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Abstract In this study, vibration and dynamic stability of fluid-conveying thin-walled rotating pipes reinforced
with functionally graded carbon nanotubes are studied. The pipe is modeled based on thin-walled Timoshenko
beam theory and reinforced by single-walled carbon nanotubes with uniform distribution as well as three types
of functionally graded distribution patterns. The governing equations of motion and the associated boundary
conditions are derived via Hamilton’s principle. The governing equations of motion are discretized via the
Galerkin method, and the eigenfrequency and the stability region of the pipe are found using the eigenvalue
analysis. Some numerical examples are presented to study the effects of length–radius ratio, carbon nanotubes
distribution, volume fraction of carbon nanotubes, rotational speed and mass ratio on the non-dimensional
eigenfrequency and critical flutter velocity of the thin-walled rotating pipe conveying fluid. The results show
that the carbon nanotubes distribution has a significant effect on the non-dimensional eigenfrequency and
critical flutter velocity. Also, it is found that the rotational speed has a stabilizing effect on the dynamic
behavior of the system.
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1 Introduction

Recently, nanocomposite materials reinforced with carbon nanotubes (CNTs) have received a great deal of
attention in numerous fields of science and engineering due to their unique properties [1]. Hence, the introduc-
tion of CNTs into polymeric composites may improve their applications in the fields of reinforcing composites,
electronic devices and so on. Based on superior properties of functionally graded carbon nanotube-reinforced
composites (FG-CNTRCs), mechanical analysis of the FG structures reinforced with CNTs has attracted much
attention from researchers. For example, Ke et al. [2] studied the effects of CNT volume fraction, distribution
pattern of CNTs, vibration amplitude and slenderness ratio on nonlinear vibration of FG-CNTRCbeams. Based
on the Timoshenko beam reinforced with CNTs, the vibration analysis and buckling analysis of nanocomposite
beams resting on an elastic foundation were investigated by Yas and Samadi [3]. They examined the influences
of nanotube volume fraction, slenderness ratios, CNT distribution, elastic foundation and boundary conditions
on the natural frequency and critical buckling load. Yas and Heshmati [4] investigated the free and forced
vibration of the nanocomposite beams reinforced by CNTs and subjected to moving load. Rafiee et al. [5]
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studied the influences of nanotube volume fraction, CNT distribution, applied voltage, temperature change
and beam geometry on linear and nonlinear frequencies of the FG-CNTRC beams with piezoelectric layers.
Lin andXiang [6] performed vibration of beams reinforcedwith CNTs based on both first-order and third-order
beam theories. The bending, buckling and vibration of CNTRC beams resting on an elastic Pasternak foun-
dation were investigated by Wattanasakulpong and Ungbhakorn [7]. The effects of nanotube volume fraction,
CNT distribution, aspect ratio and in-plane forces on the flutter and divergence boundaries of the FG-CNTRC
plates under a supersonic flow were analyzed by Fazelzadeh et al. [8]. The flow-induced instabilities of the
FG-CNTRC panels in the supersonic flow and thermal environments were studied by Asadi et al. [9]. Lots of
research works studied the mechanical characteristics of CNTRC structures (see, e.g., Alibeigloo and Liew
[10], Mirzaei and Kiani [11] and Thomas and Roy [12]).

Pipes conveying fluid are fundamental dynamical issues in the field of fluid–structure interaction (FSI)
and basic elements which are widely used in mechanical engineering, civil engineering, off-shore oil and
gas industries and so on. The vibration analysis of the pipe conveying fluid is a common study in engineering
problems, and knowledge of the fluid velocities proposes the designer avoiding the critical velocities. Vibration
and dynamic instability of the pipes conveying fluid have been studied by Païdoussis [13], Kuiper et al. [14],
Ghorbanpour Arani et al. [15], Hosseini and Bahaadini [16], Ning et al. [17], Kjolsing and Todd [18], Wang et
al. [19], Bahaadini et al. [20–22], Hosseini et al. [23,24] and Askarian et al. [25]. They studied the contributing
physical factors on the frequency and critical velocity of the pipes carrying fluid. In particular, the induced
vibration due to fluid flow inside the rotating cantilever pipes raises a significant and challenging research topic
because it is a critical issue in the design of the fluidic devices. Therefore, it is crucial to know the mechanical
behavior of rotating pipes conveying fluid. In this regard, Panussis and Dimarogonas [26] examined the
comparisons between in-plane and out-of-plane lateral vibrations and rotating effect on the critical flutter
speed and frequency of a horizontally rotating cantilever pipe conveying fluid. Yoon and Son [27] analytically
analyzed the influences of rotating angular velocity, tip mass and fluid velocity on the dynamic behavior of
a cantilever pipe. Wang and Zhang [28] studied the dynamic behavior of a rotating pipe containing flowing
fluid using the radial basis collocation method. Khajehpour and Azadi [29] investigated vibration analysis
of a rotating cantilever pipe carrying fluid with piezoelectric layers and subjected to tip mass. The effects of
rotating angular velocity, the fluid velocity andmagnitude of uniformly distributed tangential follower force on
the flutter instability of a rotating pipe conveying fluid were studied by Karimi-Nobandegani et al. [30]. Free
vibration analysis of the rotating/spinning single-walled carbon nanotubes (SWCNTs) conveying fluid was
analyzed by Safarpour and Ghadiri [31]. They obtained the influences of material length scale parameter, fluid
velocity, angular velocity, aspect ratio and boundary conditions on the critical velocity and natural frequency.
The above literature review shows that there is no research on the dynamics of the rotating cantilever pipes
containing flowing flow for the FG-CNTRC beams.

The problems of vibration and structural stability in the thin-walled beams have been attracted numer-
ous attentions in mechanical engineering, aerospace engineering, civil engineering, energy harvesting issues
and many other applications. The studies of such problems are always of practical engineering interest, and
consequently, an enormous amount of research work has been done in this field. Thermoelastic vibration and
instability analysis of the rotating/spinning thin-walled beam made of functionally graded materials (FGMs)
were studied by Librescu et al. [32]. They studied the effects of volume fraction, temperature gradient, com-
pressive axial load and rotational/spinning speed on the vibration and instability of the system. The vibration
and instability of the spinning thin-walled shafts made of FGMs and subjected to compressive axial load in
thermal environment were investigated by Oh et al. [33]. The rotating FGM thin-walled beam under aerother-
moelastic loading based on the Timoshenko beam theory was also studied [34,35]. The mechanical behavior
of thin-walled structures has been studied by many researchers (see, e.g., Oh et al. [36], Sina et al. [37], Li
et al. [38] and Cihan et al. [39]). The FG thin-walled Rayleigh beam model was developed by Hosseini and
Fazelzadeh [40] to investigate the thermomechanical stability analysis of the cantilever pipes conveying fluid
subjected to compressive axial load. Using thin-walled Rayleigh beam theory, Eftekhari and Hosseini [41]
investigated the stability of the spinning pipes made of FGMs under compressive axial load. Choi et al. [42]
studied the nonlinear vibration and instability behaviors of the nanopipes conveying fluid based on the thin-
walled beam theory. Yun et al. [43] performed the fluid-induced vibration and flutter instability of a cantilever
multi-walled carbon nanotube (MWCNT) subjected to axial flow. In their work, the nanotubes were modeled
as thin-walled Euler–Bernoulli and Timoshenko beams.

The above literature review illustrations that there is no published research concerning the analysis of the
critical flutter velocity of thin-walled FG-CNTRC rotating pipe conveying fluid. So, this manuscript is aimed to
investigate the dynamic behavior of a thin-walled FG-CNTRC rotating pipe carrying fluid. Uniform and three
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types of functionally graded distributions of CNTs along the thickness direction of the thin-walled rotating
pipe are considered. To obtain the equivalent material properties of an FG-CNTRC pipe, the rule of mixture is
utilized. Based on the thin-walled Timoshenko beam theory, the equations ofmotion are derived via Hamilton’s
principle and they are discretized by the extended Galerkin method. The resulting eigenvalue problem is then
solved, and some numerical results are investigated to study the effects of length–radius ratio, nanotube volume
fraction, CNT distribution, rotational speed and mass ratio on the dimensionless eigenfrequency and critical
flutter velocity of the system.

2 The basic formulation

Figure 1 depicts the fluid-conveying thin-walled rotating pipe reinforced by FG-CNTs with length L , thickness
h and middle cord radius rm . The blade is mounted on a rigid hub of radius R0 which is rotating about the
axis of symmetry with constant angular velocity ω0. The reference coordinates (x, y, z) are defined as local
coordinates associated with the blade, and another coordinates (s, n, z) are used to define a complex cross-
section profile.

Fig. 1 Schematic diagram of a thin-walled CNTRC rotating pipe conveying fluid: a geometry and coordinate system, b the cross
section of the pipe, c distribution types of CNTs
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2.1 Kinematics

The displacements field of a thin-walled Timoshenko pipe can be expressed as [32]

u1 (x, y, z; t) = u0(z; t),
u2 (x, y, z; t) = v0(z; t),
u3 (x, y, z; t) = w0 (z; t) + θx (z; t)

[
y (s) − n

dx

ds

]
+ θy (z; t)

[
x (s) + n

dy

ds

]
, (1)

where u0(z; t), v0(z; t) and w0 (z; t) denote the rigid body translations along the x , y and z axes and θx (z; t)
and θy (z; t) represent the rigid body rotations about the x and y axes, respectively. Furthermore, x(s) and y(s)
denote the position of the circumferential centerline, while n denotes the outward directed distance from this
centerline. The expressions for θx (z; t) and θy (z; t) can be written as [32]

θx (z; t) = γyz (z; t) − v′
0(z; t),

θy (z; t) = γxz (z; t) − u′
0(z; t), (2)

where γyz and γxz are the transverse shear strains.
The strain–displacement relationship can be written as

εzz = ∂u3
∂z

, γxz = ∂u3
∂x

+ ∂u1
∂z

, γyz = ∂u3
∂y

+ ∂u2
∂z

, εxx = εyy = γxy = 0. (3)

The relation between strains in (s, z, n) and (x, y, z) coordinate systems can be obtained as

εsz = dx

ds
γxz + dy

ds
γyz, εnz = dy

ds
γxz − dx

ds
γyz, εnn = εss = εsn = 0. (4)

The position vector of an arbitrary point on the deformed pipe can be formulated as [32]

R(x, y, z; t) = (x + u1)i + (y + u2)j + (z + u3)k + R0. (5)

Furthermore, the velocity vector of an arbitrary point can be obtained by taking the time derivative of the
position vector as

Ṙ = [u̇1 + (R0 + z + u3)ω0] i + u̇2j + [u̇3 − (x + u1)ω0] k, (6)

where the superposed dots denote time derivatives. The fluid velocity particle is defined as

v f =
[
u̇1 + (R0 + z + u3) ω0+U

∂u0
∂z

]
i +
[
u̇2 +U

∂v0

∂z

]
j + [u̇3 − (x + u1) ω0 + y f θ̇x + x f θ̇y +U

]
k.

(7)
Herein, the subscript f stands for the fluid.

2.2 Constitutive equations for FG-CNTRC pipes

The constitutive relations for the thin-walled FG-CNTRC Timoshenko pipes can be formulated as
⎡
⎢⎢⎢⎣

σss
σzz
σzn
σsn
σzs

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q44 0 0
0 0 0 Q55 0
0 0 0 0 Q66

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

εss
εzz
γzn
γsn
γzs

⎤
⎥⎥⎥⎦ , (8)

where

Q11 = E11

1 − ν12ν21
, Q12 = ν12E22

1 − ν12ν21
, Q22 = E22

1 − ν12ν21
,

Q44 = Q55 = κ2
s G12, Q66 = G12. (9)
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In Eq. (9), κ2
s = π2/12 is the transverse shear correction factor. Also, E11, E22, G12, ν12 and ν21 denote the

effective Young’s and shear moduli and Poisson’s ratios of the CNTRC pipe, respectively. The thin-walled
pipe is a mixture of the CNTs, and a polymer matrix and the effective material properties may be written as
[44]

E11 = η1V
CNTECNT

11 + VmEm,

η2

E22
= V CNT

ECNT
22

+ Vm

Em
,

η3

G12
= VCNT

GCNT
12

+ Vm

Gm
, (10)

where ECNT
11 , ECNT

22 and GCNT
12 represent Young’s and shear moduli of the CNTs, Em and Gm denote the

corresponding properties for polymer matrix and ηi (i = 1, 2, 3) represent the CNT efficiency parameters,
respectively. The values of the CNT efficiency parameters, the size dependency of material properties, can
be determined by comparison of effective elastic moduli of CNTRC, resulting from the molecular dynamics
procedure and the rule of mixture. Besides, VCNT and Vm represent the volume fractions of the CNT and
matrix, respectively, satisfying

VCNT + Vm = 1. (11)

Four different distributions of CNTs along the thickness direction of the thin-walled pipes are assumed [5]:

UD : V CNT (z) = VCNT
0 , (12a)

FG − A : VCNT (z) =
(
1 − 2n

h

)
VCNT
0 , h/2 ≤ n ≤ h/2, (12b)

FG − V : VCNT (z) =
(
1 + 2n

h

)
V CNT
0 , (12c)

FG − X : V CNT (z) = 4 |n|
h

V CNT
0 , (12d)

where

VCNT
0 = ωCNT

ωCNT + (ρCNT/ρm)(1 − ωCNT)
. (13)

Also, ωCNT denotes the mass fraction of CNT, and ρCNTand ρm are the density of the CNT and matrix,
respectively. Similarly, the mass density and Poisson’s ratio can be determined as [5]

ρ = VCNTρCNT + Vmρm, (14)

v12 = VCNT
0 vCNT12 + Vmvm, (15)

in which vCNT12 and vm denote Poisson’s ratios of the CNT and matrix, respectively.

2.3 Governing equations

The dynamical governing equations of the system can be derived via the extended Hamilton’s principle that
might be formulated as [13]

∫ t2

t1

(
δTp + δT f − δE − MU

(
ṘL +Uτ L

)
.δRL

)
dt = 0,

δu0 = δv0 = δθx = δθy = 0 at t = t1, t2, (16)

where δTp, δT f and δE represent the variational form of the pipe kinetic, fluid kinetic and strain energies,
respectively. Also, RL and τ L denote the position vector of a point on the free ended axis and the tangential
vector to the free ended axis of the pipe, respectively.
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The variation of the kinetic energy of the thin-walled Timoshenko rotating pipe conveying fluid flow can
be given by

∫ t2

t1
δT dt =

∫ t2

t1

(
δTp + δT f

)
dt

= −
∫ t2

t1
dt
∫ z2

z1

∮
c

∫ h
2

− h
2

ρ
(
R̈.δR

)
dndsdz −

∫ t2

t1
dt
∫ z2

z1
M
(
v f .δv f

)
dz. (17)

The variation of the strain energy based on the thin-walled Timoshenko beam theory is given by [32]

δE =
∫ L

0

∮
c

∫ h
2

− h
2

(σzz δεzz + σsz δγsz + σnz δγnz) dn ds dz. (18)

Here, the following stress resultants are employed:

Nzz =
∫ h

2

− h
2

σzz dn, Lzz =
∫ h

2

− h
2

σzz n dn,

Nsz =
∫ h

2

− h
2

σsz dn, Nnz =
∫ h

2

− h
2

σnz dn. (19)

So, the variation of strain energy can be rewritten as

δE = 1

2

∫ z2

z1

∮
c

{
Nzz δ

[
∂w

∂z
+ y (s)

∂θx

∂z
+ x (s)

∂θy

∂z
+ 1

2

((
∂u0
∂z

)2

+
(

∂v0

∂z

)2
)]

+ Lzz δ

[
dy(s)

ds

∂θy

∂z
− dx(s)

ds

∂θx

∂z

]
+ Nsz δ

[(
θy + ∂u0

∂z

)
dx(s)

ds
+
(

θx + ∂v0

∂z

)
dy(s)

ds

]

+ Nnz δ

[(
θy + ∂u0

∂z

)
dy(s)

ds
−
(

θx + ∂v0

∂z

)
dx(s)

ds

]}
ds dz. (20)

The stress resultants and stress couples are defined as follows:

Tz (z; t) =
∮
c
Nzz ds,

Qx (z; t) =
∮
c

[
Nsz

dx (s)

ds
+ Nnz

dy (s)

ds

]
ds,

Qy (z; t) =
∮
c

[
Nsz

dy (s)

ds
− Nnz

dx (s)

ds

]
ds,

Mx (z; t) =
∮
c

[
y N zz − Lzz

dx (s)

ds

]
ds,

My (z; t) =
∮
c

[
x N zz + Lzz

dy (s)

ds

]
ds, (21)

where Tz corresponds to the axial force; Qx and Qy are associated with the shear forces in x and y directions,
respectively; and Mx and My are the bending moments about the x and y directions, respectively. Using the
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above stress resultants and stress couples, the variation of the strain energy is expressed as follows:

δE = −
∫ z2

z1

{
∂Tz (z; t)

∂z
δw0 +

(
∂Mx (z; t)

∂z
− Qy

)
δθx

+
(

∂My (z; t)
∂z

− Qx

)
δθy +

(
∂Qx

∂z
+ ∂

∂z

(
Tz

∂u0
∂z

))
δu0

+
(

∂Qy

∂z
+ ∂

∂z

(
Tz

∂v0

∂z

))
δv0

}
dz + {Tzδw0 + Mx δθx + My δθy

+
[
Qx + Tz

∂u0
∂z

]
δu0 +

[
Qy + Tz

∂v0

∂z

]
δv0

} ∣∣∣∣ L0 . (22)

By substituting the above energy functions into Eq. (16), and using the calculus of variations principles, the
equations of motion are expressed as

δu0 : [a44 (u′
0 + θy

)+ a45
(
v′
0 + θx

)]′ − (b1 + M)ü0 + (b1 + M)ω2
0u0 + ω2

0

[
R (z) u′

0

]′
−2MUu̇′

0 − MU 2u′′
0 − 2b1ω0ẇ0 = 0, (23)

δv0 : [a55 (v′
0 + θx

)+ a45
(
u′
0 + θy

)]′ − (b1 + M)v̈0 + ω2
0

[
R (z) v′

0

]′ − 2MU v̇
′
0 − MU 2v′′

0 = 0, (24)

δw0 : [a11w′
0

]′ − b1ẅ0 + 2b1ω0u̇0 + b1ω
2
0 (R0 + z + w0) = 0, (25)

δθy : [a22θ ′
y + a23θ

′
x ]′−a44

(
u′
0 + θy

)− a45
(
v′
0 + θx

)− (b5 + b15)
(
θ̈y − ω2

0θy
)

− (b6 − b13)
(
θ̈x − ω2

0θx
)− Mr2x

(
θ̈y − ω2

0θy
) = 0, (26)

δθx : [a33θ ′
x + a32θ

′
y]

′−a55(v
′
0 + θx ) − a54(u

′
0 + θy) − (b4 + b14)(θ̈x − ω2

0θx )

− (b6 − b13)
(
θ̈y − ω2

0θy
)− Mr2y

(
θ̈x − ω2

0θx
) = 0, (27)

where rx and ry denote the internal gyration radius of the cross-sectional area of the pipe flow passage about
the x and y axes, respectively. The stiffness coefficients ai j and bi j can be found in Librescu et al. [32], and
the associated boundary conditions are expressed as:
at z = 0

u0 = v0 = w0 = θy = θ x = 0, (28)

at z = L

δu0 : a44
(
u

′
0 + θy

)
+ a45

(
v

′
0 + θx

)
= 0, (29)

δv0 : a55
(
v

′
0 + θx

)
+ a45

(
u

′
0 + θy

)
= 0, (30)

δw0 : a11w′
0 = 0, (31)

δθy : a22θ ′
y + a23θ

′
x = 0, (32)

δθx : a33θ ′
x + a32θ

′
y = 0. (33)

In the governing equations, R(z) is the centrifugal force, which is defined as [45]

R(z) =
[
R0 (L − z) + 1

2
(L2 − z2)

]
. (34)

For a pipe with circular cross section, a44 = a55, a22 = a33, b5 = b6, b13 = b15, rx = ry and a45 = a54 = 0.
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3 Solution procedure

3.1 Galerkin method

Galerkin’s method is a technique for discretizing partial differential equations with infinite degrees of freedom
into a set of second-order ordinary differential equations with finite degrees of freedom. To that end, the
following expansionswhich are expanded in a series ofmodes are assumed for the dimensionless displacements
of the cantilever thin-walled pipe:

u0(z; t) =
N∑
j=1

Uj (z) qu (t) , v0 (z; t) =
N∑
j=1

Vj (z) qv (t) , w0 (z; t) =
N∑
j=1

Wj (z) qw (t) ,

θx (z; t) =
N∑
j=1

Θx (z) qx (t), θy (z; t) =
N∑
j=1

Θy (z) qy (t), (35)

where qu , qv , qw, qx and qy are time-dependent vectors of generalized coordinates and U, V ,W , Θx and Θy
are dimensional vectors of trial functions that satisfy the appropriate boundary conditions. For a cantilever
thin-walled pipe, the following expansions are assumed [13]:

U (z) = V (z) = 1

Ω2
j

(
Θy (z)

)′′′
,

Θy (z) = Θx (z) =
(
q jcosh

(
q j
)+ q3j

p2j
cos
(
p j
))

cosh
(
q j z
)− (q j sinh

(
q j
)+ p j sin

(
p j
))
sinh

(
q j z
)

−
(
q jcosh

(
q j
)+ q3j

p2j
cos
(
p j
))

cos
(
q j z
)− q3j

p3j

(
q j sinh

(
q j
)+ p j sin

(
p j
))
sin
(
q j z
)
,

W (z) = sin ((2 j − 1) π z) ,

2p2j = Ω2
j(

a44L2

a33R

) +
⎛
⎜⎝ Ω4

j(
a44L2

a33R

)2 + 4Ω2
j

⎞
⎟⎠

1/2

, 2q2j = − Ω2
j(

a44L2

a33R

) +
⎛
⎜⎝ Ω4

j(
a44L2

a33R

)2 + 4Ω2
j

⎞
⎟⎠

1/2

, (36)

where Ω j is the j th eigenvalue of the cantilever beam and subscript R shows the properties of pure polymer
matrix pipe. Substituting Eq. (35) into the governing equations and multiplying both sides of the equations by
trial functions together with integration over the whole region, the following discretized expressions for the
equations of motion can be expressed:

Mq̈(t) + Cq̇(t) + Kq(t) = 0, (37)

where q =
[
qTu q

T
v qTwq

T
x qTy

]T
denote the overall vector of generalized coordinates and M, C and K denote

mass, damping and stiffness matrices of the system. The expressions for the matrices are formulated as

M =

⎡
⎢⎢⎢⎣

Muu Muv Muw Muy Mux
Mvu Mvv Mvw Mvy Mvx
Mwu
M yu
Mxu

Mwv

M yv
Mxv

Mww

M yw
Mxw

Mwy
M yy
Mxy

Mwx
M yx
Mxx

⎤
⎥⎥⎥⎦ , C =

⎡
⎢⎢⎢⎣

Cuu Cuv Cuw Cuy Cux
Cvu Cvv Cvw Cvy Cvx
Cwu
Cyu
Cxu

Cwv

Cyv
Cxv

Cww

Cyw
Cxw

Cwy
Cyy
Cxy

Cwx
Cyx
Cxx

⎤
⎥⎥⎥⎦ ,

K =

⎡
⎢⎢⎢⎣

Kuu Kuv Kuw Kuy Kux
Kvu Kvv Kvw Kvy Kvx
Kwu
K yu
Kxu

Kwv

K yv
Kxv

Kww

K yw
Kxw

Kwy
K yy
Kxy

Kwx
K yx
Kxx

⎤
⎥⎥⎥⎦ , (38)
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where

Muu = (b1 + M)

∫ L

0
UUT dz, Muv = Muw = Muy = Mux = 0,

Cuu = 2MU
∫ L

0
U

′
UT dz, Cuw = 2b1ω0

∫ L

0
UWT dz, Cuv = Cuy = Cux = 0,

Kuu =
∫ L

0

(
a44 + R(z)ω2

0)U
′
U

′T + MU 2U
′′
UT − (b1 + M) ω2

0UUT
)
dz,

Kuv = Kuw = Kux = 0, Kuy = a44

∫ L

0
ΘyU

′T dz,

Mvv = (b1 + M)

∫ L

0
VV T dz, Mvu = Mvw = Mvy = Mvx = 0,

Cvv = 2MU
∫ L

0
V

′
V T dz, Cvu = Cvw = Cvy = Cvx = 0,

Kvv =
∫ L

0

(
a55 + R(z)ω2

0)V
′
V

′T + MU 2V
′′
V T
)
dx,

Kvu = Kvw = Kvy = 0, Kvx = a55

∫ L

0
Θx V

′T dz,

Mwu = Mwv = Mwx = Mwy = 0, Mww = b1

∫ L

0
WWT dz,

Cwv = Cwx = Cww = Cwy = 0, Cwu = −2b1ω0

∫ L

0
WUT dz

Kwu = Kwv = Kwy = Kwx = 0, Kww =
∫ L

0

(
a11W

′
W

′T − b1ω
2
0WWT

)
dz,

M yy = (b5 + b15 + Mr2x
) ∫ L

0
ΘyΘ

T
y dz M yu = M yv = M yw = 0,

M yx = (b6 − b13)
∫ L

0
ΘxΘ

T
y dz,

Cyy = Cyu = Cyv = Cyw = Cyx = 0,

K yy =
∫ L

0

(
a22Θ

′
yΘ

′T
y + (a44 − ω2

0(b5 + b15 + Mr2x ))ΘyΘ
T
y

)
dz,

K yu = a44

∫ L

0
U

′
ΘT

y dz, K yv = K yw = 0,

K yx =
∫ L

0

(
a23Θ

′
xΘ

′T
y − ω2

0 (b6 − b13)ΘxΘ
T
y

)
dx,

Mxx =
(
b4 + b14 + Mr2y

) ∫ L

0
ΘxΘ

T
x dz, Mxu = Mxv = Mxw = 0,

Mxy = (b6 − b13)
∫ L

0
ΘyΘ

T
x dz,

Cxx = Cxu = Cxv = Cxw = Cxy = 0,

Kxx =
∫ L

0

(
a33Θ

′
xΘ

′T
x + (a55 − ω2

0(b4 + b14 + Mr2y )ΘxΘ
T
x

)
dz,

Kxu = Kxw = 0, Kxv = a55

∫ L

0
V

′
ΘT

x dz,
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Kxy =
∫ L

0

(
a32Θ

′
yΘ

′T
x − ω2

0 (b6 − b13)ΘyΘ
T
x

)
dz. (39)

The matrix equation (37) can be transformed into a first-order state space form as

Ż (t) = DZ (t) , (40)

where

Z (t) =
{
q (t)
q̇ (t)

}
, D =

[
0 I

−M−1K −M−1C

]
, (41)

where I is the unitarymatrix. Substituting the state vectorZ(t) = Z̄e(Ω0i t) into Eq. (40), the standard eigenvalue
problem reads

(D − iΩ0I)Z̄ = 0. (42)

Generally, the eigenvalues Ω0 are complex quantities, i.e., Ω0 = Re (Ω0) + i Im(Ω0). Stability and type of
instability regions can be defined based on the sign of the real and imaginary parts of the complex eigenvalues
[46,47].

4 Results and discussion

Vibration and dynamic stability of the thin-walled CNTRC rotating fluid-conveying pipe with a circular
cross section with the mean radius rm = 0.127m, uniform thickness h = 0.1 rm , length L = 16 rm and
hub radius R0 = 1.3m are investigated [32]. The solution of this problem is obtained through the Galerkin
method with six modes (N = 6). The CNTRC pipe is a mixture of CNTs and a polymer matrix. Poly{(m-
phenylenevinylene)-co-[(2,5-dioctoxy-p-phenylene) vinyl-ene]}, PMPV, has been used as polymer matrix,
and its material properties are: Em = 2.1GPa, ρm = 1150 kg/m3 and vm = 0.34 at room temperature
[48]. Furthermore, the pipe is reinforced with single-walled CNTs whose material properties are taken to be

ECNT
11 = 5.6466TPa, ECNT

22 = 7.0800 TPa, GCNT
12 = 1.9445TPa, vCNT12 = 0.175, and ρCNT = 1400 kg/m3

[48]. In addition, the values of the efficiency parameters have been taken from those reported by Zhu et al. [48]
as: η1 = 0.149 and η2 = 0.934 for VCNT

0 = 0.11, η1 = 0.150 and η2 = 0.941 for VCNT
0 = 0.14, moreover,

η1 = 0.149 and η2 = 1.381 for VCNT
0 = 0.17, and η3 = η2.

To simplify the analysis, the following dimensionless parameters are considered:

u =
√

M

a33R
UL , ω =

√
(M + b1R)L4

a33R
ω0, β = M

M + b1R
, Ω =

√
(M + b1R)L4

a33R
Ω0.

A convergence study is implemented in Table 1 for the non-dimensional eigenfrequencies of cantilever thin-
walled rotating pipe conveying fluid. The eigenvalue solution is performed for a thin-walled rotating pipe with

FG-X distribution with VCNT
0 = 0.11, β = 0.5, u = 2 and ω = 2. The number of trial functions, N, was

increased, and the eigenvalues were computed again. It is observed that the first three eigenvalues of the system
do not change significantly at a sufficient number of trial functions. Increasing the number of trial functions
further reduces the relative error but increases the computational time. Obviously, an optimum number of trial

Table 1 Convergence and accuracy of the first three eigenvalues for cantilever thin-walled pipe conveying fluid for various
numbers of trial functions (N ), (FG-X distribution, β = 0.5, u = 2, ω = 2)

N

3 3.7544 + 1.9359i 19.2700 + 1.5013i 46.6238 + 1.7223i
4 3.7234 + 1.9302i 19.2110 + 1.4596i 43.9210 + 1.4164i
5 3.7266 + 1.9291i 19.0047 + 1.4370i 43.7568 + 1.3342i
6 3.7092 + 1.9221i 18.8954 + 1.4204i 43.3453 + 1.3082i
7 3.7065 + 1.9207i 18.8923 + 1.4202i 43.2812 + 1.2789i
8 3.7038 + 1.9205i 18.8914 + 1.4073i 43.0690 + 1.2769i
9 3.7003 + 1.9202i 18.8908 + 1.3979i 42.9964 + 1.2700i
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Table 2 Comparison of the present results with those reported in Ref. [43]

ri/r∗
o ucr Difference (%)

Yun et al. [43] Present study

0.1 18.698 18.851 0.82
0.3 6.976 7.035 0.85
0.5 4.743 4.787 0.93
0.69 5.079 5.128 0.96
0.7 5.033 5.078 0.89
0.9 3.281 3.311 0.91

*Here ri and ro are inner and outer radius

Fig. 2 The comparison between the results of current model and those reported by Yun et al. [43]

functionswere chosen to reduce the computational timewhile achieving accurate results.We found that six trial
functions can be used for achieving a solution with a relative error of less than 0.3% for the eigenfrequencies.

To investigate the validity and accuracy of the results, Table 2 and Fig. 2 show the comparisons of the
dimensionless flutter velocity and dimensionless natural frequency for a thin-walled Timoshenko pipe con-
veying fluid. The properties of the materials considered in this validation are given as [43]: Young’s moduli
E = 1 TPa; mass density ρt = 2300 kg/m3; length L = 800 nm; outer radius Rout = 40 nm; thickness
h = 20 nm; and Poisson’s ratio υ = 0.25. It is observed that the results of the present study are in good
agreement with those of Yun et al. [43]. Furthermore, the figure shows that the fluid velocity considerably
affects the first three natural frequencies and causes them to decrease.

Figure 3 illustrates the effects of different CNT distributions on the eigenfrequency of the three lowest
modes of a cantilever thin-walled pipe conveying fluid as a function of the fluid velocity. The results are
presented for L = 10 rm , β = 0.5, VCNT

0 = 0.11 and ω = 0. It should be noted that the fluid velocity is
known as the critical flutter velocity at which Im(�) = 0 and Re(�) �= 0. Besides, the positive value of the
imaginary part of the eigenfrequency reveals that the system is stable and the negative one is related to an
unstable system. Also, when the sign of the imaginary part of the eigenfrequency changes from positive to
negative, the flutter instability occurs. So, for small values of the fluid velocity as it is shown in Fig. 3a, all
modes are stable since the flow induces positive damping in all modes, while for higher values of fluid velocity,
the imaginary part of the third mode begins to decrease and eventually becomes negative at ucr = 6.145. In
other words, the cantilever rotating pipe loses its stability via a Hopf bifurcation which leads to the third-mode
flutter. Furthermore, for fluid-conveying pipes reinforced by CNTs, the flutter may also occur in the second
and third modes. The mode exchange is a frequently occurring feature of the dynamics of the systemwhich has
been detected in the FG-CNT pipes conveying fluid for the first time. From Fig. 3b, it is found that the flutter
instability occurs in the third mode; therefore, the UD pipe loses its stability at lower critical flutter velocity
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Fig. 3 The dimensionless complex eigenfrequency of the three lowest modes of the fluid-conveying thin-walled pipe as a function
of u with V CNT

0 = 0.11, L = 10 rm , β = 0.5 and ω = 0, for different CNTs distribution types a FG-X, b UD, c FG-A, d FG-V

than the previous case (FG-X). For the FG-A type of CNT distribution, it can be observed from Fig. 3c that
the critical fluid velocity occurs in the third mode at u = ucr = 5.55. Furthermore, Fig. 3d shows that the
fluid-conveying thin-walled pipe reinforced with FG-V type of CNTs distribution loses its stability via flutter
in the second mode at ucr = 5.28. Besides, it is seen that the flutter velocity predicted for the FG-X pipe is
higher than that predicted for the other CNTRC distribution patterns.

Figure 4 is plotted to show the variations of the first three complex eigenfrequencies of the thin-walled
rotating pipe conveying fluid versus the fluid velocity. The results of Fig. 4 are presented for the UD type of
CNT distribution, L = 10rm , β = 0.5, VCNT

0 = 0.11 and various values of the rotational speed. The results
indicated that by increasing the rotational speed, the critical flutter velocity increases. This means that the rise
in the critical flutter velocity is due to additional restoring force of the centrifugal effect. Moreover, by the
increase in the rotational speed, the mode-exchange phenomenon cannot be observed.

Figure 5 shows the variation of critical flutter velocity versus themass ratio for a thin-walled pipe conveying
fluid with FG-X type of CNT distribution, VCNT

0 = 0.11 and ω = 0. The curves in this figure, which separate
the stable zone from the unstable, are called flutter boundaries. The flutter boundaries have several S-shaped
sequences that represent different dynamic behaviors of the pipe conveying fluid, which has previously been
detected by Gregory and Païdoussis [49]. This figure shows that the increase in the mass ratio leads to an
increase in the critical fluid velocity. Also, the mode shapes change at the critical mass ratio [50]. In this figure,
it is observed that the system remains stable when the fluid velocity is lower than the critical fluid velocity
and any vibrational motions die out. Furthermore, the system becomes unstable and any perturbation will
grow quickly at fluid velocity higher than the critical fluid velocity. Moreover, the length–radius ratio has a
significant effect on the critical flutter velocity of thin-walled pipe conveying fluid. In other words, increasing
the length–radius ratio increases the critical flutter velocity and the stable zone.
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Fig. 4 The dimensionless complex eigenfrequency of the three lowest modes of the fluid-conveying thin-walled pipe as a function
of u with L = 10 rm , UD distribution of CNTs, V CNT

0 = 0.11, and β = 0.5, for different rotational speed a ω = 2, b ω = 4, c
ω = 6
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Fig. 5 Variation of the critical flutter velocity versus the mass ratio for a FG-X pipe with ω = 0 and V CNT
0 = 0.11, for different

length–radius ratio

Fig. 6 Variation of the critical flutter velocity versus the mass ratio for various kinds of CNTRC pipe with L = 10rm , ω = 0 and
V CNT
0 = 0.11

To investigate the effects of various CNT distributions on the stability boundaries of the system, the critical
flutter velocity versus the mass ratio is plotted in Fig. 6. The results are shown for VCNT

0 = 0.11, L = 10rm
and ω = 0. It is clear that the stiffness of CNTRC pipes changes with the form of the CNT distribution in
the matrix, and therefore, the distribution of CNTs considerably affects the stability zone of the system. It is
observed that the FG-X pipe has the highest critical flutter velocity, whereas the FG-V pipe has the lowest
critical flutter velocity among all distributions of CNTs. In other words, the results show that enhancing of the
stiffness near the outer and inner surfaces of the pipe is an efficient way to improve the stability region.

It should be noted that the determination of critical fluid velocity and critical rotational speed of a thin-
walled FG-CNTRC rotating pipe is of great importance. For this purpose, the variations of the critical flutter
velocity by increasing the rotational speed for the different distributions of CNTs are plotted in Fig. 7. It is
found that the critical flutter velocity increases when the rotational speed increases. Furthermore, the curves
describe the relation between the critical flutter velocity and the critical rotational speed when the transference
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Fig. 7 Variation of the critical flutter velocity with the rotational speed for various kinds of CNTRC pipe with L = 20rm , β = 0.3
and V CNT

0 = 0.11

Fig. 8 Variation of the critical flutter velocity versus the rotational speed for a FG-A pipe with L = 20rm and= 0.3 , for different
V CNT
0

of the two unstable modes occurs. It should be noted that the flutter instability of the FG-V pipe observed in
the second and third modes in the range of 0 < ω < 5.2 and 5.2 < ω < 7, respectively, and the corresponding
critical rotational speed is ωcr ∼= 5.2. In addition, it is found that the CNT distribution close to both the inner
and outer surfaces of the pipe (FG-X) is more effective than those distributed near the inner surface (FG-A)
and outer surface (FG-V). This is due to the increase in the stiffness of the pipe.

The effect of the CNTs volume fraction on the flutter boundary of the FG-A pipe is plotted in Fig. 8. It is
observed that by increasing the CNT volume fraction, the critical flutter velocity and stability region increase.
In other words, the efficient approach to enhance the stability behaviors of a thin-walled pipe is to improve the
structural stiffness and reduce the mass ratio.
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5 Conclusion

Vibration and flutter instability of thin-walled FG-CNTRC rotating pipes conveying fluid were investigated
in this study. Based on the thin-walled Timoshenko beam theory, the governing equations for vibration of
the fluid-conveying rotating pipe were formulated by the use of Hamilton’s principle. The extended Galerkin
method was employed to discretize the governing equations, and the eigenfrequency and stability of the pipe
were determined by eigenvalue analysis. To confirm the accuracy of the suggested model, the results were
compared with the existing data in the literature. It was shown that by increasing both the length–radius ratio
and mass ratio, the flutter velocity of the fluid-conveying thin-walled FG-CNTRC pipe increased. Also, the
effectiveness of functionally graded distributions of CNTs in comparison with the uniform distribution of
CNTs was investigated. Besides, by increasing the CNTs volume fraction, the critical flutter velocity of the
pipe increased. Furthermore, the critical flutter velocity of the FG-X pipe was the maximum with respect to
all CNT distribution patterns. In addition, the results indicated that the velocity of vibration-induced flutter
instability of the thin-walled pipe increased as the rotational speed increased.
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