a coarse mesh on the global domain. The
construction of a base function is fully decoupled from element to element which allows MsFEM to study
non-periodic structures and avoid scale separation assumption [36]. On the other hand, MSG is one of the
homogenization methods which separately solve an independent constitutive modeling problem over the SG
to compute effective properties as inputs for the macroscopic structural analysis. The macroscopic structural
analysis can be carried out using commercial finite element packages such as ABAQUS, ANSYS, NASTRAN,
etc.

The contribution of this paper is to use MSG to develop a method for the global buckling of stiffened
composite panels. MSGwill be used to mathematically decouple the original geometrically nonlinear problem
into a linear constitutive modeling over the SG and a geometrically nonlinear analysis over the reference
surface. The analysis over the reference is geometrically exact, and all the approximations in this approach are
confined in the constitutive modeling. The constitutive modeling will compute the effective shell properties
as inputs for ABAQUS shell elements to carry out the buckling and post-buckling analysis. With respect to
papers of other authors in this field, this paper presents a unified approach to handle the global buckling and
post-buckling of stiffened composite panels with the global analysis handled by traditional plate/shell elements
in commercial finite element packages. This paper is organized as follows. Section 2 presents the theoretical
formulation of MSG in a buckling analysis of stiffened panels. Results of validation case studies are discussed
in Sect. 3. Section 4 is reserved for the conclusions.

2 MSG-based global buckling analysis of stiffened panels

We introduce macrocoordinates xi to describe a stiffened panel, in which x1, x2 are in the in-plane directions
and x3 is in the normal direction. Here and throughout the paper, Latin indices take the values 1, 2, 3 except that
k, l,m take 1, 2. If a plate-like structure features sufficient periods identified as SGs in the in-plane directions,
and the size of SGs is much smaller than the dimensions of the macroscopic structure, we can introduce three
microcoordinates yi = xi/ε to describe the SG with ε as a small parameter. It is noted that SG has the same
size as the stiffened panel in x3 direction. The reason we also scale y3 using ε is both y3 and x3 are small
compared to the in-plane dimensions. The “small” parameter ε is used as a bookkeeping parameter for the
asymptotic analysis needed for MSG. According to Ref. [38], the partial derivative of a function f (xk, y j ) is
expressed as

∂ f (xk, y j )

∂xi
= ∂ f (xk, y j )

∂xi
|y j=const + 1

ε

∂ f (xk, y j )

∂ yi
|xk=const ≡ f,i + 1

ε
f|i . (1)
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Fig. 3 Deformation of a plate structure. Reprinted from [37] with permissions

Let bk denote the unit vector tangent to xk for the undeformed configuration, and b3 be normal to the
reference surface spanned by xk . We can describe the position of any material point of the original structure
by its position vector r relative to a point O fixed in an inertial frame such that

r(x1, x2, y3) = ro(x1, x2) + εy3b3 (2)

where ro is the position vector from O to a material point of the macroscopic plate model (Fig. 3). Because
xk is an arc-length coordinate, we have bk = ∂ ro

∂xk
.

When the original structure deforms, the particle that had position vector r in the undeformed configuration
now has position vector R in the deformed configuration, such as

R(x1, x2, y j ) = Ro(x1, x2) + εy3B3(x1, x2) + εwi (x1, x2, y1, y2, y3)Bi (x1, x2) (3)

where Ro denotes the position vector of the deformed macroscopic plate model, Bi forms a new orthonormal
triad for the deformed configuration. Bi is related to bi by a direction cosine matrix, Ci j = Bi · b j , subject
to the requirement that these two triads are the same in the undeformed configuration, and εwi are fluctuating
functions introduced to accommodate all possible deformations other than those described by Ro and Bi .
According to Eq. (3), six constraints are needed to ensure a unique mapping to express R in terms of Ro, Bi ,
and wi . These constraints can be obtained by proper definitions of Ro and Bi . If we define

Ro = 〈〈R〉〉 − 〈〈εy3〉〉 B3 (4)

where 〈〈·〉〉 indicates averaging over the SG, we can obtain three constraints on the fluctuating functions
according to Eq. (3):

〈〈wi 〉〉 = 0. (5)

The other three constraints can be obtained from Bi . For a plate-/shell-like structure, we can constrain B3 so
that

B3 · Ro,1 = 0, B3 · Ro,2 = 0 (6)

which implies that B3 is chosen to be normal to the reference surface of the deformed plate. It should be noted
that this choice has nothing to do with the well-known Kirchhoff hypothesis. In the Kirchhoff assumption, the
transverse normal can only rotate rigidly without any local deformation. However, in the present formulation,
all possible deformation is allowed by classifying all deformations other than those described by Ro and Bi
in terms of the fluctuating function wi Bi . The final constraint can be specified by the rotation of Bk around
B3 such that

B1 · Ro,2 = B2 · Ro,1. (7)

This constraint symmetrizes the macrostraints for a plate model as defined in Eq. (13).
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According to MSG [26], for a linear elastic material characterized using a 6 × 6 stiffness matrix D, the
strain energy can be written as

U = 1

2

∫
1

ω
〈�TD�〉d� (8)

where � = ��11 �22 �33 2�23 2�13 2�12�T is an array containing the components of the 3D strain tensor.
� is the domain of the macroscopic plate reference surface. The notation 〈•〉 = ∫ •dω is used to denote the
integration over the domain of the SG, and ω denotes the volume of the domain spanned by yk corresponding
to the coordinates xk . For plate-like structures featuring 3D SG, ω is the area of the SG in the y1−y2 plane,
corresponding to x1 and x2 remaining in the macroscopic plate model.

If we constrain ourselves to the global buckling admitted by small local rotations, the strain will be the
same as the Biot strain defined in Ref. [26] according to the decomposition of the rotation tensor [39], that is

� = 1

2
(FT + F) − I (9)

where F is the deformation gradient tensor defined as

Fi j = Bi · G j (10)

with G j denoting the 3D covariant base vector of the deformed configuration,

Gk = ∂R
∂xk

= ∂Ro

∂xk
+ εy3

∂B3

∂xk
+ ε

∂wi

∂xk
Bi + εwi

∂Bi

∂xk
, (11)

G3 = ∂R
∂x3

= B3 + ∂wi

∂ y3
Bi . (12)

A proper definition of the generalized strain measures for the macroscopic plate model is needed for the
purpose of formulating the macroscopic plate analysis in a geometrically exact fashion. Following [40–42],
we introduce the following definitions:

∂Ro

∂xk
= Bk + εklBl ,

∂Bi

∂xk
= κk j B j × Bi (13)

where εkl is the Lagrangian stretch tensor, κk j is the Lagrangian curvature strain tensor (or the so-calledwryness
tensor). This definition corresponds to the kinematics of a geometrically nonlinear Cosserat continuum [43].
If we impose the constraint given in Eq. (7), we will have the symmetry ε12 = ε21 as a constraint for the
kinematics of the plate model. This definition reproduces the 2D generalized strain measures of the Reissner–
Mindlin model defined in [41]. If we further restrain B3 to be normal to the reference surface given in Eq. (6),
this definition reproduces the 2D generalized strain measures of the Kirchhoff–Love plate/shell model defined
in [44].

Using Eqs. (10), (11), (12), (13), the 3D strain field defined in Eq. (9) becomes

�11 = ε11 + εy3κ11 + w1|1+εw1,1 + εw3κ11 − εw2κ13,

�22 = ε22 + εy3κ22 + w2|2+εw2,2 + εw3κ22 − εw1κ23,

�33 = w3|3,
2�23 = w2|3 + w3|2+εw3,2 − εw1κ21 − εw2κ22,

2�13 = w1|3 + w3|1+εw3,1 − εw1κ11 − εw2κ12,

2�12 = ε12 + ε21 + εy3(κ12 + κ21) + w1|2 + w2|1
+ εw1,2 + εw2,1 + εw3(κ12 + κ21) + εw1κ13 − εw2κ23. (14)

Due to the smallness of ε, we neglect those underlined terms in Eq. (14) including the derivatives of
fluctuating functions with respect to xk and the products of the curvature strains and the fluctuating functions.
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After dropping those underlined terms, the 3D strain field defined in Eq. (14) can be written in the following
matrix form as

� = �hw + �εε̄ (15)

where w = �w1 w2 w3�T, ε̄ = �ε11 ε22 2ε12 κ11 κ22 2κ12�T,

�h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂ y1

0 0

0 ∂
∂ y2

0

0 0 ∂
∂ y3

0 ∂
∂ y3

∂
∂ y2

∂
∂ y3

0 ∂
∂ y1

∂
∂ y2

∂
∂ y1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (16)

and

�ε =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 εy3 0 0
0 1 0 0 εy3 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 εy3

⎤
⎥⎥⎥⎥⎥⎦

. (17)

According to MSG [26], the virtual work done by the applied loads can be expressed as

δW =
∫

1

ω

(
〈 p〉 · δR +

∫
s
Q · δRds

)
d� (18)

where δ is the Lagrangian variation, s denotes the boundary surfaces of the SG with applied traction force
per unit area Q = Qi Bi and applied body force per unit volume p = pi Bi . It should be noted that dynamic
instabilities due to follower loads are beyond the scope of the current work, thus are not considered in this
paper. Substituting the Lagrangian variation of the displacement field in Eq. (3) into Eq. (18), the virtual work
due to the applied loads can be expressed as follows:

δW = δWH + ε δW
∗

(19)

where δWH is the virtual work not related with the fluctuating functionswi and δW
∗
is the virtual work related

with the fluctuating functions. They are given as follows:

δWH =
∫ (

fiδqi + miδψ i
)
d�, δW

∗ =
∫

1

ω

(
〈piδwi 〉 +

∮
Qiδwids

)
d� (20)

with the generalized forces fi and moments mi defined as

fi = 1

ω

(
〈pi 〉 +

∫
Qids

)
, mi = ei3 j

ω

(〈
εy3 p j

〉 +
∫

εy3Q jds

)
(21)

where ei3 j is the Levi-Civita symbol. Virtual displacements δqi and rotations δψ j are defined as

δqi = δRo · Bi , δB3 = δψ j B j × B3. (22)

The principle of minimum total potential energy states

δU = δW . (23)

In view of the strain energy in Eq. (8) and virtual work in Eq. (19), the variational statement in Eq. (23) can
be rewritten as the following after dropping the virtual work related to the small parameter ε:

∫ [
1

2ω
δ
〈
�TD�

〉 − (
fiδqi + mkδψk

)]
d� = 0. (24)
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Considering the fact that the last term in Eq. (24) is not a function ofwi , we can conclude that the fluctuating
function is governed by the following variational principle:

δ
1

2

〈
(�hw + �εε̄)

TD(�hw + �εε̄)
〉 = 0. (25)

To solve this variational statement numerically, the fluctuating function w is discretized as

w(xk, y j ) = S(y j )V (xk) (26)

where S denotes standard shape functions and V denotes nodal values of the fluctuating function. Substituting
Eq. (26) into Eq. (25), we obtain the following discretized version of the strain energy functional:

U = 1

2

(
V TEV + 2V TDhε ε̄ + ε̄TDεε ε̄

)
. (27)

The first term represents the contribution from the fluctuating functions, the second term represents the contri-
bution from the interaction of the fluctuating functions and generalized plate strains, and the last term represents
the strain energy due to generalized plate strains without any fluctuating functions. The corresponding coeffi-
cient matrices are defined as

E = 〈
(�h S)T D (�h S)

〉
, Dhε = 〈

(�h S)T D�ε

〉
, Dεε = 〈

�T
ε D�ε

〉
. (28)

Minimizing U in Eq. (27) gives us the following linear system:

EV = −Dhε ε̄. (29)

It is noted that the linear system in Eq. (29) is due to the restriction of small local rotations used to define
strains in Eq. (9). Such a restriction implies that local buckling modes within an SG are excluded. It is seen
that V linearly depends on ε̄; therefore, the solution can be symbolically written as

V = V0ε̄. (30)

Substituting Eq. (30) back into Eq. (27), we calculate the strain energy stored in the SG as

U = 1

2
ε̄T

(
V T
0 Dhε + Dεε

)
ε̄ ≡ ω

2
ε̄T D̄ε̄ (31)

where D̄ is the effective 6 × 6 stiffness matrix (commonly called A, B, and D matrices in mechanics of
composite materials) to be used in the macroscopic plate analysis. This stiffness matrix can be explicitly
expressed in the following plate constitutive relation:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

N11
N22
N12
M11
M22
M12

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

A11 A12 A16 B11 B12 B16
A12 A22 A26 B12 B22 B26
A16 A26 A66 B16 B26 B66
B11 B12 B16 D11 D12 D16
B12 B22 B26 D12 D22 D26
B16 B26 B66 D16 D26 D66

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε11
ε22
2ε12
κ11
κ22
2κ12

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (32)

Substituting the strain energy stored in SG in Eq. (31) into Eq. (24), we can rewrite the variational statement
governing the original structure as∫ [

δ

(
1

2
ε̄T D̄ε̄

)
− fiδqi − mkδψk

]
d� = 0. (33)

This variational statement governs the macroscopic plate model as it only concerns the 2D field variables in
terms of the macrocoordinates xk . Therefore, the above-mentioned formulations show that a geometrically
nonlinear 3D formulation defined in Eq. (23) can be mathematically reduced to a geometrically linear con-
stitutive modeling over the SG in Eqs. (29)–(31) and a geometrically nonlinear 2D plate analysis in Eq. (33).
The nonlinearity of the 2D plate analysis is due to the nonlinear generalized strains defined in Eq. (13). In
other words, as an alternative to the 3D formulation, the buckling analysis of stiffened composite panels can
be simplified into a constitutive modeling in SG and a buckling analysis of a 2D plate (Fig. 4). The linear
constitutive modeling is implemented in a computer code named SwiftComp. The constitutive relations given
in this paper are computed using SwiftComp. The linearized buckling analysis and nonlinear post-buckling
analysis of the 2D plate are performed using ABAQUS in this paper.
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Fig. 4 Workflow of current approach: SG is homogenized to obtain the effective plate properties; the effective plate properties
are defined as the general shell stiffness for 2D plate analysis; a buckling analysis is performed on the plate reference surface

3 Examples and results

In this Section, we will validate the MSG-based global buckling analysis approach using detailed FEA using
ABAQUS 20-noded brick elements with reduced integration (C3D20R). In the 2D plate analysis, an 8-noded
shell element with reduced integration (S8R5) is employed. Uniaxial compressive loads are applied at the short
edges; all edges are simply supported meaning that their out-of-plane deflection is constrained. The boundary
conditions remain the same for the validation case studies throughout the paper unless specific changes are
mentioned.

3.1 Buckling of a blade-stiffened composite panel

A blade-stiffened composite panel (Fig. 2) is studied to validate the current approach. The first six buckling
modes and their associated buckling loads and mode shapes are compared. This stiffened plate is 6.3 m long,
2.52 m wide. Each stiffener covers 0.28-m-wide skin. The skin is 1 mm thick. The stiffeners are 20 mm tall,
3 mm thick. Laminate layup of the skin is [0/90]s . Laminate layup of the stiffeners is [(45/ − 45)202]s .
Lamina properties are E1 = 113 GPa, E2 = E3 = 9 GPa, G12 = G13 = 3.82 GPa, G23 = 3.46 GPa,
ν12 = ν13 = ν23 = 0.302.

The effective plate properties, i.e., the A, B, and D matrices, are computed using MSG and are given in
Table 1. The first six buckling loads and associated mode shapes are presented in Table 2. It is seen that the
critical loads in the current solution are highly accurate compared with the detailed FEA results with errors
less than 2%. To visualize the difference between predicted buckling mode shapes and detailed FEA, an image
analysis is carried out by comparing the intensity value of each pixel in corresponding grayscale images of the
contour plots that contained values in the range 0 (black) to 1 (white). The difference of the intensity value
of pixels is shown in Fig. 5. It is found that the vast majority of the area in these contour plots is in complete
agreement showing the high accuracy of the current method in predicting buckling mode shapes.

Table 1 The effective plate properties (A, B, and D matrices) of the blade-stiffened composite plate, units: SI

⎡
⎢⎢⎢⎢⎢⎣

7.1591 × 107 2.7382 × 106 0 − 2.6171 × 104 − 5.0719 × 103 0
6.1469 × 107 0 − 5.0719 × 103 − 1.1389 × 105 0

3.8424 × 106 0 0 − 7.0551 × 103

1.3147 × 103 9.6382 0
sym. 212.8817 0

16.7350

⎤
⎥⎥⎥⎥⎥⎦
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Table 2 Comparison of first six buckling loads (N) and associated mode shapes in the case of the blade-stiffened composite plate

Mode number Current approach Detailed FEA Error (%)

1

929.63 931.45

- 0.20

2

1798.90 1809.11

- 0.56

3

3348.32 3300.98

1.43

4

3742.96 3698.59

1.20

5

4835.88 4801.57

0.71

6

5009.26 5034.19

- 0.50

Mesh is removed for a clear view

200 400 600 800 1000 1200

100
200
300
400
500

0

0.05

0.1

0.15

(a) Mode1

200 400 600 800 1000 1200

100
200
300
400
500

0

0.05

0.1

0.15

(b) Mode2

200 400 600 800 1000 1200

100
200
300
400
500

0

0.05

0.1

0.15

(c) Mode3

200 400 600 800 1000 1200

100
200
300
400
500

0

0.05

0.1

0.15

(d) Mode4

200 400 600 800 1000 1200

100
200
300
400
500

0

0.05

0.1

0.15

(e) Mode5

200 400 600 800 1000 1200

100
200
300
400
500

0

0.05

0.1

0.15

(f) Mode6

Fig. 5 Comparison of the intensity value of each pixel in corresponding grayscale images of the contour plots showing the
difference between predicted buckling mode shapes and detailed FEA for the first six buckling modes. The horizontal and vertical
axes are the X–Y coordinates of the pixels
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3.2 Buckling under various boundary conditions and loadings

Buckling behaviors of un-stiffened plates under various boundary conditions (BCs) and loadings are studied
in [45–48]. However, studies of buckling behaviors of stiffened plates under various BCs and loadings are
few [49]. Motivated by this fact, the authors carry out a study in which buckling behaviors of stiffened panels
under selective BCs and loadings are investigated.

We use the same stiffened panel studied in Sect. 3.1. Typical combinations of different BCs are shown in
Fig. 6. The naming convention starts with the pair of BCs on the vertical edges followed by the pair of BCs
on the horizontal edges [50]. For those stiffened panels with BCs defined in Fig. 6, only uniform uniaxial
compressive loads are applied at vertical edges. The studied loading conditions are shown in Fig. 7. The
stiffened panels under these loading conditions are simply supported. The critical load can be expressed in
general as follows [49]:

N =
∫

λ
(
1 − α

y

b

)
dy (34)

where λ is the critical stress, α = 0 indicates uniform uniaxial loading, α = 1 indicates linearly varying
uniaxial loading starting from zero, and b is the width of the edges where loads apply.

Critical buckling loads and associatedmode shapes under variousBCs and loadings are presented inTable 3.
It is expected that the critical buckling loads increase as the BCs make the structure stiffer. It is also observed
that clamping the loading edges will significantly increase the buckling loads. CCSS BCs almost double the
buckling loading compared with CSCS BCs. Different loading conditions also affect critical buckling loads.
The biaxial loading state results in a much lower critical load (255.38 N) as opposed to the uniform uniaxial

Fig. 6 Typical combinations of different boundary conditions (S: simply supported, C: clamped, F: free)

Fig. 7 Typical loading conditions
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Table 3 Investigation of critical buckling of the blade-stiffened composite panel under different boundary conditions and loadings

BCs/loading Current approach Detailed FEA Error (%)

SSSS

929.63 931.45

- 0.20

CSSS

1779.30 1772.86

0.36

CSCS

1843.41 1839.16

0.23

CCSS

3378.06 3339.13

1.15

CCCC

3539.85 3505.11

0.98

FFCC

1130.95 1145.93

- 1.32

Biaxial

255.38 258.45

- 1.19

Shear

821.97 816.69

0.65

L.V.

833.62 835.66

- 0.24

Loads are in Newton; L.V. is linearly varying uniaxial loading; mesh is removed for a clear view

loading state (929.63 N). Under shear loading, the stiffened panel falls into an overall shear pattern without
significant shear deformation seen in the skin between stiffeners. This is mainly due to the tightness of the
space between stiffeners. The required buckling load under linearly varying uniaxial loading (833.62 N) is
less than the critical load under uniform uniaxial loading (929.63 N) due to the fact that the structure is not
loaded evenly. An image analysis (Fig. 8) shows good agreement between predicted buckling mode shapes
and detailed FEA results.

3.3 Post-buckling analysis

The accuracy of the current approach in predicting the post-buckling behavior of a stiffened composite plate is
investigated in this Section. Post-buckling is referred to the behavior after the buckling of the plate takes place.
ABAQUS Riks method [51,52] is used in the current work to predict the nonlinear post-buckling behavior of
stiffened composite plates. Same example studied in Sect. 3.1 is used in this study.

The procedure to perform a post-buckling analysis for both detailed FEA and the current approach is
the same and stated as follows. The first three buckling modes are selected to construct imperfections. The
associated imperfection sizes (i.e., imperfection scaling factors) are assumed to be 2 × 10−4, 1 × 10−4,
0.5 × 10−4. Results are predicted using 400 iteration steps, minimum arc length of 1 × 10−8 and maximum
arc length of 0.1. It is noted that the current work is only concerned with the elastic post-buckling behavior
without considering material yielding, the study of crippling of stiffened plates is a future topic of research.
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Fig. 8 Comparison of the intensity value of each pixel in corresponding grayscale images of the contour plots showing the
difference between predicted buckling mode shapes and detailed FEA for different boundary conditions and loadings. The
horizontal and vertical axes are the X–Y coordinates of the pixels

Load–displacement curves are compared in Fig. 9. In the Figure, the vertical axis is the normalized uniaxial
load with Pcr as the critical buckling load; the horizontal axis is the axial shortening which is measured at
the geometric center of the end cross section. It is seen that the load–displacement curve of current approach
agrees very well with the curve of detailed FEA. Modeling cost and computing time are compared in Table 4.
Regarding computational efficiency, the current approach is more cost-efficient than detailed FEA inmodeling:
1575 shell elements (S8R5) in total as opposed to 411,804 solid elements (C3D20R) in total. The current
approach is also more time-efficient than detailed FEA in performing a post-buckling analysis: 18 min with
one CPU as opposed to nearly 4 days with 32 CPUs. The computational time consumed in detailed FEA could
be reduced by using shell elements, but the accuracy of such solution would be significantly compromised [4].
In a nutshell, comparing with the detailed FEA, the current approach significantly reduces the computational
efforts yet achieves high accuracy. For scholars who are interested in the details of the workstation on which
the detailed FEA is run, they are given as follows: Dell Precision Tower 7910 powered by Intel Xeon CPU
E5-2697 v3 with clock rate 2.60 GHz and 256 GB RAM.

3.4 Buckling of orthogrid- and isogrid-stiffened composite plates

To validate the current approach in the buckling analysis of other stiffened composite plates, two examples of
stiffened plates from Ref. [25] are studied. Their geometries, materials, and stiffened patterns are reiterated
as follows. Two flat plates with the length of 4.3764 m and the width of 1.5024 m are stiffened on one side
by orthogrid and isogrid stiffeners, respectively, as shown in Fig. 2. Dimensions of an SG in the orthogrid are
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Fig. 9 Comparison of post-buckling load–displacement curve between current approach and detailed FEA

Table 4 Comparison of computational cost to perform post-buckling analysis between current approach and detailed FEA

Current approach Detailed FEA

Element type Shell (S8R5) Solid (C3D20R)
Total element number 1575 411,804
CPU number 1 32
Computational time 18 min 3 days 20 h

Table 5 The effective plate properties (A, B, and D matrices) of the orthogrid-stiffened plate, units: SI

⎡
⎢⎢⎢⎢⎢⎣

1.2021 × 108 2.4210 × 107 0 2.1300 × 105 − 2.0466 × 104 0
9.6465 × 107 0 − 2.0511 × 104 6.5780 × 104 0

2.5376 × 107 0 0 − 2.2878 × 104

2.4269 × 103 35.152 0
sym. 1.1915 × 103 0

26.548

⎤
⎥⎥⎥⎥⎥⎦

0.10941 m long by 0.040095 m wide; dimensions of an SG in the isogrid are 0.236562 m long by 0.13658 m
wide. The angles between stiffeners in the isogrid are 60◦. The skin laminate has an eight-ply symmetric layup
of [± 45/90/0]s with each ply thickness equal to 0.1524 mm. The lamina properties are E1 = 139.31 GPa,
E2 = E3 = 13.103 GPa, G12 = G13 = G23 = 5.0345 GPa, ν12 = ν13 = ν23 = 0.3. All the stiffeners
are made of 0◦ material with a height of 12.9 mm and a width of 1.524 mm. Uniaxial compressive loads
are applied to the short edges, and all edges are simply supported meaning that their out-of-plane deflection
is constrained. The effective plate properties (A, B, and D matrices) of two examples are given in Tables 5
and 6.

Critical buckling loads and mode shapes predicted by current approach are compared with the results from
Ref. [25] in Table 7. It is seen that the results of the current approach are very close to Ref. [25] and the
detailed FEA, which illustrates the high accuracy of the current method in predicting the global buckling loads
of stiffened panels with various grid-patterns.

4 Conclusions

A homogenization theory, namely the mechanics of structure genome, is presented and evaluated in studying
the global buckling behavior of stiffened composite panels. The linearized buckling loads, associated mode
shapes, as well as post-buckling load–displacement curves under various boundary conditions and loadings
are assessed. A geometrically nonlinear buckling analysis is mathematically reduced to a geometrically linear
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Table 6 The effective plate properties (A, B, and D matrices) of the isogrid-stiffened plate, units: SI

⎡
⎢⎢⎢⎢⎢⎣

9.8845 × 107 3.2062 × 107 − 1.0371 × 105 − 1.8535 × 105 − 5.8541 × 104 − 457.46
1.0053 × 108 − 3.57691 × 104 − 5.8523 × 104 − 1.7879 × 105 − 166.00

3.3451 × 107 − 454.66 − 164.65 − 6.3335 × 104

1.5959 × 103 523.23 0
sym. 1.6431 × 103 0

541.47

⎤
⎥⎥⎥⎥⎥⎦

Table 7 Comparison of critical buckling load and mode shape of the orthogrid- and isogrid-stiffened composite panels

Current approach Wang et al. [25] Detailed FEA [25]

Orthogrid

16.80 (- 0.53%) 16.85 (- 0.24%) 16.89

Anglegrid

23.80 (0.85%) 24.67 (4.53%) 23.60

Loads are in N/mm. Pictures from [25] are reprinted with permissions

constitutive modeling of the SG and a geometrically nonlinear buckling analysis of the macroscopic plate. The
effective plate properties (A, B, and D matrices) are computed by the constitutive modeling, and the buckling
behaviors of the stiffened composite panels are approximated by a buckling analysis of the homogeneous
plates with the effective plate properties. Validation case studies show that this approach is highly accurate in
the buckling and post-buckling analysis of stiffened composite panels for various grid-patterns and boundary
conditions. This approach is also highly time-efficient in the post-buckling analysis of stiffened composite
panels in comparison with detailed FEA. The current work is part of a continued study in global and local
buckling analysis of stiffened composite panels using MSG. The local buckling behavior is going to be
predicted by a geometrically nonlinear constitutive modeling of the SG in a future study. The present approach
can be incorporated into any design and optimization methodologies of stiffened composite panels for fast and
accurate predictions of the global buckling behavior of stiffened panels.
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