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Abstract This paper deals with the dynamic behavior of a magneto-electro-elastic strip weakened by multiple
horizontal, vertical, and edge cracks within the framework of linear magneto-electro-elasticity. The analysis
is based on stress and the magneto-electrical fields caused by horizontal and vertical Volterra-type screw
dislocation in a medium. The problem was formulated through Fourier and Laplace transforms into singular
integral equations in which the unknown variables are the jumps of displacement and magneto-electrical
potential across the crack surface. The dislocation densities and the numerical Laplace inversion are then
employed in order to derive the dynamic field intensity factors at the crack tips for both permeable and
impermeable cracks. The effects of length and position of the cracks on the dynamic field intensity factors and
interaction between the two cracks are investigated. Furthermore, the results show that, for a fixed value of
mechanical load, the dynamic field intensity factor at the crack tips depends on the magnitude and direction
of the applied magneto-electrical load.

1 Introduction

Magneto-electro-elastic materials and structures that combine piezoelectric and piezomagnetic phases have
received significant attention due to the potential for designing adaptive structures that are both light in weight
and possess adaptive control capabilities. Because of their brittleness, cracks in these materials are greatly
concerned. Thus, the fracture analysis of this class ofmaterials containing defects such as cracks is an important
problem. Cracked magneto-electro-elastic material clearly consists of multiple cracks with an extremely high
crack density. Therefore, the interaction between several cracks in magneto-electro-elastic materials under
the permeable and impermeable conditions on the crack surfaces plays an important role in the analysis and
design of smart structures. It is worth noting that different magneto-electrical boundary conditions on the
crack surfaces lead to diverse results for the fracture behavior of these materials. However, most of the fracture
analyses for smart materials are related to the static or quasi-static loading. But, it may be very important to
study the transient loading condition in these materials.

The static or quasi-static fracture analysis in a smart material has drawn significant attention in recent years
[1–6]. A finite crack in an infinite piezoelectric medium under transient electro-mechanical loads has been
studied byChen andKarihaloo [7]. In this paper, the effects of directions of electrical loads upon dynamic stress
intensity factors (DSIFs) have been studied. The paper by Li [8] was concerned with a semi-infinite cracked
piezoelectric material due to a point load magneto-electrical impact at the crack surfaces. The mechanical
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strain energy release rate was computed, and the dynamic intensity factors of the electro-elastic field were
investigated. The article by Gu et al. [9] dealt with the problem of an interface crack between dissimilar
piezoelectric layers under magneto-electrical impacts. The effects of the loading ratio, the geometry of crack
arrangement and the material properties on the field intensity factors were studied. The out-of-plane transient
deformation of an infinite FGM with a finite crack was examined by Zhang et al. [10]. The influences of
the material gradients of the FGM on the DSIFs and their dynamic overshoot corresponding with the static
SIFs were discussed. The dynamic anti-plane mechanical and in-plane electric and magnetic crack problem
of a magneto-electro-elastic medium was the subject of the study by Li [11]. They investigated the effects
of the material properties and applied electro-magnetic impacts on the dynamic intensity factors. Feng and
Su [12] analyzed the transient response of a functionally graded magneto-electro-elastic strip containing an
internal crack perpendicular to the boundary. By using integral transforms and dislocation density functions, the
problem reduced to Cauchy-kind singular integral equations. Su et al. [13] investigated the problem of interface
cracks between dissimilar magneto-electro-elastic strips under anti-plane mechanical and in-plane magneto-
electrical impacts. In this study, amagneto-electrical permeable boundary conditionwas adopted. The transient
problem was analyzed by Yong and Zhou [14] for a magneto-electro-elastic strip containing an impermeable
crack perpendicular to the boundary. The influences of the geometric parameters and the magneto-electrical
impacts on the dynamic response were investigated. Garcı’a-Sa’nchez et al. [15] performed theoretical studies
to evaluate the DSIF of cracked two-dimensional (2-D), homogeneous, and linear piezoelectric solids. They
investigated the effects of the mechanical and the electrical impact loading on the fracture behavior of the
medium. Chen [16] studied the dynamic response of a permeable and impermeable crack propagating in a
magneto-electro-elastic solid subjected to the mixed loads.

The above-mentioned problems are restricted to one or two periodic cracks. The transient analysis of several
defects such as embedded and edge cracks has never been performed for a magneto-electro-elastic strip, but
recently by use of the distribution dislocation technique (DDT) articles, which possess several cracks examined
in them, are published. DDT is a powerful semi-analytical technique for calculating accurate solutions to anti-
plane and in-plane crack problems based on the principle of superposition. A brief review of relevant articles
is given below.

Several cracks in an orthotropic substrate reinforced by functionally graded materials coating with DDT
in order to obtain DSIF under time-harmonic excitation were examined by Monfared and Ayatollahi [17]. The
influence of the angular frequency, crack lengths, and material properties were studied on the DSIF. Interaction
between multiple moving cracks with arbitrary arrangement in a functionally graded magneto-electro-elastic
strip under anti-plane mechanical and in-plane magneto-electrical loading was studied by Bagheri et al. [18].
The DSIF associated with crack tips was calculated by a numerical inverse Laplace scheme. Vafa et al. [19]
used the DDT and the numerical inversion method to obtain the transient response of the FG strip weakened
by several horizontal cracks.

The problem of a circular orthotropic bar with several cracks under torsional transient loading was inves-
tigated by Hassani and Monfared [20]. They use the Saint-Venant torsion theory and the DDT for an analysis
of multiple cracks. Recently Bagheri [21] obtained field intensity factors for multiple cracks in a piezoelectric
half plane under transient loading. This author employed the DDT to solve the problem.

According to the above literature review, there is not a promising examination regarding the transient
analysis of several kinds of cracks such as multiple embedded and edge cracks in the magneto-electro-elastic
strip. In this study, we consider the dynamic behavior of a magneto-electro-elastic strip weakened by multiple
cracks under time-dependent loads. Both the permeable and impermeable boundary conditions are adopted.
The integral transforms and DDT in conjunction with the numerical Stehfest inversion method are used in
order to obtain the Cauchy singular integral equations which are solved numerically, so the dynamic field
intensity factors are determined.

2 Statement of the problem

2.1 Horizontal dislocation cuts

We consider a magneto-electro-elastic strip with magneto-electro-mechanical dislocation which lies at a point
having coordinates (ζ, η) (see Fig. 1). In this Section, a basic formulation of the problem with horizontal
dislocation cut is derived, and the associated fundamental solutions will be used to solve several horizontal
cracks in the numerical Section.
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Fig. 1 Schematic view of the magneto-electro-elastic strip with horizontal dislocation cut

The anti-plane displacements and the in-plane magneto-electrical fields are considered, which are inde-
pendent of z, i.e.,

u = 0, v = 0, w = w(x, y, t), (1.1)

Ex = Ex (x, y, t), Ey = Ey(x, y, t), Ez = 0, (1.2)

HX = HX (x, y, t), HY = HY (x, yt), HZ = 0, (1.3)

in which the electric and magnetic fields vector can be written in terms of the electric and magnetic potentials,
φ(x, y) and ψ(x, y), by the following forms:

Ex = −∂φ(x, y)/∂x, Ey = −∂φ(x, y)/∂y, (2.1)

Hx = −∂ψ(x, y)/∂x, Hy = −∂ψ(x, y)/∂y. (2.2)

In this case, the non-vanishing constitutive relations based on the linearly magneto-electro-elastic theory
undergoing out-of-plane displacement and the in-plane magneto-electrical fields become:

τzx = c44∂w/∂x + e15∂φ/∂x + h15∂ψ/∂x, (3.1)

τzy = c44∂w/∂y + e15∂φ/∂y + h15∂ψ/∂y, (3.2)

Dx = e15∂w/∂x − d11∂φ/∂x − β11∂ψ/∂x, (3.3)

Dy = e15∂w/∂y − d11∂φ/∂y − β11∂ψ/∂y, (3.4)

Bx = h15∂w/∂x − β11∂φ/∂x − γ11∂ψ/∂x, (3.5)

By = h15∂w/∂y − β11∂φ/∂y − γ11∂ψ/∂y (3.6)

where c44, e15, h15, and β11 are the elastic shear modulus, piezoelectric, piezomagnetic and electro-magnetic
constants, respectively; d11 and γ11 are dielectric permittivities and magnetic permeabilities, respectively. Dx ,
Dy are the electric displacement components and Bx ,By the magnetic displacement components, respectively.
Byneglectingbody forces andmagneto-electrical chargedensity, the dynamicout-of-planegoverning equations
for the magneto-electro-elastic materials are given as follows:

∂τzx/∂x + ∂τzy/∂y = ρ∂2w(x, y, t)/∂t2, (4.1)

∂Dx/∂x + ∂Dy/∂y = 0, (4.2)

∂Bx/∂x + ∂By/∂y = 0 (4.3)

where ρ is the density of the magneto-electro-elastic material. Substituting Eqs. (3.1–3) into the equations
of motion and Eqs. (3.3,4) and (3.5,6) into the equilibrium equations of electric displacements and magnetic
inductions, respectively, yields

c44∇2w + e15∇2φ + h15∇2ψ = ρ
∂2

∂t2
w(x, y, t), (5.1)

e15∇2w − d11∇2φ − β11∇2ψ = 0, (5.2)

h15∇2w − β11∇2φ − γ11∇2ψ = 0 (5.3)
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where ∇2 = ∂2/∂x2+∂2/∂y2 is the plane Laplacian operator. We can introduce the scalar potential Bleustein
function [22] as follows:

φ̄ = φ − α2w,

ψ̄ = ψ − α3w (6)

in which α2 = (γ11e15 − β11h15)/(d11γ11 − β2
11) and α3 = (d11h15 − β11e15)/(d11γ11 − β2

11), and one may
transform Eqs. (5.1–3) into the following simple forms:

∇2w = S2T ∂2w/∂t2,

∇2φ̄ = 0.

∇2ψ̄ = 0 (7)

where ST is defined by ST = 1/CT , and CT = √
c̃44/ρ is the out-of-plane shear wave velocity and c̃44 =

c440 + e150α2 + h150α3 is the magneto-electro-elastic constant. From the constitutive equations (3.1–6) and
(6), we can get

τxz = c̃44∂w/∂x + e15∂φ̄/∂x + h15∂ψ̄/∂x, (8.1)

τyz = c̃44∂w/∂y + e15∂φ̄/∂y + h15∂ψ̄/∂y, (8.2)

Dx = −d11∂φ̄/∂x − β11∂ψ̄/∂x, (8.3)

Dy = −d11∂φ̄/∂y − β11∂ψ̄/∂y, (8.4)

Bx = −β11∂φ̄/∂x − γ11∂ψ̄/∂x, (8.5)

By = −β11∂φ̄/∂y − γ11∂ψ̄/∂y (8.6)

Let magneto-electro-mechanical dislocations with time-dependent Burgers vectors bz(t), bφ(t) and bψ(t) be
situated at a point with coordinates (ζ, η) as depicted in Fig. 1. The horizontal dislocation cut is x > ζ, y = η.

In fracture analysis of magneto-electro-elastic materials, two models of the electro-magnetic boundary
conditions along the crack faces are of significance. Generally, there are two well-accepted electro-magnetic
boundary conditions, namely the permeable and impermeable boundary conditions. The permeable bound-
ary condition represents the case where the crack faces are in complete contact. It is worth noting that the
impermeable conditions are adopted by introducing the jumps of electric and magnetic potential across the
dislocation cut. Thus, the mechanical and magneto-electrical dislocation conditions can be described as:

w(x, η+, t) − w(x, η−, t) = bz(t)H(x − ζ ),

φ̄(x, η+, t) − φ̄(x, η−, t) = [bφ(t) − α2bz(t)]H(x − ζ ),

ψ̄(x, η+, t) − ψ̄(x, η−, t) = [bψ(t) − α3bz(t)]H(x − ζ ),

τzy(x, η
+, t) = τzy(x, η

−, t),

Dy(x, η
+, t) = Dy(x, η

−, t),

By(x, η
+, t) = By(x, η

−, t) (9)

where H(.) is the Heaviside step function. Although the jumps in the electric and magnetic potentials are not
a type of dislocation, they are referred here as electric and magnetic dislocations for convenience. In addition,
the traction andmagneto-electrical displacements free boundary condition on the strip boundary can be written
as:

τzy(x, h, t) = 0,

Dy(x, h, t) = 0,

By(x, h, t) = 0,

τzy(x, 0, t) = 0,

Dy(x, 0, t) = 0,

By(x, 0, t) = 0. (10)
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By applying Laplace transform together with Fourier transform to Eq. (7) and assuming that the magneto-
electro-elastic strip is stationary at time t = 0, the solution of the governing Eq. (7) is given by:

W ∗(ω, y, s) = A1(ω, s)e−yβ + A2(ω, s)e+yβ 0 ≤ y ≤ η,

W ∗(ω, y, s) = A3(ω, s)e−yβ + A4(ω, s)e+yβ η ≤ y ≤ h,

∗(ω, y, s) = B1(ω, s)e−y|ω| + B2(ω, s)e+y|ω| 0 ≤ y ≤ η,

∗(ω, y, s) = B3(ω, s)e−y|ω| + B4(ω, s)e+y|ω| η ≤ y ≤ h,

ψ∗(ω, y, s) = C1(ω, s)e−y|ω| + C2(ω, s)e+y|ω| 0 ≤ y ≤ η,

∗(ω, y, s) = C3(ω, s)e−y|ω| + C4(ω, s)e+y|ω| η ≤ y ≤ h (11)

where

β =
√

ω2 + (ST s)2. (12)

By applying conditions (9)–(10) the unknown functions Ai , Bi ,Ci , i = 1, 2, 3, 4 are determined which
are explained in detail in the “Appendix.” The results are then substituted into the constitutive equations
(8.1–6), and by virtue of the inverse complex Fourier transform the expressions for the components of the
stress, electric, and magnetic displacements are obtained. Then splitting the integrals into odd and even parts
with respect to the parameter ω, the Laplace transform of the stress and magneto-electrical displacement is
simplified. A simple analysis leads to the expressions for the stress and magneto-electrical displacement in the
Laplace transform domain which is not detailed here. The final results are as follows:

τ̄zy(x, y, s) = bz(s)c̃44
π

∫ ∞

0

β sinh(β(η − h)) sinh(βy)

ω sinh(βh)
sin(ω(x − ζ ))dω

+bφ(s)e15 + bψ(s)h15 − (e15α2 + h15α3)bz(s)

π∫ ∞

0

sinh(ω(η − h)) sinh(ωy)

sinh(ωh)
sin(ω(x − ζ ))dω, 0 ≤ y ≤ η,

τ̄zy(x, y, s) = bz(s)c̃44
π

∫ ∞

0

β sinh(βη) sinh(β(y − h))

ω sinh(βh)
sin(ω(x − ζ ))dω

+bφ(s)e15 + bψ(s)h15 − (e15α2 + h15α3)bz(s)

π∫ ∞

0

sinh(ωη) sinh(ω(y − h))

sinh(ωh)
sin(ω(x − ζ ))dω, η ≤ y ≤ h,

D̄y(x, y, s) = bz(s)(d11α2 + β11α3) − bφ(s)d11 − bψ(s)β11

π∫ ∞

0

sinh(ω(η − h)) sinh(ωy)

sinh(ωh)
sin(ω(x − ζ ))dω, 0 ≤ y ≤ η,

D̄y(x, y, s) = bz(s)(d11α2 + β11α3) − bφ(s)d11 − bψ(s)β11

π∫ ∞

0

sinh(ωη) sinh(ω(y − h))

sinh(ωh)
sin(ω(x − ζ ))dω, η ≤ y ≤ h,

B̄y(x, y, s) = bz(s)(β11α2 + γ11α3) − bφ(s)β11 − bψ(s)γ11
π∫ ∞

0

sinh(ω(η − h)) sinh(ωy)

sinh(ωh)
sin(ω(x − ζ ))dω, 0 ≤ y ≤ η,

B̄y(x, y, s) = bz(s)(β11α2 + γ11α3) − bφ(s)β11 − bψ(s)γ11
π∫ ∞

0

sinh(ωη) sinh(ω(y − h))

sinh(ωh)
sin(ω(x − ζ ))dω, η ≤ y ≤ h. (13)
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The above stress and magneto-electrical displacement components are singular at the dislocation location. For
this, it is sufficient to investigate the asymptotic behavior of the integrands of the integrals in (13). Because
the integrands are continuous functions of ω and also are bounded at ω = 0, the singularity must occur as
ω tends to infinity. By adding and subtracting the asymptotic expressions of the integrands using asymptotic
expressions for large values of ω, we find:

τ̄zy(x, y, s) = bz(s)c̃44
π{∫ ∞

0

[
β sinh(β(η − h)) sinh(βy)

ω sinh(βh)
+ e−ω(η−y)

2

]

sin(ω(x − ζ ))dω − (x − ζ )

2[(x − ζ )2 + (y − η)2]
}

+bφ(s)e15 + bψ(s)h15 − (e15α2 + h15α3)bz(s)

π

×
{∫ ∞

0

[
sinh(ω(η − h)) sinh(ωy)

sinh(ωh)
+ e−ω(η−y)

2

]

sin(ω(x − ζ ))dω − (x − ζ )

2[(x − ζ )2 + (y − η)2]
}

, 0 ≤ y ≤ η,

τ̄zy(x, y, s) = bz(s)c̃44
π

{∫ ∞

0

[
β sinh(βη) sinh(β(y − h))

ω sinh(βh)
+ eω(η−y)

2

]

sin(ω(x − ζ ))dω − (x − ζ )

2[(x − ζ )2 + (y − η)2]
}

+bφ(s)e15 + bψ(s)h15 − (e15α2 + h15α3)bz(s)

π

×
{∫ ∞

0

[
sinh(ωη) sinh(ω(y − h))

sinh(ωh)
+ eω(η−y)

2

]

sin(ω(x − ζ ))dω − (x − ζ )

2[(x − ζ )2 + (y − η)2]
}

, η ≤ y ≤ h,

D̄y(x, y, s) = bz(s)(d11α2 + β11α3) − bφ(s)d11 − bψ(s)β11

π

×
{∫ ∞

0

[
sinh(ω(η − h)) sinh(ωy)

sinh(ωh)
+ e−ω(η−y)

2

]

sin(ω(x − ζ ))dω − (x − ζ )

2[(x − ζ )2 + (y − η)2]
}

, 0 ≤ y ≤ η,

D̄y(x, y, s) = bz(s)(d11α2 + β11α3) − bφ(s)d11 − bψ(s)β11

π

×
{∫ ∞

0

[
sinh(ωη) sinh(ω(y − h))

sinh(ωh)
+ eω(η−y)

2

]

sin(ω(x − ζ ))dω − (x − ζ )

2[(x − ζ )2 + (y − η)2]
}

, η ≤ y ≤ h,

B̄y(x, y, s) = bz(s)(β11α2 + γ11α3) − bφ(s)β11 − bψ(s)γ11
π

×
{∫ ∞

0

[
sinh(ω(η − h)) sinh(ωy)

sinh(ωh)
+ e−ω(η−y)

2

]
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Fig. 2 Schematic view of the medium with vertical dislocation cut

sin(ω(x − ζ ))dω − (x − ζ )

2[(x − ζ )2 + (y − η)2]
}

, 0 ≤ y ≤ η,

B̄y(x, y, s) = bz(s)(β11α2 + γ11α3) − bφ(s)β11 − bψ(s)γ11
π

×
{∫ ∞

0

[
sinh(ωη) sinh(ω(y − h))

sinh(ωh)
+ eω(η−y)

2

]

sin(ω(x − ζ ))dω − (x − ζ )

2[(x − ζ )2 + (y − η)2]
}

, η ≤ y ≤ h. (14)

2.2 Vertical dislocation cuts

In this part of the study, at first, the stress fields andmagneto-electrical displacement components in a magneto-
electro-elastic strip with vertical dislocation cut are derived. Then, these solutions will be used to determine the
dynamic field intensity factors for the multiple vertical and edge cracks in the numerical section. A magneto-
electro-elastic strip with thickness h under consideration is described in Fig. 2. The vertical dislocation cut is
x = 0, y > η.

The conditions representing the vertical screw dislocations cut and boundary conditions are expressed as
follows:

w(0+, y, t) − w(0−, y, t) = bz(t)H(y − η),

φ̄(0+, y, t) − φ̄(0−, y, t) = [bφ(t) − α2bz(t)]H(y − η),

ψ̄(0+, y, t) − ψ̄(0−, y, t) = [bψ(t) − α3bz(t)]H(y − η),

τzx (0
+, y, t) = τzx (0

−, y, t),

Dx (0
+, y, t) = Dx (0

−, y, t),

Bx (0
+, y, t) = Bx (0

−, y, t),

τzy(x, h, t) = τzy(x, 0, t) = 0,

Dy(x, h, t) = Dy(x, 0, t) = 0,

By(x, h, t) = By(x, h, t) = 0. (15)

By virtue of anti-symmetry of the problem with respect to the y-axis, for the semi-infinite layer x > 0,
condition (15) reduces to:

w(0+, y, t) = (bz(t)/2)H(y − η),

φ̄(0+, y, t) = [(bφ(t) − α2bz(t))/2]H(y − η),

ψ̄(0+, y, t) = [(bψ(t) − α3bz(t))/2]H(y − η),

w(x, η−, t) = w(x, η+, t),

φ̄(x, η−, t) = φ̄(x, η+, t),

ψ̄(x, η−, t) = ψ̄(x, η+, t),

τzy(x, η
−, t) = τzy(x, η

+, t),
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Dy(x, η
−, t) = Dy(x, η

+, t),

By(x, η
−, t) = By(x, η

+, t),

τzy(x, h, t) = τzy(x, 0, t) = 0,

Dy(x, h, t) = Dy(x, 0, t) = 0,

By(x, h, t) = By(x, h, t) = 0. (16)

An analysis similar to that of the horizontal dislocation cut yields the solutions of the dislocation with vertical
cuts. The stress, electric, and magnetic displacements in the Laplace domain are given by:

τ̄zx (x, y, s) = bz(s)c̃44
π

{∫ ∞

0

[
ω2 sinh(β(h − η)) cosh(βy)

β2 sinh(βh)
− eω(y−η)

2

]

cos(ωx)dω

− (y − η)

2[x2 + (y − η)2]
}

+bφ(s)e15 + bψ(s)h15 − (e15α2 + h15α3)bz(s)

π

×
{∫ ∞

0

[
sinh(ω(h − η)) cosh(ωy)

sinh(ωh)
− eω(y−η)

2

]

cos(ωx)dω − (y − η)

2[x2 + (y − η)2]
}

, 0 ≤ y ≤ η,

τ̄zx (x, y, s) = −bz(s)c̃44
π

{∫ ∞

0

[
ω2 sinh(βη) cosh(β(h − y))

β2 sinh(βh)
− e−ω(y−η)

2

]

cos(ωx)dω + (y − η)

2[x2 + (y − η)2]
}

−bφ(s)e15 + bψ(s)h15 − (e15α2 + h15α3)bz(s)

π

×
{∫ ∞

0

[
sinh(ωη) cosh(ω(h − y))

sinh(ωh)
− e−ω(y−η)

2

]

cos(ωx)dω + (y − η)

2[x2 + (y − η)2]
}

+bz(s)sST sinh(sST x), η ≤ y ≤ h,

D̄x (x, y, s) = bz(s)(d11α2 + β11α3) − bφ(s)d11 − bψ(s)β11

π

×
{∫ ∞

0

[
sinh(ω(h − η)) cosh(ωy)

sinh(ωh)
− eω(y−η)

2

]

cos(ωx)dω − (y − η)

2[x2 + (y − η)2]
}

0 ≤ y ≤ η

D̄x (x, y, s) = −bz(s)(d11α2 + β11α3) − bφ(s)d11 − bψ(s)β11

π

×
{∫ ∞

0

[
sinh(ωη) cosh(ω(h − y))

sinh(ωh)
− e−ω(y−η)

2

]

cos(ωx)dω + (y − η)

2[x2 + (y − η)2]
}

, η ≤ y ≤ h,

B̄x (x, y, s) = bz(s)(β11α2 + γ11α3) − bφ(s)β11 − bψ(s)γ11
π
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×
{∫ ∞

0

[
sinh(ω(h − η)) cosh(ωy)

sinh(ωh)
− eω(y−η)

2

]

cos(ωx)dω − (y − η)

2[x2 + (y − η)2]
}

, 0 ≤ y ≤ η,

B̄x (x, y, s) = −bz(s)(β11α2 + γ11α3) − bφ(s)β11 − bψ(s)γ11
π

×
{∫ ∞

0

[
sinh(ωη) cosh(ω(h − y))

sinh(ωh)
− e−ω(y−η)

2

]

cos(ωx)dω + (y − η)

2[x2 + (y − η)2]
}

, η ≤ y ≤ h. (17)

It can be seen from Eqs. (14) and (17) the stress field, electric, and magnetic displacement components exhibit
the familiar Cauchy-type singularity at the locations of the magneto-electro-mechanical dislocation. In the
case of a permeable crack, the electric and magnetic potential is continuous at the crack locations. Therefore,
it is sufficient to let the jump in the electric and magnetic potential be zero in boundary conditions (9) and (16).

3 Derivation of the integral equations

In this Section, the fundamental concept of the DDT and the calculation of the numerical inversion Laplace
transform are introduced. The problem is solved for a magneto-electro-elastic strip weakened by N cracks. The
DDT is used by several investigators for the analyses of a cracked medium under mechanical loadings [23]. In
the framework of linear theory, the present problem can be treated as the superposition of two subproblems. Sub
problem I considers the strip without any cracks under action of τ0H(t), D0H(t), and B0H(t) at y = 0, h, and
x = ±∞ for horizontal and vertical cracks, respectively,while sub problem II concerns the stripwith distributed
magneto-electro-mechanical dislocations on the crack faces. The sum of the two solutions corresponding to
subproblems I and II is the solution to the original problem.The cracks configuration is expressed in a parametric
form as follows:

xi (q) = xi + li q,

yi (q) = yi i = 1, 2, . . . , N − 1 ≤ q ≤ 1 (18)

where (xi , yi ) are the coordinates of the center of the cracks and li is the half-length of the cracks. Suppose
that dislocations with unknown density Bkzj (p, s), k ∈ {m, p, ψ} in the Laplace domain are distributed on

the infinitesimal segment l j dp =
√

[x ′
j (p)]2 + [y′

j (p)]2dp at the face of the j-th crack, where the parameter

−1 ≤ p ≤ 1. Next, the superposition principle is employed to obtain the components of the stress, the electric,
and the magnetic displacement on a given crack surface. The system of singular integral equations on the face
of the i-th crack due to the presence of a distribution of dislocations on the face of all N horizontal cracks can
be written in the following form, which will be utilized in the numerical procedure:

σ̄yzi (xi (q), yi (q), s) =
N∑

j=1

∫ 1

−1

[
K̄ 11
i j Bmzj (p, s) + K̄ 12

i j Bpz j (p, s) + K̄ 13
i j Bψz j (p, s)

]
l j dp,

D̄yi (xi (q), yi (q), s) =
N∑

j=1

∫ 1

−1

[
K̄ 21
i j Bmzj (p, s) + K̄ 22

i j Bpz j (p, s) + K̄ 23
i j Bψz j (p, s)

]
l j dp,

B̄yi (xi (q), yi (q), s) =
N∑

j=1

∫ 1

−1

[
K̄ 31
i j Bmzj (p, s) + K̄ 32

i j Bpz j (p, s) + K̄ 33
i j Bψz j (p, s)

]
l j dp

−1 ≤ q ≤ 1, i ∈ {1, 2, . . . , N } . (19)

Due to Bueckner’s superposition principle [24], the left-hand side of Eq. (19) represents the stress and the
electro-magnetic displacement components at the presumed crack location with a negative sign, which implies
the impermeable crack boundary conditions. From Eq. (14), the kernel of the integral equation (19) is given
as:
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K̄ 11
i j (q, p, s) = c̃44

π
χ1 − (e15α2 + h15α3)

π
χ2 0 ≤ yi ≤ y j ,

K̄ 11
i j (q, p, s) = c̃44

π
χ3 − (e15α2 + h15α3)

π
χ4 y j ≤ yi ≤ h,

K̄ 12
i j (q, p, s) = K̄ 21

i j (q, p, s) = e15
π

χ2 0 ≤ yi ≤ y j ,

K̄ 12
i j (q, p, s) = K̄ 21

i j (q, p, s) = e15
π

χ4y j ≤ yi ≤ h,

K̄ 13
i j (q, p, s) = K̄ 31

i j (q, p, s) = h15
π

χ20 ≤ yi ≤ y j ,

K̄ 13
i j (q, p, s) = K̄ 31

i j (q, p, s) = h15
π

χ4y j ≤ yi ≤ h,

K̄ 22
i j (q, p, s) = −d11

π
χ2 0 ≤ yi ≤ y j ,

K̄ 22
i j (q, p, s) = −d11

π
χ4 y j ≤ yi ≤ h,

K̄ 23
i j (q, p, s) = K̄ 32

i j (q, p, s) = −β11

π
χ2 0 ≤ yi ≤ y j ,

K̄ 23
i j (q, p, s) = K̄ 32

i j (q, p, s) = −β11

π
χ4 y j ≤ yi ≤ h,

K̄ 33
i j (q, p, s) = −γ11

π
χ2 0 ≤ yi ≤ y j ,

K̄ 33
i j (q, p, s) = −γ11

π
χ4 y j ≤ yi ≤ h (20)

where

χ1 =
{∫ ∞

0

[
β sinh(β(y j − h)) sinh(βyi )

ω sinh(βh)
+ e−ω(y j−yi )

2

]

sin(ω(xi − x j + li q − l j p))dω

− (xi − x j + li q − l j p)

2[(xi − x j + li q − l j p)2 + (yi − y j )2]
}

,

χ2 =
{∫ ∞

0

[
sinh(ω(y j − h)) sinh(ωyi )

sinh(ωh)
+ e−ω(y j−yi )

2

]

sin(ω(xi − x j + li q − l j p))dω

− (xi − x j + li q − l j p)

2[(xi − x j + li q − l j p)2 + (yi − y j )2]
}

,

χ3 =
{∫ ∞

0

[
β sinh(βy j ) sinh(β(yi − h))

ω sinh(βh)
+ e−ω(yi−y j )

2

]

sin(ω(xi − x j + li q − l j p))dω

− (xi − x j + li q − l j p)

2[(xi − x j + li q − l j p)2 + (yi − y j )2]
}

,

χ2 =
{∫ ∞

0

[
sinh(ωy j ) sinh(ω(yi − h))

sinh(ωh)
+ e−ω(yi−y j )

2

]

sin(ω(xi − x j + li q − l j p))dω

− (xi − x j + li q − l j p)

2[(xi − x j + li q − l j p)2 + (yi − y j )2]
}

. (21)
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From Eq. (20), we conclude that K̄i j (q, p, s) has the Cauchy-type singularity for i = j as p → q .
According to the definition of the dislocation density function, the equations of the crack opening displacement,
electric, and magnetic potential across the j-th crack are given by:

w̄−
j (q, s) − w̄+

j (q, s) =
∫ q

−1
l j Bmzj (p, s)dp,

φ̄−
j (q, s) − φ̄+

j (q, s) =
∫ q

−1
l j Bpz j (p, s)dp,

ψ̄−
j (q, s) − ψ̄+

j (q, s) =
∫ q

−1
l j Bψz j (p, s)dp. (22)

The single-valued property of the displacement field out of an embedded crack surface leads to the following
closure conditions:

l j

∫ 1

−1
Bkzj (p, s)dp = 0 k ∈ {m, p, ψ}. (23)

The numerical inversion of Laplace transform is carried out via Stehfest’s method [25]. The method
was used by various investigators dealing with dynamic crack problems. A time-dependent function f (t) is
approximated as follows:

f (t) ≈ ln2

t

M∑

n=1

υn F

(
ln2

t
n

)
. (24)

The errors in Stehfest’s method are estimated by Kuznetsov [26]. In Eq. (24), F(.) is the Laplace transform
of f (t), M is an even number, and the coefficients υn are given by:

υn = (−1)
M
2 +n

min( M
2 ,n)∑

k=[0.5(n+1)]

k
M
2 (2k)!

(M2 − k)!k!(k − 1)!(n − k)!(2k − n)! (25)

where [.] signifies the integral part of the quantity. Therefore, f (t) at a fixed time t is calculated by the
computation of F(s) at M points s = ln2

t n, n ∈ {1, 2, . . . , M}. Applying the procedure to Eqs (19) and (23)
results in:

σ̄yzi

(
xi (q) , yi (q) ,

ln2

t
n

)
=

N∑

j=1

∫ 1

−1

[
K̄ 11
i j Bmzj

(
p,

ln2

t
n

)
+ K̄ 12

i j Bpz j

(
p,

ln2

t
n

)
+ K̄ 13

i j Bψz j

(
p,

ln2

t
n

)]
l j dp,

D̄yi

(
xi (q), yi (q),

ln2

t
n

)
=

N∑

j=1

∫ 1

−1

[
K̄ 21
i j Bmzj

(
p,

ln2

t
n

)
+ K̄ 22

i j Bpz j

(
p,

ln2

t
n

)
+ K̄ 23

i j Bψz j

(
p,

ln2

t
n

)]
l j dp,

B̄yi

(
xi (q) , yi (q) ,

ln2

t
n

)
=

N∑

j=1

∫ 1

−1

[
K̄ 31
i j Bmzj

(
p,

ln2

t
n

)
+ K̄ 32

i j Bpz j

(
p,

ln2

t
n

)
+ K̄ 33

i j Bψz j

(
p,

ln2

t
n

)]
l j dp,

l j

∫ 1

−1
Bkzj

(
p,

ln2

t
n

)
dp = 0 k ∈ {m, p, ψ}, i ∈ {1, 2, . . . , N } , n ∈ {1, 2, . . . , M} . (26)

The stress, electric, and magnetic fields at a tip of an embedded crack behave as 1/
√
r , where r is the

distance from the crack tip. Consequently, the dislocation densities are taken as:

Bkzj

(
p,

ln2

t
n

)
= Gkzj (p,

ln2
t n)

√
1 − p2

, −1 ≤ p ≤ 1, k ∈ {m, p, ψ}, j ∈ {1, 2, . . . , N } . (27)

By substituting Eq. (27) into Eq. (26) and applying the numerical technique introduced by Erdogan et al. [27],
the singular integral equations and the resultant equations are solved. The inverse Laplace transform of the
solution from Eq. (24) leads to:

gkz j (q, t) = ln2

t

M∑

n=1

υnGkzi (q,
ln2

t
n), k ∈ {m, p, ψ},−1 ≤ q ≤ 1, i ∈ {1, 2, . . . , N } . (28)
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Fig. 3 The variation of the normalized DSIFs for different values of λD and λB under the impermeable assumption

The DSIFs for the embedded cracks in magneto-electro-elastic materials take the forms as follows:

{
(KM )Li
(KM )Ri

}
= ±

√
li (∓1)

2
[c44gmzi (∓1, t) + e15gpzi (∓1, t) + h15gψzi (∓1, t)],

{
(KD)Li
(KD)Ri

}
= ±

√
li (∓1)

2
[e15gmzi (∓1, t) − d11gpzi (∓1, t) − β11gψzi (∓1, t)],

{
(KB)Li
(KB)Ri

}
= ±

√
li (∓1)

2
[h15gmzi (∓1, t) − β11gpzi (∓1, t) − γ11gψzi (∓1, t)] (29)

where L and R denote the left and right tips of a crack, respectively, and li (t) =
√

[x ′
i (t)]2 + [y′

i (t)]2. Equation
(28) is substituted into (29), in order to determine the field intensity factors. The details of the derivation of
Eq. (29) are presented by Bagheri et al. [18].

4 Numerical results and discussion

4.1 Strip weakened by a single horizontal crack

This Section is divided into two main parts. The first deals with the verification of the resulting analytical
solutions and the second with examining the influence of some prominent parameters on the dynamic field
intensity factors. Inwhat follows,we consider two special conditions, the impermeable crack and the permeable
crack under impact loads. In order to determine the dynamic field intensity factors near the crack tip, the
numerical results are calculated for material properties that are given in [18]. In order to analyze the effect of
magneto-electro-mechanical interaction on the dynamic field intensity factors, the relation between the shear
impact, the electric, andmagnetic impact is defined by the loading combination parameters λD = D0e15/τ0d11
and λB = B0h15/τ0β11, respectively. In the calculations, the dynamic field intensity factors were normalized
as follows:

⎡

⎣
K0M
K0D
K0B

⎤

⎦ = τ0
√
L

⎡

⎣
1
d11/e15
β11/h15

⎤

⎦ (30)

where L is the half-length of the crack. In all examples in this Section, the transient response of the cracked
magneto-electro-elastic strip under constant anti-plane mechanical shear τ0H(t), in-plane electrical loading
D0H(t), and magnetic loading B0H(t) is studied.

Figure 3 shows the influence of the loading combination parameters on the normalized DSIFs for a central
impermeable crack with variation of normalized time where h = 0.01m and L = 0.1h. It is seen that as t/t0
increases the normalized DSIFs first increase to maximum values and then tend to 1.0 in the end, indicating



Magneto-electro-elastic analysis of a strip containing multiple embedded and edge cracks 4907

Fig. 4 Dimensionless DSIFs for different values of crack length under impermeable condition

the static value. It is shown that the peak value of the DSIFs for larger loading combination parameters is much
larger than the small value. The validity of the analysis is verified by comparing our results with those available
in the literature. In order to do this, a short crack in a strip without electro-magnetic properties (λD = λB = 0)
is considered. The results for a short crack in a homogenous strip have good agreement with that reported by
Zhang et al. [10] for a crack in unbounded planes.

The influences of the crack length on non-dimensional DSIFs are demonstrated graphically in Fig. 4 for the
impermeable crack case. The electro-mechanical and magneto-mechanical coupling factors are zero, and the
thickness of the strip is h = 0.01m. It turns out that, as the crack length increases, the normalized KM (t)/K0M
increases. This example can be easily compared with the results obtained by Vafa et al. [19]. A very good
agreement is observed.

In Fig. 5, the magnitude of the normalized DSIF is plotted for three different values of the crack length
for a short horizontal crack in the strip. Similar to Fig. 4, as the ratio L/yc increases, the peak value of the
DSIF will increase. In this case, the length of the crack is L = 0.1h. For comparison of this example, a short
crack near the lower edge of a strip without magnetic properties is considered. The results in a piezoelectric
strip weakened by a short crack have excellent agreement with that given by Bagheri [21] for a crack in a
piezoelectric half plane, because the thickness of the strip in comparison with yc has a high value.

In order to investigate the effects of crack surface condition and crack location on the dimensionless
magnetic induction intensity factors (MIIFs), a crack under permeable and impermeable case is considered in
Fig. 6. When the position of the crack is near the edge of the strip, KB(t)/K0B is high. As can be observed, the
normalizedMIIFs are nearly independent of the normalized time for impermeable condition. This phenomenon
was described by other researchers [28,29]. In contrast, for permeable condition, the MIIFs change with t/t0.
Also, it is seen that the peak value of dimensionlessMIIFs for an impermeable crack is larger than the permeable
one.

The effect of the strip thickness on the normalized stress and electric displacement intensity factors (EDIFs)
under impermeable condition versus t/t0 is illustrated in Fig. 7. The field intensity factors of the crack tips are
increased by decreasing the thickness of the strip, and the crack would more likely extend. In fact, a maximum
value for the field intensity factors of the crack tips can be observedwhen they are in nearest distance of the strip
boundary. Also, this example implies that, for impermeable condition, the normalized EDIFs are independent
of the normalized time.

4.2 Strip weakened by multiple horizontal cracks

Let us now restrict our attention to the interaction between multiple cracks. The next example is to consider the
interaction between two equal-length cracks under impermeable conditions. The thickness of the strip, cracks
length, and distance between two cracks centers are chosen as h = 0.01m, 2L = 0.5h, and xc2 − xc1 = 0.52h.
The variations of the normalized DSIFs versus normalized time t/t0 are shown in Fig. 8. It can be seen that
DSIFs of two interacting cracks reach a peak and then decrease in magnitude until, in the limit as t tends to
infinity, the results approach the corresponding static value. As it might be observed, the DSIFs for the crack
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Fig. 5 Comparison of dimensionless DSIFs of a short crack in a piezoelectric strip with a crack in a piezoelectric half plane

Fig. 6 Dimensionless MIIFs for permeable and impermeable conditions versus t/t0

Fig. 7 Dimensionless fields intensity factors for impermeable conditions versus t/t0

tips R1and L2 are higher than L1 and R2, which are attributed to the stronger interaction. A maximum value
for the DSIF of the crack tips can be seen when the electro-mechanical and magneto-mechanical coupling
factors increase. Also, compared with the single crack problem, higher values of the DSIF are observed due
to the interaction effect between cracks.
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Fig. 8 The variations of the normalized DSIFs for two cracks versus t/t0

Fig. 9 The variations of the normalized DSIFs of two parallel cracks versus t/t0

In the next example, two parallel identical cracks with the length ratio L/h = 0.25 are shown in Fig. 9.
The effect of the cracks arrangement on the DSIFs of crack tips is determined. The distance of the crack from
the strip boundary may affect the crack tip shielding or anti-shielding. On the other hand, for L1R1, the DSIFs
for the crack tips are more than L2R2.

4.3 Strip weakened by a vertical embedded crack

In Fig. 10, the magnitude of the normalized DSIF is plotted with respect to t/t0 for a vertical crack. In this
case, we let all the magnetic quantities be zero for the case of a piezoelectric strip. In this example, the center
of the crack is located at yc/h = 0.5. Note that, as λD increases, the DSIFs of the crack tips increase. Our
results are in good agreement with the existing results given by Yong and Zhou [14].

4.4 Strip weakened by multiple vertical embedded cracks

Figure 11 shows the variation of normalized DSIFs in a magneto-electro-elastic strip containing two straight
vertical cracks L1R1 and L2R2 with equal-length 2L = 0.4h. As the distance xc2 increases, the normalized
DSIFs decrease. It may again be seen that the results are highly dependent on the interaction of the cracks.
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Fig. 10 The variations of the normalized DSIFs of a vertical crack versus t/t0

Fig. 11 The variations of the normalized DSIFs of two vertical cracks versus t/t0

Fig. 12 The variations of the normalized DSIF of an edge crack versus t/t0

4.5 Strip weakened by a vertical edge crack

In the next example, an edge crack in the strip with length ratio L/h = 0.2, 0.3, 0.4, 0.5 is considered. The
result depicts the effects of the crack length on the normalized DSIF, KM (t)/K0M wherein L designates the
embedded tip of the crack. It can be seen that the DSIFs increase rapidly as the crack length increases (Fig. 12).
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Fig. 13 The variations of the normalized DSIFs of two edge cracks versus t/t0

4.6 Strip weakened by multiple vertical edge cracks

In the last example, for two edge cracks, the variations of the normalized DSIFs versus the normalized time
are examined in Fig. 13. The results show that the DSIFs are highly dependent on the distance of the cracks.
Generally, as the crack length increases or the distance crack tip from the strip edge decreases, the normalized
DSIFs increase. In this example, the effect of the distance crack tip from the strip edge on KM (t)/K0M can
be very significant for the crack length. In other words, for L1, the DSIFs for the crack tips are more than L2.

5 Conclusions

The purpose of this study is to investigate the effects of the crack configurations and arrangements on the field
intensity factors in a magneto-electro-elastic strip under anti-plane shear impact loading. The impermeable or
permeable conditions along the crack surface are assumed. We develop the DDT which can be used for an
analysis of the multiple horizontal, vertical, and edge cracks in a strip. The solutions of dislocations are derived
in the magneto-electro-elastic strip using the Fourier and Laplace transform methods. These solutions are
utilized to construct integral equations for the cracked strip. Finally, the effects of the crack length, geometrical
parameter, and the cracks configuration on the field intensity factors are studied. In summary, some conclusions
are drawn as follows:

(i) The geometric size of the strip has significant influence on the field intensity factors for both impermeable
and permeable cases.

(ii) Results show that the field intensity factors are influenced by the applied magneto-electric and mechanical
loadings and the type of magneto-electric boundary conditions along the crack faces.

(iii) The curves of field intensity factors increase with time, reach a peak value, and then drop to a steady state
which is in accordancewith the known results for the transient analysis of a crackedmagneto-electro-elastic
material.

(iv) For impermeable condition, the normalized EDIFs and MIIFs are independent of the normalized time but
for permeable case the EDIFs and MIIFs change with t/t0.

Appendix

The unknown coefficients in (11) may be determined as:

A1(ω, s) = A2(ω, s) = −bz(s)[πδ(ω) − i/ω] sinh(β(h − η))e−iωζ

2 sinh(βh)
,

A3(ω, s) = bz(s)[πδ(ω) − i/ω] sinh(βη)eβhe−iωζ

2 sinh(βh)
,
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A4(ω, s) = bz(s)[πδ(ω) − i/ω] sinh(βη)e−βhe−iωζ

2 sinh(βh)
,

B1(ω, s) = B2(ω, s) = −[bφ(s) − α2bz(s)][πδ(ω) − i/ω] sinh(|ω| (h − η))e−iωζ

2 sinh(|ω| h)
,

B3(ω, s) = [bφ(s) − α2bz(s)][πδ(ω) − i/ω] sinh(|ω| η)e|ω|he−iωζ

2 sinh(|ω| h)
,

B4(ω, s) = [bφ(s) − α2bz(s)][πδ(ω) − i/ω] sinh(|ω| η)e−|ω|he−iωζ

2 sinh(|ω| h)
,

C1(ω, s) = C2(ω, s) = −[bψ(s) − α3bz(s)][πδ(ω) − i/ω] sinh(|ω| (h − η))e−iωζ

2 sinh(|ω| h)
,

C3(ω, s) = [bψ(s) − α3bz(s)][πδ(ω) − i/ω] sinh(|ω| η)e|ω|he−iωζ

2 sinh(|ω| h)
,

C4(ω, s) = [bψ(s) − α3bz(s)][πδ(ω) − i/ω] sinh(|ω| η)e−|ω|he−iωζ

2 sinh(|ω| h)
.
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