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Abstract The paper presents a numerical study of defect-free single-wall carbon, boron nitride and silicon
carbide armchair and zigzag nanotubes, through a simple stick-and-spring model, based on Morse and cosine
potential functions. The study investigates the relaxed configuration of the tubes and gives a comprehensive
evaluation of their elastic constants, which is performed by framing tensile, torsional and radial tests within the
membrane behaviour of a Donnell thin shell model. Extensive comparisons with reference ab-initio results are
given and used to refine some parameters of the potential functions for hexagonal silicon carbide nanomaterials.

1 Introduction

Over the last two decades, interest in the applications of graphene and carbon nanotubes (CNTs) has continu-
ously grown in a variety of fields, including microelectronics, sensoring and actuation systems, energy storage,
biotechnologies and composite materials [1–7]. In parallel, many researchers have also investigated nanoma-
terials consisting of elements other than carbon (C), including boron (B), nitrogen (N) and silicon (Si). Some
examples are boron nitride and silicon carbide nanosheets and the related nanotubes (BNNTs, SiCNTs) [8–12].
Similarly to their C analogues, these nanomaterials exhibit exceptional thermo-mechanical properties, such as
low density and high thermal conductivity [13–19]. Moreover, the different atomic composition leads to some
specific properties, such as stronger resistance to oxidation and chemical stability at high temperatures, giving
them advantages over C nanomaterials in harsh environments [13,17–19]. As of now, these nanomaterials have
drawn attention in different technological fields, including the manufacture of semiconductors [13,20] (e.g.
BN/graphene heterostructures for electronic devices) and hydrogen storage [21]. In addition, BN compounds
can also be cleaned and reused by means of heating and burning in air, are biocompatible, have low friction
coefficient, have excellent sorption performance and are hydrorepellent. For these reasons, they are studied
also for applications in medicine (e.g. drug delivery), as lubricants and for water purification from oil, solvents
and dyes [17–19].

The control of the mechanical behaviour of nanomaterials is a key challenge in the design of their com-
posites and in many other contexts, such as nanosensors, nanoresonators, selective membranes and flexible
nanoelectronics [22–24]. In this regard, it is also emphasizing worth that the deformation influences the
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chemical–physical properties of any material at the nanoscale. Tuning these properties in specific devices
through deformation control is therefore possible, in principle.

Due to the technical difficulties and the costs of nanoscale experiments (e.g. [14,15,25]), theoretical mod-
elling is essential. In this regard, ab-initio simulations (e.g. [26–40]) are the most accurate tools to investigate
the behaviour of nanomaterials, including their mechanics. In the last years, ab-initio simulations have given
a valuable characterization of the relaxed configuration (i.e. the self-equilibrated configuration), and of some
fundamental mechanical properties, such as the tensile stiffness and strength of these nanomaterials. However,
ab-initio simulations demand a lot of computer power, and so they are not always feasible for systems with very
many atoms. Therefore, many researchers have shifted their focus towards other approaches, such as molecular
dynamics/statics formulations [41–78] and their structural–mechanical approximations (e.g. nanoscale equiv-
alent beam and truss models) [79–85] or continuummodels [86–94]. Most of this research addresses graphene
and CNTs. This has produced a certain knowledge about their mechanics, also in ambitious nonlinear contexts,
such as fracture [45,46,70,75,80] or buckling [47,53,57,62,88,94]. It has additionally produced a refinement
of the parameters of simple bonding potentials [41,67,75,77], such as the DREIDING, the Stillinger–Weber
or the modified Morse potentials. Currently, these potentials are considered to be the best compromise for
describing graphene and CNTs at the atomic scale, also in nonlinear contexts, where the simplicity of the
models is a major requirement.

Much less is known about BN and SiC nanomaterials, even in the linear range. In the case of tubes, even the
elastic constants have not been sufficiently studied. In fact, theworks in this field are very few [27,34,40,43,49–
51,60,64,65] and frequently they present only partial results. As of now, for SiCNTs there exist only results
about longitudinal Young modulus [34,60], while for BNNTs only the paper by Yan and Liew [65] has
provided a comprehensive set of elastic constants (Young and shear moduli and Poisson ratios), but there are
no considerations about possible anisotropies. Also the parameterization of the interatomic potential has not
received sufficient attention. There are some parameterizations of the Tersoff–Brenner potential [43,49,95],
but little has been done on the parameters of simpler interatomic potentials. In this regard, there are only the
refinements of the force constants proposed by Jiang and Guo in [50] and in our previous work [74]. However,
to obtain the general assessment of these parameters, which is currently lacking, it is the authors’ opinion that
extensive study in different contexts is necessary.

Towards this end, this paper presents a numerical study of defect-free single-wall armchair and zigzag
CNTs, BNNTs and SiCNTs of several diameters through a stick-and-spring model, based onMorse and cosine
potential functions [96]. CNTs are taken into account, mainly for comparison reasons.

This study investigates the relaxed configuration of tubes and gives a comprehensive evaluation of the
elastic constants (surface Young and shear moduli and Poisson ratios), which is performed by framing tensile,
torsional and radial tests within the membrane behaviour of a Donnell thin shell model. Extensive comparisons
with reference ab-initio results are addressed. In the light of these comparisons, a refinement of the angular
force constants for SiC hexagonal nanomaterials given in [74] is proposed.

We also give a detailed discussion of the stick-and-spring model. In addition, some space is given to
discussing small-scale effects specific to the diatomic tube behaviours, which add to those discussed in [78]
for the CNTs.

2 The stick-and-spring model of diatomic nanotubes

In this section, the atomistic model of a diatomic nanotube is discussed. The model is formulated in finite
kinematics and makes use of Morse and cosine potential functions. For the purposes of the paper, the model
linearization is also given. CNTs are recovered as a particular case of the diatomic tube, namely when the
atoms are all of the same type.

2.1 The atomic structure and the interatomic potential

Heuristically, single-wall diatomic nanotubes can be imagined as hollow cylinders, obtained by rolling up a
planar hexagonal sheet consisting of two different atom types, as depicted in Fig. 1. The sheet is assumed to
be stress-free. Therefore, re and θe = 2/3π (see Fig. 1) are the resting bond length and angle.1

1 In molecular mechanics models, the bond length is the distance between the nuclei of two first neighbouring atoms i and j ,
while the bond angle is defined by two pairs i– j and i–k of first neighbouring atoms.
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Fig. 1 Hexagonal diatomic sheet. Blue and red balls identify the type of atom 1 and 2, respectively (color figure online)

Having fixed two lattice vectors a1 and a2 as in Fig. 1, the key geometric ingredient of the tube is the chiral
vector χ = na1 + ma2, where n and m are two integers. Its modulus gives the circumference of the tube.
Therefore, the pair (n,m) sorts both the radius � and the way to roll the sheet or, in other words, the chirality
of the tube. It is not difficult to derive that

� = re
2π

√
3(n2 + m2 + nm). (1)

As for the chirality, a nanotube is said to be

1. of zigzag type if n �= 0 and m = 0;
2. of armchair type if n = m �= 0;
3. of chiral type if n �= m with n �= 0 and m �= 0.

In this work, only zigzag and armchair tubes are considered. As examples, the geometries of a (4, 0) and
a (2, 2) diatomic tube are depicted in Fig. 2.

Given (n,m) and a length �, the coordinates of the atoms are obtained by means of a conformal mapping.
Letting (O, ξ, η) and (O, x, y, z) be Cartesian frames with origin in the centre of the original sheet and in the
centre of the tube (see Fig. 2), the coordinates of the i th atom are given by

xi = � cos
ξi

2π�
, yi = � sin

ξi

2π�
, zi = ηi . (2)

As we can easily see, themap preserves only the atomic distances along the tube axis. Therefore, in general,
the bond lengths and angles are not the same as in the sheet. Due to these changes, the tube geometry is not
stress-free. This configuration is known as “ideal”, since it is not necessarily in equilibrium. On the other hand,
the self-equilibrated configuration is called “relaxed”.

Now, let us focus on the interaction between the atoms. They are divided into bonding interactions and long-
range interactions and they are mathematically described by the interatomic potential. Long-range interactions
are deemed less significant than the bonding ones and are usually neglected in the models of single-wall
nanotubes. Amongst the bonding interactions, we consider only the binary and ternary ones, related to the
variations of the bond lengths and of the bond angles with respect to their resting state. Following [96], the
interatomic potential is given by

U =
∑

b

Ur
b +

∑

a

U θ
a . (3)

In Eq. (3), Ur
b and U θ

a are the contributions related to the bth bond length variation and to the ath bond
angle variation, respectively. They are described using the following Morse and cosine energy functions

Ur
b = D

{[
1 − e−β(ri j−re)

]2 − 1

}
, (4a)

U θ
a = A

[
1 − cos (3θi jk)

]
. (4b)
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Fig. 2 An example of zigzag and armchair tube

In Eq. (4), ri j is the bond length between the first neighbours i– j , θi jk is the bond angle defined by the two
pairs of first neighbours i– j and i–k, D is the well depth (i.e. the minimum value of Ur

b , reached at ri j = re),
corresponding to the bond breaking energy, while β and A are two parameters, which will be defined later.

From the point of viewof structuralmechanics, Eq. (4) represents the potentials of uncoupled stick elements,
endowed with axial deformation, and rotational spring elements, acting in the planes defined by the two stick
elements they are attached to.

The inner forces and couples are described by the following constitutive relationships:

fi j = dUr
b

dri j
= 2Dβ

[
1 − e−β(ri j−re)

]
e−β(ri j−re), (5a)

mi jk = dU θ
a

dθi jk
= 3A sin (3θi jk), (5b)

which vanish at ri j = re and θi jk = θe. Then, the tangent stiffnesses of these elements are given by

ki j = d fi j
dri j

= 2Dβ2
[
2e−β(ri j−re) − 1

]
e−β(ri j−re), (6a)

ki jk = dmi jk

dθi jk
= 9A cos (3θi jk). (6b)

Finally, for what follows, it is useful to briefly discuss the relationships between D, β and A, and the force
constants, kr and kθ , for bond stretching and angle variation, which read

kr = ki j [ri j = re] = 2Dβ2, (7a)
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kθ = ki jk[θi jk = θe] = 9A. (7b)

These equations can be used to evaluate β and A, once D, kr and kθ are given. For diatomic hexagonal
nanomaterials all binary interactions involve one atomof type 1 and one atomof type 2, and so they are described
by the same kr and the same D. Instead, following [96], the ternary interactions require a diversification of
the force constant kθ , depending on whether the pairs of first neighbours i– j and i–k share the atom of type
1, or the atom of type 2. We call the constants related to the two cases K1 and K2, respectively. For CNTs, the
force constants K1 and K2 are equal.

2.2 The structural mechanics formulation

We now provide the kinematic compatibility equations and the equilibrium equations of the model.

2.2.1 Kinematics

The kinematic variables of the stick-and-spring model are the atom displacements, regarded as point particles
in Euclidean space. The objective now is to express ri j and θi jk in terms of these displacements, with ri j > 0
and 0 < θi jk < π . To this end, we denote by xn the position of the nth atom in the reference configuration
(for instance, the ideal one or the relaxed one), while un and pn denote its displacement and applied load. The
current position of the atom is then xn = xn + un . Accordingly, xi j = x j − xi is the current axis vector of the
stick i– j , that is, the relative position of the atom j with respect to the atom i . The vector xi j can be expressed
as

xi j = xi j + ui j , (8)

where xi j = x j − xi , while ui j = u j − ui (see Fig. 3).
Finally, the stick length and the unit vector of the stick i– j are given by, respectively,

ri j = √
xi j · xi j , (9a)

i i j = xi j/ri j . (9b)

The angle θi jk is defined in terms of the unit vectors i i j and i ik (see Fig. 4) to be

cos θi jk = i i j · i ik . (9c)

Fig. 3 Stick element

Fig. 4 Rotational spring element



1110 A. Genoese et al.

We also need to introduce the directional derivatives of ri j and θi jk . Recalling that
∂xi j
∂ui j

δui j = δui j , from

Eqs. (9a) and (9b) we have

δri j =
(

∂ri j
∂ui j

)
· δui j =

(
∂ri j
∂xi j

)
· ∂xi j
∂ui j

δui j = i i j · δui j . (10a)

By simple algebra, we also have that

∂ i i j
∂ui j

δui j =
(

d

dri j

(
1

ri j

) (
∂ri j
∂ui j

)
· δui j

)
xi j + 1

ri j

∂xi j
∂ui j

δui j = 1

ri j

[
I − i i j ⊗ i i j

]
δui j . (10b)

From Eq. (9c), it follows that

δθi jk =
(

∂θi jk

∂ui j

)
· δui j +

(
∂θi jk

∂uik

)
· δuik . (11a)

For what follows, we identify the pair of sticks i– j and i–k through the indices α ∈ {i j, ik} and γ ∈ {i j, ik},
with γ �= α. We have

(
∂θi jk

∂uα

)
· δuα = dθi jk

d cos θi jk

(
∂ cos θi jk

∂uα

)
· δuα, (11b)

where

dθi jk
d cos θi jk

= − 1

sin θi jk
(11c)

and, due to Eq. (10b),
(

∂ cos θi jk

∂uα

)
· δuα = iγ ·

(
∂ iα
∂uα

δuα

)
= 1

rα

(
iγ − cos θi jk iα

) · δuα. (11d)

Substituting Eqs. (11b)–(11d) into Eq. (11a), we obtain that

δθi jk = 1

ri j
ni j · δui j + 1

rik
nik · δuik, (11e)

where

ni j = 1

sin θi jk

(
cos θi jk i i j − i ik

)
, nik = 1

sin θi jk

(
cos θi jk i ik − i i j

)
(11f)

are the unit vectors normal to the sticks in the plane that they define.

2.2.2 Equilibrium equations

The equilibrium configurations of the system are sought through the stationarity condition of its total potential
energy

Π = U −
∑

n

pn · un . (12)

Recalling Eqs. (5), (10a) and (11e), the directional derivative of the potential U is

δU =
∑

b

dUr
b

dri j
δri j +

∑

a

dU θ
a

dθi jk
δθi jk

=
∑

b

δui j · f i j +
∑

a

(
δui j · t i j + δuik · t ik

)
,

(13a)
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where

f i j = fi j i i j , t i j = mi jk

ri j
ni j , t ik = mi jk

rik
nik (13b)

are the force vectors of the elements (see Figs. 5 and 6).
Then, expressing the vectors δui j and δuik of the sticks in terms of nodal quantities, the equilibrium

equations are given by
∑

b

f i j · (δu j − δui ) +
∑

a

[
t i j · (δu j − δui ) + t ik · (δuk − δui )

] =
∑

n

pn · δun (13c)

for any δun .

2.2.3 Linearization of the stick-and-spring model

In the previous subsections, the stick-and-spring model has been introduced in its general nonlinear form.
Here, it is linearized about a given reference configuration, which we will denote using “ ˜ ”.

So, Eq. (4) can be rewritten as

Ur
b = Ũr

b + f̃i jΔri j + 1

2
k̃i jΔr2i j , (14a)

U θ
a = Ũ θ

a + m̃i jkΔθi jk + 1

2
k̃i jkΔθ2i jk, (14b)

where Δri j = ri j − r̃i j and Δθi jk = θi jk − θ̃i jk .
Accordingly, Eq. (5) becomes

fi j = f̃i j + k̃i jΔri j , (15a)

mi jk = m̃i jk + k̃i jkΔθi jk, (15b)

Fig. 5 Stick element response

Fig. 6 Rotational spring element response
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while the rigidities are

ki j = k̃i j , (16a)

ki jk = k̃i jk . (16b)

Making use of Eqs. (10a) and (11e), we have

Δri j = ĩ i j · ui j , (17a)

Δθi jk = 1

r̃i j
ñi j · ui j + 1

r̃ik
ñik · uik . (17b)

Finally, the equilibrium is given by Eq. (13c), in which the force vectors of the elements are f i j = fi j ĩ i j ,

t i j = mi jk

r̃i j
ñi j and t ik = mi jk

r̃ik
ñik , with fi j and mi jk given by Eqs. (15) and (17).

3 Preliminaries to the simulations

The nonlinear stick-and-spring model and its linearization are, respectively, used to study the relaxed configu-
rations and the elastic constants of several CNTs, BNNTs and SiCNTs. In all cases, nanotubes of both armchair
and zigzag type are considered, by varying the indicesn = m ∈ {3, 4, 5, 8, 12, 16} andn ∈ {5, 7, 9, 14, 20, 26},
respectively.

One objective of this work is to test the model with the force constants and the well depth values given in
the literature [41,67,74,95,99] and listed in Table 1, where we also report the adopted resting bond lengths,
taken from [36].

Comparisons with available ab-initio results are given and, when necessary, used to refine the values of the
force constants.

In order to make comparisons with the existing literature, we must obtain solutions that are as periodic as
possible, by minimizing the disturbances due to constraints or bond truncations at the end sections. For this
purpose, we select high aspect ratios �/� of about 40 and, in addition, we use constraint conditions which
do not introduce any local disturbances to the cross-sectional deformation (e.g. necking effects or transversal
dilatations of the cross sections). In particular, we filter the rigid body motion of the tube through the following
constraint equations:

∑

i

ui = 0,
∑

i

ui × xi = 0, (18)

where the summation extends over the line of atoms at z = 0 for armchair nanotubes and over the two lines
of atoms closest to z = 0 for zigzag nanotubes.

The constraint conditions of Eq. (18) are added through Lagrangemultipliers. The equations of the problem
are numerically solved using the Newton–Raphson method and the expression of the iteration matrix can be
found in the Appendix. In the linear contexts, the iteration matrix is assembled and decomposed only at the
initial step and the iteration scheme is used only to correct rounding errors without significant extra costs.

For the computations, custom-made MATLAB computer code has been implemented. The output results
are displayed using the Gmsh [98] post-processor.

Table 1 Constitutive parameters for the selected tubes

Atom type Parameter values

1 2 re (nm) D (nNnm) kr (nN/nm) K1 (nNnm/rad2) K2 (nNnm/rad2)

C C C 0.142 0.79 742 1.42 1.42
BN B N 0.145 0.64 585 1.347 0.641
SiC Si C 0.177 0.74 405 0.648 0.957
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4 The tubes relaxed configuration

In this section, we evaluate the relaxed configuration of the tubes, by solving Eq. (13c) for zero loads pn and
under the constraint conditions given in Eq. (18). Case by case, we quantify the distance between the ideal
and relaxed configurations. Furthermore, we give comparisons with the ab-initio results. By so doing, we
emphasize also the implications of having two angular force constants for a diatomic tube and we refine their
values for SiC hexagonal nanomaterials.

4.1 CNTs

Our numerical simulations show nearly cylindrical configurations, essentially characterized by greater radii
and smaller lengths than the ideal ones. In Table 2, the ideal radii and lengths are compared to mean radii
and lengths in the relaxed configurations. The listed measures highlight that the distances between the two
configurations are extremely small and tend to fade away as the radius increases. At most, we find differences
of about 4.6% for the radius and of about 3.4% for the length, for the smallest nanotube, the one given by
(5,0).

For further insight, Fig. 7 shows the relaxed configurations of the (5,0) and the (3,3) CNTs. The chromatic
maps provide the radius value corresponding to each atom row. In the top and bottom boxes, the regions of the
nanotubes near the bases are shown in greater detail. The related measures of the radius and of the distance
between the atom rows along the tube axis are reported until no more end effects can be seen. The detail in the
middle of the figure shows a section of the (3,3) CNT, found within the undisturbed region. The central angles
are reported. Any value in round brackets refers to the ideal configuration.

Analysing the figure, first we notice that in both cases the end effects are really negligible, since they
involve only very few atom rows near the bases. Moreover, if we focus our attention on the local effects, we
note that for the zigzag case the axial shortening does not involve the sticks parallel to the tube axis, while,
for the armchair case, variations in the central angles are registered. These trends are similar to what has been
observed in [78] for CNTs under radial loads.

At this point, to provide the numerical assessment of the adopted model, we compare some radii from
Table 2 with the corresponding values found in the literature, obtained through ab-initio simulations. This
comparison is summarized in Table 3. Our numerical results are in excellent agreement with the ab-initio
values, in the sense that we see differences between them and our numerics which are of the same order as
the differences found between the various ab-initio values reported in the literature. The maximum percentage
difference, of about 6.0%, is registered in the case of the (14,0) tube, for which the literature provides only
one result [40].

Table 2 Radii and lengths of CNTs in ideal and relaxed configurations

CNTs Ideal conf. Relaxed conf.

� (Å) � (Å) � (Å) � (Å)

(3,3) 2.034 83.62 2.093 82.45
(4,4) 2.712 108.22 2.756 107.33
(5,5) 3.390 137.73 3.427 136.99
(8,8) 5.424 221.36 5.447 220.89
(12,12) 8.136 332.03 8.151 331.72
(16,16) 10.848 437.79 10.860 437.56
(5,0) 1.957 79.52 2.051 76.87
(7,0) 2.740 109.34 2.808 107.47
(9,0) 3.523 143.42 3.576 141.94
(14,0) 5.480 220.10 5.515 219.17
(20,0) 7.829 318.08 7.853 317.42
(26,0) 10.178 411.80 10.196 411.30
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Fig. 7 Relaxed configurations of the (5,0) and the (3,3) CNTs

4.2 BNNTs

The relaxed configuration of BNNTs is quite different from that of CNTs. We find that it assumes a radially
buckled shape, in agreement with the ab-initio results [27,32,34]. Figure 8 shows the relaxed configurations
provided by our simulations for the (5,0) and the (3,3) BNNTs. B and N atoms are represented by spheres of
dimension proportional to the atomic radius, the atomic radius of N being smaller than that of B. The relaxed
configurations are essentially characterized by two concentric cylindrical surfaces of mean radius �1 and �2,
on which B and N atoms place themselves. Overall, the mean value of the two radii is greater than the ideal
one and the tube undergoes a shortening (see Table 4).

By analysing Fig. 8, we observe that the buckled shape depends on the chirality, developing along the axial
direction for the zigzag tubes and along the circumferential direction for the armchair tubes. In the middle of
the figure, some details are given which provide interesting insights. Similarly to the CNTs, in the zigzag case,
the shortening of the tube induced by relaxation practically involves only the portions related to the initially
oblique sticks and, in the armchair case, variations in the central angles are also registered.
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Table 3 Radius values in (Å) of some CNTs in the relaxed configuration compared with the literature

CNTs (3,3) (4,4) (5,5) (8,8) (12,12) (5,0) (7,0) (9,0) (14,0) (20,0)
Ideal radius 2.034 2.712 3.390 5.424 8.136 1.957 2.740 3.523 5.480 7.829
Present work 2.093 2.756 3.427 5.447 8.151 2.051 2.808 3.576 5.155 7.853

[26] – 2.794 3.463 5.498 – – – – – –
[27] – 2.786 – – – – 2.816 – – –
[28] 2.100 – – – – 2.035 – – – –
[29] 2.120 – – – – 2.060 – – – –
[30] 2.120 2.750 – – – 2.050 – – – –
[37] 2.111 2.775 3.445 5.472 – – – – – –
[38] – – 3.434 – – 2.041 – – – –
[39] 2.100 2.765 3.430 – – 2.035 2.795 – – –
[40] – – 3.395 5.435 8.150 – 2.745 3.535 5.485 7.835

If we analyse in more detail the measures shown in Table 4, we see that the differences between ideal
and relaxed quantities are extremely small and they tend to vanish as the radius increases. At most, we find
differences of about 5% for the radius �2 and of about 3.3% for the tube length, for the smallest nanotube, that
is (5,0).

In Table 5, we provide a comparison between the quantities obtained from our simulations with those
provided by ab-initio results in the literature. Our numerical results are in excellent agreement with the ab-
initio values, as before. Themaximumpercentage difference, of about 5.0%, is registered for the (5,0) nanotube,
where �1 is about 5.0% smaller with respect to the value reported in [34].

Although it might seem obvious, it is worth highlighting that the appearance of the buckled configuration
is due to the diversification of the angular force constant for the two atom types, as in the UFF potential [96],
but not the DREIDING one. In this regard, the available parametrizations of the Tersoff–Brenner potential
[43,49,95] need improvements, because they don’t diversify the angular parameters. That said, our results
show that the atoms related to the force constant with the lower value are positioned on the larger cylinder,
and vice versa. At the same time, all the ab-initio results [27,32–35] referring to the diatomic nanotubes agree
that the placement of the atoms is related to higher or lower electronegativity,2 with the most electronegative
ones sitting on the larger cylinder. Therefore, the force constant with lower value has to correspond to the more
electronegative atoms. Our results concerning BNNTs are consistent with this theoretical framework, since
the force constant with lower value corresponds to the more electronegative N atoms, and, vice versa, the force
constant with the higher value corresponds to the less electronegative B atoms.

4.3 SiCNTs

In the case of SiCNTs, the ab-initio results [33–35] show that Si and C atoms lie on the cylinder with smaller
and greater radius, respectively, in accordance with the electronegativity rule. However, the values in Table 1
for SiCNTs are not in agreement with this trend, because the smaller value of the angular force constant is
attributed to the less electronegative Si atom.

In [74], we evaluated the force constants listed in Table 1, based upon certain assumptions. The first two
assumptionswere the analytical expressions of the surfaceYoung’smodulus E and Poisson ratio ν of a diatomic
sheet

E = 4
√
3kr (K1 + K2)

krr2e + 9 (K1 + K2)
, (19a)

ν = krr2e − 3(K1 + K2)

krr2e + 9(K1 + K2)
, (19b)

where the quantities kr and (K1+K2)were calculated from ab-initio estimates of E and ν.3 Then, to obtain
the individual values of K1 and K2, we added a third equation, suggested in [96], which states that the ratio

2 The electronegativity is the measure of an atom’s ability to attract electrons to itself when bonding with another atom.
Excluding the noble gases, the electronegativity values tend to increase going towards the top right of the periodic table.

3 In [74], the ab-initio reference values have been taken from [36].
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Fig. 8 Relaxed configurations of the (5,0) and the (3,3) BNNTs

Table 4 Radii and lengths of BNNTs in ideal and relaxed configurations

BNNTs Ideal conf. Relaxed conf.

� (Å) � (Å) �1 (Å) �2 (Å) � (Å)

(3,3) 2.077 85.39 2.121 2.149 84.27
(4,4) 2.769 110.50 2.804 2.823 109.65
(5,5) 3.462 140.64 3.490 3.505 139.93
(8,8) 5.539 226.03 5.557 5.566 225.58
(12,12) 8.308 339.05 8.320 8.326 338.75
(16,16) 11.077 447.04 11.086 11.091 446.82
(5,0) 1.999 81.20 2.076 2.107 78.58
(7,0) 2.798 111.65 2.856 2.876 109.80
(9,0) 3.597 146.45 3.643 3.658 144.99
(14,0) 5.596 224.75 5.626 5.635 223.83
(20,0) 7.994 324.80 8.015 8.021 324.15
(26,0) 10.393 420.50 10.409 10.413 420.00
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Table 5 Radius in (Å) of some BNNTs in the relaxed configuration compared with ab-initio results the literature

Tube Ideal Present Kudin [27] Jia [32] Baumeier [34]

� �1 �2 �1 �2 �1 �2 �1 �2

(3,3) 2.077 2.121 2.149 – – 2.044 2.159 – –
(4,4) 2.769 2.804 2.823 2.816 2.865 2.736 2.819 2.701 2.790
(5,5) 3.462 3.490 3.505 – – 3.426 3.488 3.401 3.469
(8,8) 5.539 5.557 5.566 – – 5.485 5.523 5.455 5.495
(5,0) 1.999 2.076 2.107 – – 2.000 2.113 1.979 2.101
(7,0) 2.798 2.856 2.876 2.863 2.921 2.786 2.862 2.758 2.843
(9,0) 3.593 3.643 3.658 – – 3.572 3.629 3.543 3.607
(14,0) 5.596 5.628 5.635 – – 5.553 5.588 – –

Table 6 Reference ab-initio radii in (Å) of SiCNTs in the literature

Tube Zhao [33] Baumeier [34] Alam [35]

�1 �2 �1 �2 �1 �2

(3,3) – – – – 2.638 2.675
(4,4) – – 3.295 3.436 3.495 3.528
(5,5) 4.272 4.368 4.136 4.245 4.366 4.394
(8,8) – – 6.668 6.733 6.945 6.961
(5,0) – – 2.401 2.590 – –
(7,0) – – 3.358 3.492 – –
(9,0) – – 4.324 4.426 – –

K1/K2 is proportional to the ratio of the square effective charge of the atom type 2 over the square effective
charge of the atom type 1. However, this assumption no longer seems to be convincing in the light of the above
considerations on the relaxed configuration of SiCNTs, even if, in the case of BNNTs, it has provided results
in agreement with the electronegativity rule.

Therefore, for SiCNTs we need a new third condition to add to Eq. (19). We propose to minimize the
distance between the radial buckling parameter (�1 −�2) provided by our simulations for several SiCNTs and
the same parameter (�∗

1 − �∗
2) obtained through ab-initio methods for the same SiCNTs and listed in Table 6.

Specifically, for a discrete number of values of K1 ranging from (K1 + K2)/2 to (K1 + K2), �1 and �2
are obtained numerically for any tube given in Table 6. The selected value of K1 is the one that minimizes the
function

∑

t

(
�1 − �2

�∗
1 − �∗

2
− 1

)2

, (20)

where the summation extends over all the tubes.
In this case, theminimum condition provides the valuesK1 = 1.264 nNnm/rad2 andK2 = 0.341 nNnm/rad2.
With the new force constants, the relaxed configuration for any SiCNT has been evaluated and compared

to the ideal configuration in Table 7. For the (5,0) nanotube, differences of about 5.5% for the radius �2 and
of about 3.2% for the length are found.

Table 8 compares some radii from Table 7 with the available ab-initio values from Table 6. A general
agreement between the radii obtained by this minimization and the values from the literature is found. In
particular, for the (5,0) nanotube the obtained radius �1 differs by less than 5.0% with respect to the value
reported in [34].

5 The elastic constants

Uniform tensile, radial and torsional tests are now performed, by considering three-point force systems (see
Fig. 9) consisting of: axial forces Fz applied to the atoms of the tube free end sections (tensile tests); circum-
ferential forces Fθ applied to the atoms of the tube free end sections (torsional tests); and radial forces Pi
applied to each atom i of the tube (radial tests).
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Table 7 Radii and lenghts of SiCNTs in ideal and relaxed configurations

SiCNTs Ideal conf. Relaxed conf.

� (Å) � (Å) �1 (Å) �2 (Å) � (Å)

(3,3) 2.535 104.23 2.571 2.630 103.04
(4,4) 3.380 134.89 3.410 3.452 133.97
(5,5) 4.226 171.68 4.250 4.282 170.92
(8,8) 6.761 275.92 6.777 6.796 275.43
(12,12) 10.141 413.87 10.152 10.165 413.55
(16,16) 13.522 545.70 13.530 13.540 545.56
(5,0) 2.440 99.12 2.513 2.581 96.10
(7,0) 3.415 136.29 3.472 3.515 134.16
(9,0) 4.391 178.77 4.437 4.469 177.08
(14,0) 6.831 274.35 6.861 6.881 273.28
(20,0) 9.759 396.48 9.780 9.793 395.73
(26,0) 12.686 513.30 12.702 12.713 512.72

Table 8 Radius in (Å) of some SiCNTs in the relaxed configuration compared with ab-initio results from the literature

Tube Ideal Present Zhao [33] Baumeier [34] Alam [35]

� �1 �2 �1 �2 �1 �2 �1 �2

(3,3) 2.535 2.571 2.630 – – – – 2.638 2.675
(4,4) 3.380 3.410 3.452 – – 3.295 3.436 3.495 3.528
(5,5) 4.226 4.250 4.282 4.272 4.368 4.136 4.245 4.366 4.394
(8,8) 6.761 6.777 6.796 – – 6.668 6.733 6.945 6.961
(5,0) 2.440 2.513 2.581 – – 2.401 2.590 – –
(7,0) 3.415 3.472 3.515 – – 3.358 3.492 – –
(9,0) 4.391 4.437 4.469 – – 4.324 4.426 – –

The elastic constants are calculated by referring to the membrane states of an homogeneous orthotropic
Donnell thin shell [97]. Comparisons with the available ab-initio results are given.

The negligible differences in terms of length and of radius between the ideal and the relaxed configurations
make it plausible to consider a continuum model equivalent to the nanotube in the ideal configuration, an
assumption that is frequently found in the literature (e.g. [41,49,51,54,64,78,82,83]). With this in mind, the
tests are performed using the linearized version of the stick-and-spring model about the ideal configuration.
In addition, Eq. (15) are simplified, by assuming f̃i j = m̃i jk = 0 and substituting the rigidities k̃i j and k̃i jk for
those in the planar configuration, because the differences are negligible. Accordingly, k̃i j = kr and k̃i jk = kθ

are used.
For the reader’s convenience, we recall the equations governing the equilibrium problem of the membrane

behaviour of the cylindrical shell, under the hypotheses of uniform stress/strain and hyperelasticity. They are

Nz = const., Nθ = p�, Nzθ = const., (21a)

εz = ∂u

∂z
= const., εθ = w

�
= const., γzθ = ∂v

∂z
= const., (21b)

Nz = Ez

Δ
εz + νθ z Ez

Δ
εθ , Nθ = νzθ Eθ

Δ
εz + Eθ

Δ
εθ , Nzθ = Gγzθ , (21c)

Ez/Eθ = νzθ /νθ z . (21d)

In Eq. (21), u, v and w are the axial, circumferential and radial displacements (see Fig. 10), εz , εθ and γzθ
are the axial, circumferential and shearing strains, Nz , Nθ and Nzθ are the related inner forces, while p is the
uniform pressure. Finally, Ez , Eθ and G are the surface Young’s modulus and the shear moduli, νzθ and νθ z
the Poisson ratios and Δ = 1 − νzθ νθ z .

For what follows, we need to specify the component-wise displacements of the i th atom, which we denote
by ui , vi and wi . To link the continuum and the stick-and-spring models, we assume a proper correspondence
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Fig. 9 Applied loads

Fig. 10 Displacements of the Donnell shell

in terms of their displacements. In particular, we assume that the axial and circumferential displacements of
the shell end bases (at z = ±�/2) are given by

u[±�/2] = 1

ns

∑

i

ui , v[±�/2] = 1

ns

∑

i

vi , (22a)

where ns is the atom number of the tube section and the summations extend over the section at hand. In
addition, we assume that the radial displacement of the shell is

w = 1

2π��

∑

i

wiAi , (22b)

where Ai is the reference area of the i th atom, while the summation extends over the entire tube.
Now, we can relate the external forces Fz , Fθ and Pi to the shell stresses Nz , Nzθ and Nθ through work

equivalences. In particular, Fz and Fθ are related to Nz and Nzθ by equating the work of the tractions applied
to the base at z = �/2 to its discrete counterpart

2π�Nzu[�/2] = Fz
∑

i

ui , 2π�Nzθ v[�/2] = Fθ

∑

i

vi . (23a)
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Now, recalling Eqs. (22a) and (23a) provides

Fz = Nzω�, Fθ = Nzθω�, (23b)

where ω = 2π

ns
is the central angle related to each atom (see Fig. 9). Similarly, the forces Pi are related to Nθ

through the equality

2π��wp =
∑

i

Piwi , (23c)

which involves the work of the pressure p and its discrete counterpart. Recalling Eqs. (21a) and (22b) and
imposing that Eq. (23c) be satisfied for each wi , we obtain

Pi = Nθ

�
Ai . (23d)

5.1 Numerical results and discussion

The numerical analyses are performed using the constraints of Eq. (18) and evaluating the forces Fz , Fθ and
Pi from Eqs. (23b) and (23d), by setting the values of Nz, Nθ , Nzθ in the following three ways:

1. Nz = 1 nN/nm, Nθ = Nzθ = 0;
2. Nθ = 1 nN/nm, Nz = Nzθ = 0;
3. Nzθ = 1 nN/nm, Nz = Nθ = 0.

The elastic constants are then obtained by evaluating the strains using Eq. (21b) and the map given in Eq.
(22). For further details see [78].

Tables 9, 10 and 11 show the values of the elastic constants of the membrane behaviour obtained for the
three types of tubes and the range of their mean values, that is, the arithmetic mean between the values relative
to minimum and maximum radii.

The results show a moderate dependence of the elastic constants on the tube radius and chirality. For all
cases, the surface Young’s moduli Ez and Eθ and the shear modulus G increase, whereas the Poisson ratios
νzθ and νθ z decrease, as the radius increases. The radius does not have the same influence on all the constants.
The shear modulus G of the armchair tubes is shown to be the most sensitive one, with differences of about
18.0% with respect to the range mean value in the case of SiCNTs, whereas in the other cases the differences
are slightly smaller. Overall, the results show a clear consistency with Eq. (21d), with both the ratios between
Ez and Eθ and between νzθ and νθ z almost equal to 1. Especially for the smallest radii, the value ofG, obtained
by the torsion test, is significantly different from the value obtainable from the tensile test under the isotropy
hypothesis, with maximum difference of more than 30.0% for (3,3) CNT and (3,3) BNNT. Therefore, the
nanotubes are not isotropic. Finally, it is worth noting that the CNTs are stiffer than the other tubes, with range
mean values of the surface Young’s modulus and shear moduli of about 1.4 times those of BNNTs and of about
2.3 times those of SiCNTs and with range mean values of the Poisson ratios of about 0.7 and 0.5 times those
of BNNTs and of SiCNTs, respectively.

Tables 12, 13 and 14 show the comparison between our results and the ab-initio results in the literature,
concerning the surface Young’s modulus Ez . As opposed to what has been observed for the relaxed radii, not all
the ab-initio results are in agreement amongst themselves. In this respect, a relevant discrepancy between the
values provided in [40] with respect to the other ones arises and it is difficult for us to express any judgement
about it. However, our results are in reasonable agreement with all the other references, with the maximum
difference of about 10.0% with respect to [38] for the (5,0) CNT and of about 6.0% and 6.6% with respect to
[34] for the (8,8) BNNT and for the (8,8) SiCNT, respectively.

Overall, this good correspondence can be considered as a further verification of the selected force constants
and of the assumptions employed for evaluating the elastic constants of the tubes. Of course, some aspects
have been deliberately ignored, such as the radial buckling of the relaxed diatomic tubes and the presence
of a self-stress state in some elements, but this has not produced significant errors even in the case of the
smallest radii, characterized by greater variations in the bond lengths and angles with respect to the sheets.
However, these aspects might be significant in nonlinear contexts, such as in imperfection sensitivity analysis
or in strength evaluation under tensile loads.
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Table 9 Elastic constants of CNTs

CNTs Ez Eθ νzθ νθ z G
(N/m) (N/m) (N/m)

(3,3) 344.2 342.6 0.1908 0.1900 107.6
(4,4) 350.5 350.6 0.1783 0.1784 126.7
(5,5) 353.7 354.4 0.1719 0.1722 136.5
(8,8) 357.4 358.4 0.1644 0.1649 147.8
(12,12) 358.8 359.8 0.1616 0.1620 152.0
(16,16) 359.4 360.2 0.1605 0.1609 153.5
Range mean value 351.8±7.6 351.4±8.8 0.1756±0.015 0.1754±0.014 130.5±22.9
(5,0) 331.7 324.0 0.2276 0.2224 140.0
(7,0) 343.9 341.1 0.1969 0.1953 147.6
(9,0) 349.8 348.7 0.1828 0.1823 150.8
(14,0) 355.5 355.8 0.1693 0.1695 153.6
(20,0) 357.7 358.3 0.1644 0.1645 154.6
(26,0) 358.7 359.2 0.1622 0.1624 155.0
Range mean value 345.2±13.5 341.6±17.6 0.1949±0.0327 0.1924±0.03 147.5±7.5

Table 10 Elastic constants of BNNTs

BNNTs Ez Eθ νzθ νθ z G
(N/m) (N/m) (N/m)

(3,3) 249.6 249.6 0.2529 0.2529 75.85
(4,4) 254.4 255.2 0.2416 0.2424 89.54
(5,5) 256.9 257.8 0.2357 0.2366 96.56
(8,8) 259.8 260.8 0.2288 0.2297 104.7
(12,12) 260.9 261.7 0.2262 0.2269 107.8
(16,16) 261.4 262.1 0.2252 0.2258 108.9
Range mean value 255.5±5.9 255.8±6.2 0.2390±0.014 0.2393±0.013 92.37±16.5
(5,0) 240.1 237.2 0.2884 0.2849 99.49
(7,0) 249.4 249.4 0.2594 0.2594 104.8
(9,0) 253.9 254.7 0.2461 0.2469 107.0
(14,0) 258.3 259.6 0.2333 0.2344 109.0
(20,0) 260.1 261.2 0.2284 0.2295 109.7
(26,0) 260.9 261.9 0.2265 0.2274 110.0
Range mean value 250.4±10.3 248.0±13.3 0.259±0.032 0.256±0.028 104.7±5.2

Table 11 Elastic constants of SiCNTs

SiCNTs Ez Eθ νzθ νθ z G
(N/m) (N/m) (N/m)

(3,3) 148.5 149.8 0.3519 0.3551 43.77
(4,4) 151.5 152.9 0.3434 0.3464 51.86
(5,5) 153.2 154.3 0.3388 0.3414 56.04
(8,8) 155.1 156.0 0.3333 0.3355 60.92
(12,12) 155.9 156.5 0.3312 0.3325 62.77
(16,16) 156.2 156.7 0.3304 0.3314 63.43
Range mean value 152.3±3.8 153.2±3.4 0.3411±0.011 0.3432±0.012 53.6±9.8
(5,0) 142.7 141.5 0.3861 0.3828 58.13
(7,0) 148.5 148.9 0.3603 0.3614 61.19
(9,0) 151.3 152.2 0.3485 0.3505 62.46
(14,0) 154.2 155.2 0.3372 0.3394 63.60
(20,0) 155.4 156.2 0.3330 0.3349 64.00
(26,0) 155.9 156.6 0.3313 0.3329 64.15
Range mean value 149.3±6.6 148.1±8.1 0.3604±0.029 0.3572±0.024 61.1±3.0
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Table 12 Ez (N/m) of CNTs compared with the literature

CNTs Ez [27] [31] [37] [38] [39] [40]

(3,3) 344.2 – 331.0 322.0 – 319.0 –
(4,4) 350.5 333.0 344.0 341.0 – 323.0 –
(5,5) 353.7 – 348.0 346.0 331.64 329.0 439.62
(8,8) 357.4 – – 354.0 – – 440.64
(12,12) 358.8 – – – – – 454.58
(5,0) 331.7 – 321.0 – 303.51 305.0
(7,0) 343.9 333.0 – – – 334.0
(9,0) 349.8 – – – – – 430.78
(14,0) 355.5 – – – – – 455.26
(20,0) 357.7 – – – – – 460.02

Table 13 Ez (N/m) of BNNTs compared with the literature

BNNTs Ez [27] [34] [40]

(4,4) 254.4 258.0 268.0 –
(5,5) 256.9 – 272.0 –
(8,8) 259.8 – 276.0 –
(5,0) 240.1 – 246.0 –
(7,0) 249.4 255.0 – –
(9,0) 253.9 – 269.0 357.0
(14,0) 258.3 – – 362.0

Table 14 Ez (N/m) of SiCNTs compared with the literature

SiCNTs Ez [34]

(4,4) 151.5 157.0
(5,5) 153.2 162.0
(8,8) 155.1 166.0
(5,0) 142.7 143.0
(9,0) 151.3 160.0

Fig. 11 (9,0) BNNT: displacements under axial loads

In conclusion, the procedure adopted is very simple, even in regard to a possible analytical evaluation of
the elastic constants. Also in view of an augmented Cauchy–Born kinematic map, it is worth highlighting
that periodic deformations of the diatomic nanotubes can be seen as the superimposition of the homogeneous
deformation of a cylindrical shell and some small-scale contributions. Figures 11, 12, 13, 14, 15 and 16 show
the displacements of some innermost atom rows of (9,0) and (5,5) BNNTs, respectively.

More precisely, for the zigzag case, the two slopes Δu/Δz (see Figs. 11 and 12) and Δv/Δz (see Fig. 13)
suggest two different local axial and shear strains, which can be obtained by summing an average displacement
to two opposite axial or circumferential displacements for each couple of first neighbours. Also for the armchair
case, opposite circumferential (see Figs. 14 and 15) and axial (see Fig. 16) displacements for any two first
neighbours arise and in this case they imply local non-uniform shear and circumferential strains. The interested
reader is referred to [78] for more details.
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Fig. 12 (9,0) BNNT: displacements under radial loads

Fig. 13 (9,0) BNNT: displacements under torsional loads

Fig. 14 (5,5) BNNT: displacements under axial loads

Fig. 15 (5,5) BNNT: displacements under radial loads

In addition to these effects, common to CNTs, in tensile and radial tests of the diatomic nanotubes, we
find two different radial displacements for the atoms of type 1 and 2, as a consequence of the diversification
of the angular force constants. This suggests a mean radial displacement accompanied by opposite radial
displacements for each couple of first neighbours.
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Fig. 16 (5,5) BNNT: displacements under torsional loads

6 Conclusions

In this paper, a numerical study of the nanoscale mechanical behaviour of defect-free single-wall CNTs,
BNNTs and SiCNTs has been carried out, using a stick-and-spring model based on Morse and cosine energy
functions. The relaxed configuration of the tubes has been evaluated, and tensile, torsional and radial tests have
been performed.

Due to the negligible differences in terms of length and of radius between the ideal and the relaxed
configurations, a Donnell thin shell model, assumed equivalent to the ideal nanotube, has been used for a
comprehensive evaluation of the elastic constants.

Comparisons with the available ab-initio results have been addressed. In the case of SiC hexagonal nano-
materials, a set of parameters, well suited to reproduce the relaxed configurations and the elastic constants,
has been established.

The numerical results obtained in this work have shown the non-isotropic behaviour of BNNTs and SiC-
NTs. Furthermore, the good results provided by nonlinear analyses performed in order to obtain the relaxed
configuration encourage us to exploit the simplest interatomic potentials also in highly nonlinear analyses,
where ab-initio simulations become impracticable.

Finally, a focus on the small-scale effects has been provided. Obviously, these effects cannot be represented
by a Donnell thin shell model because it captures only the average behaviour of the tube. Therefore, recourse
to non-standard continuum models is needed when small-scale effects become relevant.

In the literature, some modified beam models, endowed with scale parameters, have been identified for the
analysis of CNTs [100,101], while for BNNTs and SiCNTs non-standard continuum models are still lacking.
It is our belief that the small-scale effects seen for armchair nanotubes could reasonably be reproduced also
by complementing the standard kinematics of a beam with proper deformation modes of the cross sections,
similarly to what has been done several times, also in the nonlinear range, in the context of profiles with
thin-walled and/or composite sections (e.g. [102,103]).
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Appendix: The iteration matrix

To compute the iteration matrix, we perform the first variation with respect to the displacements of the force
vectors in Eq. (13b). Starting from f i j and recalling Eq. (6a), we have

∂ f i j
∂ui j

δui j =
[
ki j i i j

(
∂ri j
∂ui j

)
· δui j + fi j

∂ i i j
∂ui j

δui j

]
. (24)
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Then, by substituting Eq. (10), we obtain

∂ f i j
∂ui j

=
(
ki j − fi j

ri j

)
i i j ⊗ i i j + fi j

ri j
I .

Before differentiating t i j and t ik , it is convenient to identify the pair of sticks i– j and i–k through the indices
α, β, γ ∈ {i j, ik}, with γ �= α. Recalling Eqs. (6b) and (13b), we obtain

∂ tα
∂uβ

δuβ =
[
ki jk
rα

nα

(
∂θi jk

∂uβ

)
· δuβ + mi jk

∂

∂uβ

(
nα

rα

)
δuβ

]
. (25)

By taking into account Eqs. (10) and (11), it also follows that

∂

∂uα

(
nα

rα

)
δuα = d

drα

(
1

rα

)[(
∂rα
∂uα

)
· δuα

]
nα + 1

rα

∂nα

∂uα

δuα

= − 1

r2α
(nα ⊗ iα)δuα + 1

rα

cos θi jk

sin θi jk

∂ iα
∂uα

δuα

− 1

rα

(
cos θi jk

sin θi jk
nα + iα

)(
∂θi jk

∂uα

)
· δuα

= 1

r2α sin θi jk

[
cos θi jk (I − 3 iα ⊗ iα − nα ⊗ nα)

+ iα ⊗ iγ + iγ ⊗ iα
]
δuα, (26a)

∂nα

∂uγ

δuγ = − 1

sin θi jk

∂ iγ
∂uγ

δuγ −
(
cos θi jk

sin θi jk
nα + iα

)(
∂θi jk

∂uγ

)
· δuγ

= 1

rγ sin θi jk

[
iα ⊗ iα + iγ ⊗ iγ − I

− cos θi jk(iα ⊗ iγ + nα ⊗ nγ )
]
δuγ . (26b)

Then, substituting (26) into Eq. (25) and recalling Eq. (11), we obtain

∂ tα
∂uα

= 1

r2α

{(
ki jk − mi jk

tan θi jk

)
Nαα + mi jk

sin θi jk

[
cos θi jk (I − 3Iαα) + Iαγ + Iγα

]}
,

∂ tα
∂uγ

= 1

rαrγ

[(
ki jk − mi jk

tan θi jk

)
Nαγ + mi jk

sin θi jk

(
Iαα + Iγ γ − I − cos θi jk Iαγ

)]
,

where Nαβ = nα ⊗ nβ and Iαβ = iα ⊗ iβ . Finally, in the linear case, this reduces to

∂ f i j
∂ui j

= k̃i j ĩ i j ⊗ ĩ i j ,
∂ tα
∂uβ

= k̃i jk
r̃α r̃β

ñα ⊗ ñβ.
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