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Abstract Porous biomaterials have been utilized in cellular structures in order to mimic the function of
bone as a branch of tissue engineering approach. With the aid of nano-porous biomaterials in which the pore
size is at nanoscale, the capability of biological molecular isolation becomes more efficient. In the present
study, first the mechanical properties of nano-porous biomaterials are estimated on the basis of a truncated
cube cell model including a refined hyperbolic shear deformation for the associated lattice structure. After
that, based upon a nonlocal strain gradient beam model, the size-dependent nonlinear secondary resonance
of micro-/nano-beams made of the nano-porous biomaterial is predicted corresponding to both subharmonic
and superharmonic excitations. The nonclassical governing differential equation of motion is constructed via
Hamilton’s principle. By employing the Galerkin technique together with the multiple-timescale method, the
nonlocal strain gradient frequency response and amplitude response of the nonlinear oscillation of micro-/
nano-beams made of a nano-porous biomaterial under hard excitation are achieved. It is shown that in the
superharmonic case, increasing the pore size leads to an enhancement of the nonlinear hardening spring-
type behavior of the jump phenomenon and the height of limit point bifurcations. In the subharmonic case,
higher pore size causes an increase in the gap between two branches associated with the high-frequency and
low-frequency solutions.

1 Introduction

Biomaterials have the capability to be used in structures replacing a part or a function of a living organism
in a reliable way without adversely affecting it. In order to display tissue formation more efficiently, porous
biomaterials are utilized which allow proliferation and vascularization of a living cell as well as interlocking
between the biomaterial and surrounding natural tissue.

By rapid advancements in science and technology, more effective methods to deliver and release drugs into
the body have been determined. Using porous nano-structures is one of these efficient ways for controlling the
delivery of a drug [1–3]. Having a high surface area with several pores makes porous nano-structures an ideal
candidate for the encapsulation of pharmaceutical drugs [4]. Also, vibration analysis is an important study in
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biomedical applications. For instance, Usui et al. [5] investigated radiographically and biomechanically the
effects of mechanical vibration on bone ingrowth into porous hydroxyapatite implants and fracture healing
in a rabbit model. Altintas [6] performed a modal vibration analysis of a heterogeneous porous structure by
taking microstructural details into consideration.

Throughminiaturizing a solid material to nanoscale, size dependency characteristics take on an importance
which are normally inconsequential at usual scale. This size-induced property change has inspired the devel-
opment of several size-dependent continuum theories such as nonlocal elasticity theory [7], surface elasticity
theory [8], strain gradient elasticity theory [9] and couple stress elasticity theory [10]. In recent years, a variety
of studies has been conducted to employ these nonclassical continuum theories of elasticity to investigate
crucial characteristics of the mechanical response of nano-structures [11–50].

Recently, Lim et al. [51] have introduced a refined nonlocal continuum mechanics, namely the nonlocal
strain gradient elasticity theory, including simultaneously both hardening stiffness and softening stiffness of
the size effect. After that, some studies have been carried out to construct the integral elasticity type of this
theory [52,53]. In recent years, the newly proposed elasticity theory has been widely utilized to capture stress
and strain gradient scaling effects on the mechanical behavior of micro-/nano-structures. Tang et al. [54] devel-
oped a nonlocal strain gradient Timoshenko beam model for wave dispersion in a viscoelastic single-walled
carbon nanotube. Li et al. [55] analyzed bending, buckling and vibration of axially functionally graded nano-
beams on the basis of the nonlocal strain gradient elasticity theory. Ebrahimi and Dabbagh [56] predicted the
flexural wave propagation of functionally graded magneto-electro-elastic nano-plates based upon the nonlocal
strain gradient theory of elasticity. Sahmani and Aghdam[57] employed the nonlocal strain gradient elasticity
theory to analyze the nonlinear instability of axially loaded microtubules surrounded by the cytoplasm of
a living cell. Lu et al. [58] explored the size-dependent free vibrations of nano-beams by incorporating the
nonlocal strain gradient theory into the sinusoidal shear deformation beam theory. Sahmani and Aghdam[59]
constructed a nonlocal strain gradient shell model to anticipate buckling and postbuckling behavior of axi-
ally loaded multilayer functionally graded nano-shells reinforced with graphene platelets. Zhu and Li [60]
proposed a closed-form solution based upon nonlocal strain gradient elasticity theory for a small-scaled rod
in tension. Sahmani and Aghdam[61] used the nonlocal strain gradient continuum mechanics to examine
the nonlinear instability of hydrostatic pressurized multilayer functionally graded nano-shells reinforced with
graphene nano-platelets. Li and Hu[62] investigated the size-dependent postbuckling behavior of function-
ally graded nano-beams including nonlocality and strain gradient size dependency. Sahmani and Aghdam
[63] constructed a nonlocal strain gradient higher-order shear deformable beam model for nonlinear vibration
analysis of postbuckling multilayer functionally graded nano-beams. They also predicted the nonlinear pri-
mary resonance of a nano-beam made of nano-porous biomaterial subjected to soft excitation [64]. Radwan
and Sobhy [65] developed a nonlocal strain gradient plate model for dynamic deformation of viscoelastic
graphene nano-sheets under harmonic thermal load. Sahmani et al. [66–68] analyzed the size-dependent non-
linear mechanical behaviors of reinforced functionally graded porous micro-/nano-structures on the basis of
the nonlocal strain gradient theory of elasticity. Recently, Li et al. [69] have investigated the influence of the
beam thickness on the size-dependent buckling and postbuckling characteristics of nano-beams modeled via
the nonlocal strain gradient theory.

The objective of this work is to predict the size-dependent nonlinear secondary resonance of a micro-
/nano-beam made of nano-porous biomaterials including truncated cubic unit cells. To accomplish this, the
mechanical properties of the nano-porous biomaterial comprising the truncated cube cells including a refined
hyperbolic shear deformation effect are obtained as analytical functions of the pore size. After that, based
on the nonlocal strain gradient elasticity theory, a size-dependent beam model is constructed. By using the
Galerkin technique together with the multiple-timescale method, analytical expressions for the frequency
response and amplitude response of a micro-/nano-beam made of the nano-porous biomaterial are proposed
for both subharmonic and superharmonic excitations.

2 Analytical approach for mechanical properties of nano-porous biomaterials

In order to simulate a nano-porous biomaterial, it is supposed that it is comprised of truncated cube cells (open
cell foam) as depicted in Fig. 1. As a consequence, by placing these cubes beside each other, a unit cell is
created. Consequently, the model consists of bigger truncated cube cells and smaller octahedral cells. Figure 2
shows that because of the geometrical symmetry, the links c1a1b1d1a2c2 and c1a1b2d2a2c2 and c1a1b3d3a2c2
and c1a1b4d4a2c2 of the unit cell have the same mechanical in-plane deformations. Therefore, it is enough to
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Fig. 1 A micro-/nano-beam made of a nano-porous biomaterial: a coordinate system and geometric parameters; b a truncated
cube lattice framework including struts with length � and circular cross section of radius r

Fig. 2 A schematic representation of a truncated cube unit cell

analyze one of them in order to anticipate the mechanical characteristics of the unit cell. In the current study,
the link c1a1b1d1a2c2 is selected to be analyzed.

On the basis of the refined hyperbolic shear deformable beam model related to the links of the unit cell,
we have
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where Ē, Ḡ, Ī , Ā, w and ψ represent, respectively, the Young’s modulus, shear modulus, moment inertia,
cross-sectional area, deflection and angle of rotation for the links of unit cell.

Consequently, for a cantilever beam with constructed load P at the free end and length of �, one has
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Ḡ Ā

Ē Ī
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Based upon the hyperbolic shear deformation beam theory, it is supposed that for the in-plane and transverse
displacements, the bending components do not contribute toward shear components and vice versa. Also, there
is no need for a shear correction factor which is hard to find its value as it depends on various parameters.

As a result, the equivalent bending moment at the free end of the strut causing the same rotation can be
obtained as
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The associated lateral deflection caused by applying both concentrated load P and bending moment M at
the free end can be written as
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12Ē Ī
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Fig. 3 Degrees of freedom for the link c1a1b1d1a2c2 of the unit cell

So, one will have

P = δ
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12Ē Ī
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In a general view, the in-plane deformation causes 18 degrees of freedom for the link c1a1b1d1a2c2.
Nevertheless, the following reasonable assumptions similar to those considered by Hedayati et al. [70] are
taken into account in order to decrease the number of degrees of freedom to 6 as illustrated in Fig. 3:

• All the vertices of the links are not enabled to rotate;
• The points a1, a2, c1 are only enabled to displace vertically;
• The vertical displacements of the points b1 and d1 are the same, but their horizontal displacements are
different;

• The point c2 is fixed.

Moreover, it is assumed that the porosity is distributed uniformly in the biomaterial, and its shape is similar
in all points of the biomaterial.

Consequently, the relationships between the degrees of freedom xi (i = 1, 2, . . . , 6) and the associated
external force Si (i = 1, 2, . . . , 6) can be expressed as
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Through expression of the displacements corresponding to each degree of freedom separately in such a
way that the considered degree of freedom is supposed to be unity and the other ones are assumed to be zero,
the elements of the stiffness matrix can be extracted column by column.
For x1 = 1and x2 = x3 = x4 = x5 = x6 = 0:
As a result, the point c1 is displaced downwards by 1 unit. The following associated forces in the struts can be
found:
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�
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For x2 = 1and x1 = x3 = x4 = x5 = x6 = 0:
As a result, the point a1 (the vertices of links a1b1, a1b2, a1b3, a1b4) is displaced downwards by 1 unit. The
following associated forces in the struts can be found:
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�
+ 4 ×

⎛
⎜⎜⎜⎜⎝

1

�3

6Ē Ī
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For x3 = 1and x1 = x2 = x4 = x5 = x6 = 0:
As a result, the point b1 (similarly, the points b2, b3, b4) is displaced downwards by 1 unit. The associated
forces in the struts become
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((
1+p�

2

)
cosh(p�)−

(
1+p�

2

)
sinh(p�)−1

p

) − ĀĒ
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For x4 = 1 and x1 = x2 = x3 = x5 = x6 = 0:
As a result, the point a2 (the vertices of links a2b1, a2b2, a2b3, a2b4) is displaced downwards by 1 unit. The
associated forces in the struts are as follows:

S1 = S2 = S6 = 0,
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+ 6�

5Ḡ Ā
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5Ḡ Ā
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((
1+p�

2

)
cosh(p�)−

(
1+p�

2

)
sinh(p�)−1

p

) − ĀĒ
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For x5 = 1 and x1 = x2 = x3 = x4 = x6 = 0:
As a result, the point b1 (similarly, the points b2, b3, b4) is displaced horizontally by 1 unit. The associated
forces in the struts can be given as
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6Ē Ī
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For x6 = 1 and x1 = x2 = x3 = x4 = x5 = 0:
As a result, the point d1 (similarly, the points d2, d3, d4) is displaced horizontally by 1 unit. The associated
forces in the struts can be expressed as:

S1 = S2 = S3 = S4 = 0,
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Equation (8) leads to the elements of the stiffness matrix which are given in Appendix A.
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As was mentioned by Hedayati et al. [70], it is assumed that the external force, P , acts vertically on point c1
of the refined truncated cube lattice structure, which causes an additional horizontal force equal to 8 ĀĒ(x6−x5)

�
at point d1. This yields⎧⎪⎪⎪⎪⎪⎨
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It should be noted that a simpler version of the unit cell used here in the lattice structure of porous
materials has been studied previously by Sun et al. [71] and Yang [72], where the horizontal struts (struts
b1b2, b2b3, b3b4, b4b1 shown in Fig. 2) as important factors for the structural strength are excluded. The
presence of this horizontal struts has the advantage of an approximately isotropic homogenization for the
lattice structure. Consequently, as it is depicted in Fig. 3, for instance, the links of the present unit cell in
the lattice structure are geometrically similar. (The square b1b2b3b4 is the symmetric plane of the unit cell.)
Consequently, the elastic modulus of the truncated cube unit cell can be calculated as

E = FuLu

Auδu
= P(

1 + √
2
)

�x1
, (16)

where Fu, Lu, Au and δu denote, respectively, the applied load, length, cross-sectional area and shortening of
the unit cell.

After that, inversion of Eq. (16) results in x1 as a function of P . Therefore, after some mathematical
calculations, it can be written as

E =
(
K11 + K22K33K66K45K54 − K11 + K22K33K44K55K66 + K11 + K22K55K66K34K43

+K11K33K44K66K25K52 − K11K66K25K52K34K43 + 2K11K66K34K45K23K25

+K11K44K55K66K23K32 − K11K66K45K54K23K32 + K33K44K55K66K12K21

−K33K66K45K54K12K21 − K55K66K12K21K34K43 + K11K22K33K44K56K65

−K33K44K12K21K56K65 − K11K44K23K32K56K65 − K11K22K34K43K56K65

+K12K21K34K43K56K65

)
/
[
(K66K22K33K45K54 − K66K22K33K55K44

+K22K55K66K34K43 + K33K44K66K25K52 − K66K25K52K34K43

+2K66K45K34K23K25 + K44K55K66K23K32 − K66K45K54K23K32

+K22K33K44K56K65 − K44K23K32K56K65 − K22K34K43K56K65)(1 + √
2)�
]
. (17)

In addition, to capture the Poisson’s ratio of the nano-porous biomaterial, it can be defined as the ratio of
horizontal to vertical displacements of the unit cell as follows:

ν = 2x6
x1

. (18)

Therefore, it can be rewritten as

ν = 2K12K56(K33K44K25 − K25K34K43 + K23K34K45)/(K22K33K66K45K54

−K22K33K44K55K66 + K22K55K66K34K43 + K33K44K66K25K52

−K66K25K52K34K43 + 2K66K23K25K34K45 + K44K55K66K23K32

−K66K23K32K45K54 + K22K33K44K56K65 − K44K23K32K56K65

+K22K34K43K56K65). (19)

Additionally, the material overlay in the vertices can be removed with the aid of the method of mass
multiple counting proposed byHedayati et al. [73], so themass density of the nano-porous biomaterial including
truncated cube cells can be evaluated as a function of the pore size (�/r ) as follows:
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ρ = V ∗ρ̄ = 24
(

π
2

�
r − 2.5758

)+ 12
(

π
4

�
r − 1.2879

)
(
1 + √

2
)3 (

�
r

)3 ρ̄, (20)

where ρ̄ is the mass density of the material without porosity and V ∗ is the ratio of the occupied volume of the
complete cube to the occupied volume of the truncated cube.

At this point should be noted that in the current study, it is assumed that �/r represents the influence of the
porosity on the ratio of the volume occupied by the material to the total volume of the unit cell, so it is named
as pore size.

3 Size-dependent modeling of a micro-/nano-beam made of nano-porous biomaterial

The components of the displacement vector along different coordinate directions for a beam-type structure as
shown in Fig. 1 take the following form:

ux (x, t) = u (x, t) − z
∂w (x, t)

∂x
, (21a)

uz (x, t) = w (x, t) , (21b)

in which u and w are the scalar displacement parameters of the micro-/nano-beam along the x- and z-axes,
respectively.

Accordingly, the nonzero nonlinear strain component can be given as

εxx = ∂u

∂x
− z

∂2w

∂x2
+ 1

2

(
∂w

∂x

)2

. (22)

In order to incorporate simultaneously both hardening-stiffness and softening-stiffness influences of size
dependency at nanoscale, Lim et al. [51] proposed a new size-dependent continuum theory of elasticity, namely
the nonlocal strain gradient elasticity theory. In accordancewith this theory, the strain energy of a nano-structure
can be evaluated as

Πs = 1

2

∫
V

{
σi jεi j + σ ∗

i jεi j,k

}
dV, (23)

where σi j and σ ∗
i j are, respectively, the nonlocal and higher-order nonlocal stress tensors which can be intro-

duced as

σi j =
∫
V

{
�1
(∣∣X ′ − X

∣∣ , μ)Ci jklεi j
}
dV, (24a)

σ ∗
i j = l2

∫
V

{
�2
(∣∣X ′ − X

∣∣ , μ)Ci jklεi j,k
}
dV, (24b)

in which l denotes the strain gradient parameter to consider the deformation at microscale, �1 and �2 are the
attenuation nonlocal kernel functions associated with the classical and strain gradient stress tensors, respec-
tively. Also, C is the elasticity matrix, X and X ′ in order represent a point and any point else in the body, μ
stands for the nonlocal parameter.

Following the method of Eringen, the nonclassical stress–strain relationships become
(
1 − μ2∇2) σi j = Ci jklεkl , (25a)(
1 − μ2∇2) σ ∗

i j = l2Ci jklεkl,m, (25b)

in which μ is the nonlocal parameter.
On the other hand, based upon the nonlocal strain gradient theory of elasticity, the constitutive relationship

corresponding to the total nonlocal strain gradient stress tensor can be expressed as

Ti j = σi j − ∇σ ∗
i j . (26)
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As a result, the general nonlocal strain gradient constitutive equation can be written as
(
1 − μ2∇2) Ti j = Ci jkl

(
1 − l2∇2) εkl . (27)

For a beam-type structure, one has

(
1 − μ2 ∂2

∂x2

)
Txx =

(
E

1 − ν2

)(
∂u

∂x
− z

∂2w

∂x2
+ 1

2

(
∂w

∂x

)2
)

−
(

E

1 − ν2

)
l2

∂2

∂x2

(
∂u

∂x
− z

∂2w

∂x2
+ 1

2

(
∂w

∂x

)2
)

. (28)

Thus, the strain energy associated with a micro-/nano-beam on the basis of the nonlocal strain gradient
elasticity theory can be obtained as

Πs = 1

2

∫ L

0

{
Nxx

(
∂u

∂x
+ 1

2

(
∂w

∂x

)2
)

− Mxx
∂2w

∂x2

}
dx, (29)

where the stress resultants are in the following forms:

Nxx − μ2 ∂2Nxx

∂x2
= A11

(
1 − l2

∂2

∂x2

)(
∂u

∂x
+ 1

2

(
∂w

∂x

)2
)

, (30a)

Mxx − μ2 ∂2Mxx

∂x2
= −D11

(
1 − l2

∂2

∂x2

)
∂2w

∂x2
, (30b)

where

{Nxx , Mxx } = b
∫ h

2

− h
2

Txx {1, z} dz,

{A11, D11} = Eb

1 − ν2

∫ h
2

− h
2

{
1, z2

}
dz =

{
Ebh

1 − ν2
,

Ebh3

12
(
1 − ν2

)
}

. (31)

Moreover, the kinematic energy of the micro-/nano-beam can be defined as

ΠT = 1

2

∫
V

ρ

{(
∂ux
∂t

)2

+
(

∂uz
∂t

)2
}
dV

= 1

2

∫
x

{
ρbh

(
∂u

∂t

)2

+ ρbh

(
∂w

∂t

)2

+ ρbh3

12

(
∂2w

∂x∂t

)2
}
dx . (32)

Additionally, the work done by the external distributed load f can be given as

ΠP =
∫
x
f (x, t) wdx . (33)

Using Hamilton’s principle, one obtains the following differential equations

∂Nxx

∂x
= I1

∂2u

∂t2
, (34a)

∂

∂x

[
Nxx

∂w

∂x

]
+ ∂2Mxx

∂x2
= f + I1

∂2w

∂t2
− I3

∂4w

∂x2∂t2
, (34b)

in which

{I1, I3} = b
∫ h

2

− h
2

ρ
{
1, z2

}
dz =

{
ρbh,

ρbh3

12

}
. (35)
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In the fast dynamic problem, it can be assumed that ∂2u
∂t2

= 0. Therefore, based on Eq. (34a), one will have
Nxx = c, where c is a constant. In addition, for immovable end supports, this yields

Nxx = A11

2L

∫ L

0

(
∂w

∂x

)2

dx . (36)

Consequently, Eq. (34b) can be expressed in terms of the displacement field as follows:

−D11

(
1 − l2

∂2

∂x2

)
∂4w

∂x4
+
[
A11

2L

∫ L

0

(
∂w

∂x

)2

dx

](
1 − μ2 ∂2

∂x2

)
∂2w

∂x2

=
(
1 − μ2 ∂2

∂x2

)(
f + I1

∂2w

∂t2
− I3

∂4w

∂x2∂t2

)
. (37)

It should be mentioned here that the nonlocal stress and strain gradient size dependencies are taken into
account via the unconventional continuum theories applied to the stress–strain constitutive equations of the
micro-/nano-structure. As a result, the material properties are the same based on both classical (local) and
nonlocal strain gradient elasticity theories, and they are independent of the size effects. Therefore, in the
analytical solution for capturing the material properties of the porous material properties, the classical (local)
elasticity is put to use. But for the vibrational resonance analysis of the micro-/nano-beam made of this porous
material, the size effects are considered based upon the nonlocal strain gradient theory of elasticity.

4 Multiple-timescale solving process

In order to perform the solution process in a more general form, the following dimensionless parameters are
introduced:

W = w

h
, X = x

L
, ϑ = h

L
, T = t

L

√
E0

ρ0
,
{
Î1, Î3

}
=
{

I1
ρ0bh

,
I3

ρ0bh3

}
,

F = f L2

E0bh2
, a11 = A11

E0bh
, d11 = D11

E0bh3
, G1 = l

L
, G2 = μ

L
, (38)

where E0 and ρ0 are the Young’s modulus and mass density of the nano-porous biomaterial with a pore size
of �/r = 10.

Therefore, the dimensionless form of the size-dependent nonlinear governing differential equation of
motion takes the following form:

−d11ϑ
2
(
1 − G2

1
∂2

∂X2

)
∂4W

∂X4 +
[
a11ϑ2

2

∫ 1

0

(
∂W

∂X

)2

dx

](
1 − G2

2
∂2

∂X2

)
∂2W

∂X2

=
(
1 − G2

2
∂2

∂X2

)(
F + Î1

∂2W

∂T 2 − Î3ϑ
2 ∂4W

∂X2∂T 2

)
. (39)

With the aid of the Galerkin technique, the governing differential equation can be written in discretized form.
To this end, it is assumed that W (X, T ) can be expressed separately as

W (X, T ) = ϕ (X) q(T ). (40)

By inserting Eq. (40) into Eq. (39), one obtains

−d11ϑ
2q

(
d4ϕ

dx4
− G2

1
d6ϕ

dx6

)
+ a11ϑ2q3

2

[∫ 1

0

(
dϕ

dx

)2

dx

](
d2ϕ

dx2
− G2

2
d4ϕ

dX4

)

= F − G2
2
∂2F

∂X2 + Î1

(
ϕ
d2q

dT 2 − G2
2
d2ϕ

dX2

d2q

dT 2

)
− Î3ϑ

2
(
d2ϕ

dX2

dq2

dT 2 − G2
2
d4ϕ

dX4

d2q

dT 2

)
. (41)
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By employing the Galerkin technique, the Duffing type equation of motion can be extracted in the form

q̈ + 2βq̇ + ω2q + αq3 = F̃, (42)

in which

ω2 = −
∫ 1
0

{
−d11ϑ2ϕ

(
d4ϕ
dX4 − G2

1
d6ϕ
dX6

)}
dX

∫ 1
0

{
Î1ϕ

(
ϕ − G2

2
d2ϕ
dX2

)
− Î3ϑ2ϕ

(
d2ϕ
dX2 − G2

2
d4ϕ
dX4

)}
dX

,

α = −
∫ 1
0

{
a11ϑ2ϕ

2

[∫ 1
0

(
dϕ
dX

)2
dX

] (
d2ϕ
dX2 − G2

2
d4ϕ
dX4

)}
dX

∫ 1
0

{
Î1ϕ

(
ϕ − G2

2
d2ϕ
dX2

)
− Î3ϑ2ϕ

(
d2ϕ
dX2 − G2

2
d4ϕ
dX4

)}
dX

,

F̃ = − F − G2
2

∂2F
∂X2∫ 1

0

{
Î1ϕ

(
ϕ − G2

2
d2ϕ
dX2

)
− Î3ϑ2ϕ

(
d2ϕ
dX2 − G2

2
d4ϕ
dX4

)}
dX

. (43)

Also, it is assumed that the external distributed load is a dissipative one, so the damping parameter takes
the form
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Fig. 4 Size-dependent frequency response of the micro-/nano-beam under superharmonic excitation corresponding to different
nonlocal parameters and boundary conditions (l = 0 nm)
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β = ηω2

ωL
, (44)

where ωL represents the linear frequency of the system and η is a constant.
The analytical expression for ϕ(X) corresponding to each type of boundary conditions can be introduced

as [74]

• For simply supported–simply supported boundary conditions:

ϕ (X) = sin (πX) (45)

• For clamped–clamped boundary conditions:

ϕ (X) = cos (4.73X) − cosh (4.73X)

+
(
cos (4.73) − cosh (4.73)

sin (4.73) − sinh (4.73)

)
(sinh (4.73X) − sin (4.73X)) (46)

• For simply supported–clamped boundary conditions:

ϕ (X) = cos (3.927X) − cosh (3.927X)

+
(
cos (3.927) − cosh (3.927)

sin (3.927) − sinh (3.927)

)
(sinh (3.927X) − sin (3.927X)) (47)
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Fig. 5 Size-dependent frequency response of the micro-/nano-beam under subharmonic excitation corresponding to different
nonlocal parameters and boundary conditions (l = 0 nm)
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The damping and nonlinear terms are supposed to be small and they are in the order of a small parameter,
ε. Consequently, Eq. (42) takes the following form:

q̈ + 2βεq̇ + ω2q + αεq3 = F̃ . (48)

For the hard excitation, the order of the external distributed load is higher than that of the damping and
nonlinear terms. Therefore, for a periodic type of excitation, one has

q̈(T ) + 2βεq̇(T ) + ω2q(T ) + αεq3(T ) = 2F̃ cos(ΩT ), (49)

where Ω is the excitation frequency.
On the other hand, the following multiple-timescale summation is considered for q:

q (T ) = q0 (T0, T1) + εq1 (T0, T1) , (50)

in which T0 = T and T1 = εT . Inserting Eq. (50) into Eq. (49) yields
{
O
(
ε0
) : D2

0q0 + ω2q0 = 2F̃ cos (ΩT0),
O
(
ε1
) : D2

0q1 + ω2q1 = −2D0D1q0 − 2βD0q0 − αq30 ,
(51)

where D j
i = d j

dT j
i

are time derivatives.
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Fig. 6 Size-dependent frequency response of the micro-/nano-beam under superharmonic excitation corresponding to different
strain gradient parameters and boundary conditions (μ = 0 nm)
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Based upon the first relation of Eq. (51), one has

q0 = A (T1) e
iωT0 + �eiωT0 + B (T1) e

iωT0 , (52)

in which B(T1) stands for the complex conjugate part of the expression, and

� = F̃

ω2 − Ω2 . (53)

Afterward, substitution of Eq. (52) into the second relation of Eq. (51) yields

D2
0q1 + ω2q1 = −

[
2iω0

(
dA
dT1

+ Aβ

)
+ 6αA�2 + 3αA2B

]
eiωT0

−α

{
A3e3iωT0 + �3e3iωT0 + 3A2�ei(2ω+Ω)T0 + 3�

(
dA
dT1

)2

ei(Ω−2ω)T0

+3A�2ei(ω+2Ω)T0 + 3A�2ei(ω−2Ω)T0 − �

[
2iβΩ + 3α�2 + 6αA

(
dA
dT1

)]
eiωT0

}

+ · · · (54)
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Fig. 7 Size-dependent frequency response of the micro-/nano-beam under subharmonic excitation corresponding to different
strain gradient parameters and boundary conditions (μ = 0 nm)
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4.1 Superharmonic excitation

Within the range of superharmonic excitation, it can be written

3Ω = ω + εΓ, (55)

where Γ represents the detuning parameter. By setting the secular and small divisor terms equal to zero, one
has

2iω0

(
dA
dT1

+ Aβ

)
+ 6αA�2 + 3αA2B + α�3e3iΓ T1 = 0. (56)

For A(T1), a polar function is considered as follows:

A (T1) = 1

2
a (T1) e

iξ(T1). (57)

Through substitution of Eq. (57) into Eq. (56), each of the real and imaginary parts gives

da

dT1
= −βa + 1

2

α�3

ω
sin (Γ T1 − ξ) , (58a)

a
dξ

dT1
= 3αa

ω

(
�2 + a2

8

)
+ α�3

ω
cos (Γ T1 − ξ) . (58b)
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Fig. 8 Size-dependent amplitude response of the micro-/nano-beam under superharmonic excitation corresponding to different
nonlocal parameters and boundary conditions (l = 0 nm, Γ = 30)
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By setting the derivative terms on the left side of Eq. (58) equal to zero, the steady-state solution can be
captured as

[
β2 +

(
Γ − 3α�2

ω
− 3αa2

8ω

)2
]
a2 = α2�6

ω2 . (59)

Therefore, the size-dependent frequency response associatedwith the superharmonic excitation of amicro-/
nano-beam can be given as

Γ = 3α�2

ω
+ 3αa2

8ω
±
√

α2�6

a2ω2 − β2. (60)

Equation (39) can be rewritten as

(
β2 + Γ 2 + 9α2�4

ω2 + 9α2a4

64ω2 − 6α�2Γ

ω
− 3αa2Γ

4ω
+ 9α2a2�2

4ω2

)
a2 = α2�6

ω2 . (61)

As a consequence, one gets

ς1�
6 + ς2�

4 + ς3�
2 + ς4 = 0, (62)
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Fig. 9 Size-dependent amplitude response of the micro-/nano-beam under subharmonic excitation corresponding to different
nonlocal parameters and boundary conditions (l = 0 nm, Γ = 30)
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in which

ς1 = α2

ω2 , ς2 = −9α2a2

ω2 , ς3 = 6αΓ a2

ω
− 9α2a4

4ω2 ,

ς4 = −
(

β2 + Γ 2 + 9α2a4

64ω2 − 3αa2Γ

4ω

)
a2. (63)

The solution of Eq. (62) represents the size-dependent amplitude response related to the superharmonic
excitation of a micro-/nano-beam.

4.2 Subharmonic excitation

Within the range of subharmonic excitation, it can be written

Ω = 3ω + εΓ. (64)

After that, in accordance with Eq. (54), the secular and small divisor terms are set equal to zero as follows:

2iω0

(
dA
dT1

+ Aβ

)
+ 6αA�2 + 3αA2B + 3�

(
dA
dT1

)2

eiΓ T1 = 0. (65)

0 2 4 6 8 10
0

1

2

3

4

5
C-SS

Nondimensional forcing amplitude

N
on

di
m

en
si

on
al

 d
ef

le
ct

io
n

0 1 2 3 4 5 6 7
0

1

2

3

4
C-C

Nondimensional forcing amplitude

N
on

di
m

en
si

on
al

 d
ef

le
ct

io
n

0 2 4 6 8 100

1

2

3

4

5

6
SS-SS

Nondimensional forcing amplitude

N
on

di
m

en
si

on
al

 d
ef

le
ct

io
n

Fig. 10 Size-dependent amplitude response of the micro-/nano-beam under superharmonic excitation corresponding to different
strain gradient parameters and boundary conditions (μ = 0 nm, Γ = 30)
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By Eq. (57), a polar function is introduced for A(T1), so one has

da

dT1
= −βa − 3

4

αa2�

ω
sin (Γ T1 − 3ξ) , (66a)
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Fig. 11 Size-dependent amplitude response of the micro-/nano-beam under subharmonic excitation corresponding to different
strain gradient parameters and boundary conditions (μ = 0 nm, Γ = 30)

Table 1 Nondimensional natural frequencies (ωL) of a micro-/nano-beam corresponding to various small-scale parameters and
boundary conditions (�/r = 10)

Small-scale parameters (nm) C–C boundary conditions C–SS boundary conditions SS–SS boundary conditions

μ = 0, l = 0 0.6342 0.4531 0.2900
μ = 0.5, l = 0 0.6329 (− 0.205%) 0.4519 (− 0.265%) 0.2891 (− 0.310%)
μ = 1, l = 0 0.6292 (− 0.788%) 0.4487 (− 0.971%) 0.2865 (− 1.207%)
μ = 1.5, l = 0 0.6225 (− 1.845%) 0.4431 (− 2.207%) 0.2823 (− 2.655%)
μ = 2, l = 0 0.6137 (− 3.232%) 0.4359 (− 3.796%) 0.2767 (− 4.486%)
μ = 2.5, l = 0 0.6039 (− 4.778%) 0.4266 (− 5.849%) 0.2696 (− 7.034%)
μ = 3, l = 0 0.5918 (− 6.686%) 0.4170 (− 7.967%) 0.2623 (− 9.552%)
μ = 0, l = 0.5 0.6355 (+ 0.205%) 0.4542 (+ 0.243%) 0.2909 (+ 0.310%)
μ = 0, l = 1 0.6395 (+ 0.836%) 0.4576 (+ 0.993%) 0.2935 (+ 1.207%)
μ = 0, l = 1.5 0.6461 (+ 1.883%) 0.4621 (+ 1.986%) 0.2979 (+ 2.724%)
μ = 0, l = 2 0.6569 (+ 3.358%) 0.4705 (+ 3.840%) 0.3040 (+ 4.828%)
μ = 0, l = 2.5 0.6665 (+ 5.093%) 0.4818 (+ 6.334%) 0.3115 (+ 7.414%)
μ = 0, l = 3 0.6803 (+ 7.269%) 0.4926 (+ 8.718%) 0.3206 (+ 10.551%)
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a
dξ

dT1
= 3αa

ω

(
�2 + a2

8

)
+ 3

4

αa2�

ω
cos (Γ T1 − 3ξ) . (66b)

To capture the steady-state solution, the derivative terms on the left side of Eq. (66) are set to be zero. As
a result,

9β2 +
(

Γ − 9α�2

ω
− 9αa2

8ω

)2

= 81α2a2�2

16ω2 . (67)

Thus, the size-dependent frequency response associated with the subharmonic excitation of a micro-/nano-
beam can be presented as

Γ = 9α�2

ω
+ 9αa2

8ω
±
√
81α2a2�2

16ω2 − 9β2. (68)

Additionally, Eq. (67) can be rewritten as

(
9β2 + Γ 2 + 81α2�4

ω2 + 81α2a4

64ω2 − 18α�2Γ

ω
− 9αa2Γ

4ω
+ 81α2a2�2

4ω2

)
= 81α2a2�2

16ω2 . (69)
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Fig. 12 Influence of pore size on the size-dependent frequency response of a micro-/nano-beammade of nano-porous biomaterial
under superharmonic excitation (μ = l = 1 nm)
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So, one obtains

S1�4 + S2�2 + S3 = 0, (70)

where

S1 = 81α2

ω2 , S2 = 243α2a2

16ω2 − 18αΓ

ω
,

S3 = 9β2 + Γ 2 + 81α2a4

64ω2 − 9αa2Γ

4ω
. (71)

The solution of Eq. (70) yields the size-dependent amplitude response associated with the subharmonic
excitation of a micro-/nano-beam.

5 Numerical results and discussion

Now, based upon the captured mechanical properties of the nano-porous biomaterials as functions of pore
size, the nonlinear secondary resonance of a micro-/nano-beam made of this material under subharmonic and
superharmonic excitations is numerically depicted corresponding to different pore sizes. For the micro-/nano-
beam, it is assumed that b = h = 2 nm, L/h = 20, F̃ = 0.1 and η = 0.5.

0 10 20 30 40 50
0

2

4

6

8

10

12
C-C

Nondimensional detuning parameter

N
on

di
m

en
si

on
al

 d
efl

ec
ti

on

0 10 20 30 40 50
0

2

4

6

8

10
C-SS

Nondimensional detuning parameter

N
on

di
m

en
si

on
al

 d
efl

ec
ti

on

0 10 20 30 40 50
0

2

4

6

8

10

12

14
SS-SS

Nondimensional detuning parameter

N
on

di
m

en
si

on
al

 d
efl

ec
ti

on

Fig. 13 Influence of pore size on the size-dependent frequency response of a micro-/nano-beammade of nano-porous biomaterial
under subharmonic excitation (μ = l = 1 nm)
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Figures 4 and 5 illustrate, respectively, the nonlocal size effect on the frequency response of a micro-/
nano-beam with pore size of �/r = 10 under superharmonic and subharmonic excitations. It is revealed
that in the case of superharmonic excitation, the jump phenomenon occurs and the nonlocality causes an
enhancement of both nonlinear hardening spring-type behavior and the height of limit point bifurcations. In
the case of subharmonic excitation, there are two branches including the high-frequency and low-frequency
solutions. By taking the nonlocality into consideration, the gap between these branches increases.

In Figs. 6 and 7, the strain gradient size dependency on the frequency response of a micro-/nano-beamwith
pore size of �/r = 10 is shown corresponding to the superharmonic and subharmonic excitations, respectively.
It can be seen that in the case of superharmonic excitation, the strain gradient size effect leads to a reduction
in the nonlinear hardening spring-type behavior as well as the height of limit point bifurcations. For the
subharmonic case of the study, the strain gradient size dependency causes a decrease in the gap between the
two branches associated with the high-frequency and low-frequency solutions.

The influence of nonlocality on the amplitude response of a micro-/nano-beam with pore size of �/r = 10
is depicted in Figs. 8 and 9 corresponding to, respectively, the superharmonic and subharmonic excitations. It
is observed that in the superharmonic case, both types of upward jump and downward jump exist. By taking
the nonlocal size effect, the maximum amplitude of the response related to the downward jump decreases, so
through a reduction in the amplitude of the excitation, the amplitude of the responses vanishes less rapidly.
For the subharmonic case, it is indicated that the micro-/nano-beam is excited within a specific range of the
amplitude of the excitation. The width of this range decreases by taking the nonlocal size effect into account.
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Fig. 14 Influence of pore size on the size-dependent amplitude response of a micro-/nano-beammade of nano-porous biomaterial
under superharmonic excitation (μ = l = 1 nm, Γ = 30)
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Figures 10 and 11 display, respectively, the strain gradient size effect on the amplitude response of a
micro-/nano-beam with pore size of �/r = 10 subjected to superharmonic and subharmonic excitations. It is
found that for the superharmonic excitation, the strain gradient size dependency leads to an increase in the
maximum amplitude of the response related to the downward jump. As a result, by decreasing the amplitude
of the excitation, the amplitude of the responses vanishes more rapidly. Also, in the case of the subharmonic
excitation, the amplitude range of the excitation within which the micro-/nano-beam is excited becomes wider
due to the strain gradient size effect.

In order to compare the significance of the two different size dependencies, in Table 1, the influences of the
nonlocality and strain gradient size dependency on the natural frequency of a micro-/nano-beammade of nano-
porous biomaterial with pore size of �/r = 10 are represented corresponding to different boundary conditions.
The percentages given in the parentheses indicate the difference of the size-dependent natural frequency with
its classical counterpart. It can be found that both nonlocality and strain gradient size dependency have the
minimum and maximum influences on the natural frequency of the micro-/nano-beam with clamped and
simply supported edge supports, respectively. Moreover, by increasing the values of small-scale parameters,
the influence of the strain gradient size effect is stronger than that of the nonlocal one.

In Figs. 12 and 13, the frequency response of a micro-/nano-beam made of the nano-porous biomaterial
with various pores sizes is demonstrated corresponding to the superharmonic and subharmonic excitations,
respectively. It can be observed that in the superharmonic case, increasing the pore size leads to an enhancement
of the nonlinear hardening spring-type behavior and the height of limit point bifurcations. In the subharmonic
case, the higher pore size causes an increase in the gap between the two branches related to the high-frequency
and low-frequency solutions.
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Fig. 15 Influence of pore size on the size-dependent amplitude response of a micro-/nano-beammade of nano-porous biomaterial
under subharmonic excitation (μ = l = 1 nm, Γ = 30)
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The influence of pore size on the amplitude response of a micro-/nano-beam made of the nano-porous
biomaterial is plotted in Figs. 14 and 15 for the superharmonic and subharmonic excitations, respectively.
In the superharmonic case, it can be found that by increasing the pore size, the maximum amplitude of the
response related to the downward jump is enhanced so a reduction in the amplitude of the excitation leads
to the vanishing of the amplitude of the responses more rapidly. In the subharmonic case, it is revealed that
increasing the pore size causes the widening of the range of the amplitude of the excitation within which the
micro-/nano-beam is excited.

6 Concluding remarks

The objective of the current studywas to analyze the size-dependent nonlinear secondary resonance of amicro-/
nano-beam made of nano-porous biomaterials. On the basis of a refined truncated cubic unit cell, analytical
expressions for the mechanical properties of the nano-porous biomaterial were obtained as functions of pore
size. Subsequently, the Galerkin technique together with the multiple-timescale method was employed to
predict the size-dependent frequency response and amplitude response of the micro-/nano-beam with different
pore sizes and end supports corresponding to the subharmonic and superharmonic excitations.

It was demonstrated that in the case of superharmonic excitation, the jump phenomenon occurs and the
nonlocality and strain gradient size dependencies cause, respectively, an increase and decrease in both nonlinear
hardening spring-type behavior and the height of limit point bifurcations. In the case of subharmonic excitation,
there is two branches including the high-frequency and low-frequency solutions. By taking the nonlocal
and strain gradient size effects into consideration, the gap between these branches increases and decreases,
respectively. Additionally, it was seen that both nonlocality and strain gradient size dependency have the
minimum and maximum influences on the natural frequency of the micro-/nano-beam with clamped and
simply supported edge supports, respectively. Furthermore, it was observed that in the superharmonic case,
by increasing the pore size, the maximum amplitude of the response related to the downward jump enhances,
so a reduction in the amplitude of the excitation leads to the vanishing of the amplitude of the responses more
rapidly. In the subharmonic case, it was found that increasing the pore size causes a widening of the range of
the amplitude of the excitation within which the micro-/nano-beam is excited.
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+ 3

5Ḡ Ā
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+ 3

5Ḡ Ā
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24Ē Ī
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10Ḡ Ā
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+ 3

5Ḡ Ā
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�
, K66 = 8 ĀĒ
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