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Abstract The present article focuses on the static and dynamic finite element simulations of smart piezolami-
nated composite shell structures considering strong electric field nonlinearity under thermo-electro-mechanical
loads. To model the electromechanical behaviour of piezoelectric patches or layers under large applied electric
fields more efficiently, two-way coupled rotationally invariant second-order nonlinear constitutive relations are
used in the variational principle approach. Furthermore, the nonlinear piezoelectric element formulations are
further extended to capture the response under temperature gradients. Quadratic and cubic polynomial approx-
imations are deemed to represent the electric potential and temperature fields, respectively. Validation of the
present element formulation has been done in comparison to experimental and numerical investigations of
those available in the literature. Moreover, numerical simulations are performed to study the large electric field
nonlinearities of piezolaminated structures in static and dynamic as well as active vibration control problems
under both mechanical and thermal loads. The numerical simulations have shown that using the piezoelectric
nonlinearity, both the static shape control and vibration suppression either under mechanical or thermal loads
can be accomplished at much lower actuation voltages than estimated by the linear model.

1 State of art

Smart materials (e.g. piezoelectric, magneto-restrictive, shape memory alloys, etc.) have gained attentiveness
for their use in sensors, actuators, noise, vibration, shape and position control, non-destructive testing and
health monitoring systems. Among these, use of piezoelectric material for sensing and distributed actuation by
possessing self-controlling capabilities for the development of high-performing lightweight flexible structures
has attracted many researchers in recent years. In the aeronautical and space engineering fields, vibration sup-
pression and flutter control by active piezoelectric materials has gained significant attention as the development
of smart skins for helicopter rotor blades and aeroelastic wings, and also other intelligent, flexible structures
(see [2,5,8,13,29,30,36,39]). On the other hand, lightweight thin-walled laminated smart composite structures
have found wide applications. Therefore, laminated shell-type structures bonded with piezoelectric layers have
been focused. Furthermore, a challenge exists in the accurate prediction of the static and dynamic behaviours
of smart piezolaminated structures in order to design the smart systems effectively. There is a substantial
body of literature (see review articles of [9,16]) on the modelling and analysis of piezolaminated composite
structures, much of which exploits linear behaviour either in geometrically (i.e. valid for small deformations)
or materially (i.e. considering linear piezoelectricity). Most of the literature is based on linear constitutive rela-
tions to describe the piezomechanical coupling. This linear constitutive relation approach is appropriate for
weak electromechanical coupling and low electric fields. Some piezoceramics and lithium niobate etc. show
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constitutive nonlinearity under strong electric fields by virtue of ferroelectric hysteresis and repolarisation,
which was justified experimentally by [24,26].

Numerous researchers have studied analytical modelling of the experimentally observed nonlinear
behaviour of piezoelectrics. However, static and transient analysis of laminated composites integrated with
piezoelectric layers or patches considering strong electric field nonlinearities is carried out by only very few
authors. To model the strong electric field reversible nonlinearities in piezoelectrics [15,26,41] proposed
higher-order polynomial equations in constitutive modelling. Ge and Jouaneh [7] and Roysten and Houston
[33] studied irreversible nonlinearities and rate-independent hysteresis and further derived analytical equations
for nonlinear piezoelectricity. A regular basis by taking cubic terms in the thermodynamic Gibbs potential was
introduced by [15] to acquire the nonlinear constitutive relations of piezomechanical coupling. Tiersten [41]
expressed electromechanical coupling for the case of small deformations and strong electric fields by rota-
tionally invariant nonlinear constitutive relations. Independent polynomial expressions of second-order were
derived by [46,47] to model the piezoelastic coupling in themm6 andmm2 symmetry classes of piezoelectrics.

Strong electric field nonlinear piezoelectric behaviour in unimorph, bimorph and rainbow actuators was
noticed in experiments by [45]. The analysis of piezoelectric actuators under large applied electric fields in
both statics and dynamics by adopting classical beam theory can be found in the articles of [48,49]. They
compared the experimental observations conducted by [45]. Achuthan et al. [1] developed a plane stress
piezoelectric finite element (FE) model, wherein the dependence of piezoelectric constants on applied electric
fields is considered to perform static shape control of composite beams. Yao et al. [50] considers the nonlinear
electromechanical coupling equations of [15] in the framework of classical laminate theory (CLT) to develop
mathematical expressions for the static response of simply supported piezolaminated plates under large applied
electric fields. To account for shear deformations in laminates, Hong and Chopra [12] adopted first-order shear
deformation (FOSD) theory. A similar study [50] was carried out for laminated composite plates bonded with
piezopatches assuming piezoelectric coefficients to be a quadratic function of the applied electric field.Wagner
et al. [43] and Samal et al. [34] conducted experiments on cantilevered piezoelectric beams to study nonlinear
effects and concluded that despite the fact of applied weak electric fields, nonlinearity in piezoelectric materials
is observed if the system is excited near resonance. This was further studied recently by developing an FE
model using nonlinear elastic and piezoelectric constants by [27,28]. Thornburgh and Chattopadhyay [40]
investigated static behaviour of piezolaminated plates by incorporating third-order shear deformation (TOSD)
theory to address the shear deformations of laminates more precisely and further assumed linear dependence of
piezoelectric coefficients on electric/strain fields tomodel the strong electric field nonlinearity. Almost identical
modelling characteristics of [12] endorsed and developed a four-node plate element by [38] to investigate the
static shape control of plates with piezopatches.

All the aforementioned models are based on equivalent single layers (ESL) theories to analyse the smart
laminated composite plates integrated with nonlinear piezoelectric actuators. Layer-wise finite elements in
the framework of 2-D multilayered piezolaminated plate theories provide accurate solutions; however, the
associated cost in computations multiplies as the number of layers increases. Finite elements based on these
layer-wise theories for laminated composites considering piezoelectric nonlinearities have been developed by
[35]. Different from the present paper, they adopted the nonlinearity in the polarisation–electric field interaction
and also assumed cubic polynomials for displacements and electric potentials. Very recently, Kapuria and
Yaqoob Yasin [17] presented a finite element model by incorporating layer-wise zigzag and TOSD theories
to study the static deformations of bimorph and sandwich piezolaminated plates accounting for the nonlinear
electromechanical coupling relations of [41]; later active vibration control of laminated plates was investigated
by [18].

Despite the fact that some studies have been reported in the literature, the study on laminated composite
plates integrated with piezoelectric patches or layers considering strong electric field nonlinearity is still rarely
addressed. Some analytical and numerical models are not accurate under strong electric fields [1,12,47–
49] since they treat only one-way piezoelastic behaviour in nonlinear constitutive relations. In particular,
the above-mentioned literature is limited to either 1-D beam or 2-D plate finite elements. The other type of
nonlinearities are the aftereffects of the ferroelectric switching; usually, these are irreversible nonlinearities.
Many piezoelectricmaterials aremade from ferroelectric ceramic. For this class ofmaterials, domain switching
effects occur for large electric fields, see e.g. [19] and the references therein. These are not considered in
the present work. Thus, it is restricted to moderate electric fields. A lot of research exists in the literature
concerning the modelling of irreversible nonlinearities such as rate-independent hysteresis. However, the
model proposed in the present article is based on the assumption of reversible nonlinearities, and this type of
model is suitable when only quasi-static loading is considered, and it should be noted that in our model in
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case of unloading minor hysteresis effects are neglected. However, in the majority of the static shape control
and active vibration control problems, it is inevitable to apply strong electric fields to attain higher actuation
authority. Therefore it is essential to adopt advanced finite element formulations for a precise prediction of
response of piezolaminated structures considering strong electric field nonlinearities. In fact, no study has been
carried outwith thermal loads considering the electromechanical coupling under strong electric fields to analyse
piezoelectric laminated structures. In the present paper, a 2D-shell finite element model is proposed to carry out
static analysis of piezolaminated composite shells by incorporating nonlinear constitutive relations in order to
describe the electromechanical coupling under strong electric fields. The nonlinearity in piezoelastic coupling
is based on the assumptions of small strains and large electric fields in the rotationally invariant constitutive
equations of [41]. The shell finite element based on the work of [20,44] and applied by [23,31] is extended
to develop the numerical models for composite shells integrated with nonlinear piezoelectric actuators. A
quadratic variation of the electric potential through the thickness is assumed to include electromechanical
stiffness more accurately. A cubic polynomial over the thickness is deemed to represent temperature fields.
Here, the element formulation is restricted to geometrically linear problems, in order to study and demonstrate
exclusively the constitutive nonlinearity in piezomechanical coupling. The Newton–Raphson iteration and
Newmark time integration techniques are used to solve the static and dynamic problems, respectively. Some
numerical examples are presented to study the static shape and active vibration control problems using the
developed nonlinear piezolaminated composite shell element under strong electric fields.

2 Basic equations and kinematics

2.1 Strain–displacement relations

In this shell element, small strains and small rotations of [6,11] are adopted in the framework of Reissner-
Mindlin first-order transverse shear deformation (FOSD) hypothesis and the FE implementation of [44].

The four-node shell element with the global gi , the local aα , the natural ξ–η and the orthonormal material
t i coordinate systems are shown in Fig. 1.

The Jacobian matrix J defines the relation between the orthonormal material coordinate system and the
natural coordinate system and r I is the position vector to the reference mid-surface in the initial configuration
of node I . The position vector R to an arbitrary point on the director at the position (ξ, η) can be determined
as

R(ξ, η, z) = r(ξ, η) + z d(ξ, η), (1)

where z denotes the thickness coordinate ranging from the bottom to the top of the considered shell and where
d indicates the director. In the context of small strains and small rotations, the infinitesimal strain–tensor
components based on the FOSD theory are expressed as (see [6,11])

εαβ = 0
εαβ +z

1
εαβ +z2

2
εαβ,

εα3 = 0
εα3 +z

1
εα3,

ε33 = 0
ε33,

(2)

Fig. 1 Definition of the coordinate systems in the FRT element



5096 M. N. Rao et al.

where

2
0
εαβ = r ,α · (r̄,β − r ,β) + r ,β · (r̄,α − r ,α),

2
1
εαβ = r ,α · (d̄,β − d,β) + r ,β · (d̄,α − d,α) + d,α · (r̄,β − r ,β) + d,β · (r̄,α − r ,α),

2
0
εα3 = r ,α · d̄ + d,β · r̄,α. (3)

In Eq. (3), an overbar indicates vectors in the deformed configuration. Here, on behalf of thin-walled struc-

tures, the components
2
εαβ are neglected. With the presumption of an inextensible director

0
ε33= 0, and as a

consequence of FOSD theory the components of
1
εα3 become equal to zero as well.

2.2 Constitutive relations

The general rotationally invariant nonlinear equations of piezoelectricity in a 3D-system as prescribed by
Tiersten [41] are given as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε11
ε22
ε33
2ε12
2ε13
2ε23

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

s11 s12 s13 0 0 0
s12 s22 s23 0 0 0
s13 s23 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s55 0
0 0 0 0 0 s66

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S11
S22
S33
S12
S13
S23

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 d31
0 0 d32
0 0 d33
0 0 0
d15 0 0
0 d15 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎨

⎩

E1
E2
E3

⎫
⎬

⎭

+

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α11
α22
α33
0
0
0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

ΔT + 1

2

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

b11
b22
b33
0
0
0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

|E3|E3, (4)

⎧
⎨

⎩

D1
D2
D3

⎫
⎬

⎭
=
⎡

⎣
0 0 0 0 d15 0
0 0 0 0 0 d15
d31 d32 d33 0 0 0

⎤

⎦

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S11
S22
S33
S12
S13
S23

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

+
⎡

⎣
ε11 0 0
0 ε22 0
0 0 ε33

⎤

⎦

⎧
⎨

⎩

E1
E2
E3

⎫
⎬

⎭

+
⎧
⎨

⎩

γ11 0 0
0 γ22 0
0 0 γ33

⎫
⎬

⎭
ΔT + 1

2

⎧
⎨

⎩

0
0

ς33

⎫
⎬

⎭
|E3|E3, (5)

where Si j denotes the stress components, εi j the strain components, Ei and Di are the electric field and dis-
placement components, αi j the thermal expansion strain constants, and γi j the thermoelectric constants, and
ΔT is the temperature difference. The constants si j , di j and εi j represent, respectively, the elastic compliance
coefficients, piezoelectric strain coefficients , and dielectric constants, bi j and ςi j are the electroelastic strain
and electroelastic susceptibility constants related to the quadratic electric fields in Eqs. (4) and (5). These
constitutive Eqs. (4) and (5) have been derived by Tiersten [41] based on a cubic approximation of the Gibb’s
potential for coupled electro-thermo-mechanical 3-D continuum mechanics. This leads to second-order non-
linear equations involving quadratic term of the electric field E . Here, in view of the application to 2-D plate
and shell problems, in the nonlinear term we have only considered the transverse electric field E3.

For the present 2D-theory, the constitutive relations (4) and (5) are represented in the following standard
manner

S = cε − eTE − λΔT − 1

2
β̂|E3|E3, (6)

D = eε + εE + γ̂ΔT + 1

2
χ̂ |E3|E3, (7)
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where S denotes the stress vector, ε the strain vector, D the electric displacement vector, E the electric field
vector, ΔT is the temperature difference:

S =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S11
S22
S12
S13
S23

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, ε =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε11
ε22
2ε12
2ε13
2ε23

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

D =
⎧
⎨

⎩

D1
D2
D3

⎫
⎬

⎭
, and E =

⎧
⎨

⎩

E1
E2
E3

⎫
⎬

⎭
.

(8)

Concerning the various matrices in Eqs. (6) and (7) c denotes the elasticity matrix for anisotropic material, d is
the piezoelectric constant matrix, ε is the dielectric constant matrix, λ is the thermal stress coefficient vector,
γ̂ is the pyroelectric coefficient vector:

c =

⎡

⎢
⎢
⎢
⎣

c11 c12 0 0 0
c12 c22 0 0 0
0 0 c33 0 0
0 0 0 c44 0
0 0 0 0 c55

⎤

⎥
⎥
⎥
⎦

=
[ [C1] 0(3×2)

0(2×3) [C2]
]

, (9)

eT =

⎡

⎢
⎢
⎢
⎣

0 0 e13
0 0 e13
0 0 0
e41 0 0
0 e41 0

⎤

⎥
⎥
⎥
⎦

=
[

0(3×2) [e1]
[e2] 0(2×1)

]

, (10)

ε =
⎡

⎣
ε̂1 0 0
0 ε̂2 0
0 0 ε̂3

⎤

⎦ =
[ [ε1] 0(2×1)

0(1×2) [ε2]
]

, (11)

λ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ11
λ22
0
0
0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=
{[λ1]

0

}

, (12)

γ̂ =
⎧
⎨

⎩

0
0
γ̂3

⎫
⎬

⎭
=
{
0

[γ1]
}

. (13)

The electroelastic strain and susceptibility constant vectors related to the quadratic electric fields are:

β̂ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β31
β32
0
0
0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=
{[β1]

0

}

, (14)

χ̂ =
⎧
⎨

⎩

0
0
χ3

⎫
⎬

⎭
=
{

0
[χ1]

}

. (15)

The elasticity constants used in the above Eq. (9) are defined in terms of material parameters as

c11 = E1

1 − ν12ν21
, c22 = E2

1 − ν12ν21
, (16)
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c12 = ν12E2

1 − ν12ν21
, c33 = G12, (17)

c44 = κG12, c55 = κ
E2

2(1 + ν23)
, (18)

where κ = 5
6 is introduced as a shear correction factor to account for the over-predicted transverse shear

deformation energy of the first-order shear deformation theory and ν21 = ν12
E2
E1
. The other variables in Eqs.

(6) and (7) are

β31 = c11b31 + c12b32, β32 = c12b31 + c22b32, (19)

e31 = c11d31 + c12d32, e32 = c12d31 + c22d32, (20)

λ11 = c11α11 + c12α22, λ22 = c12α11 + c22α22, γ̂3 = γ33 − d31α11 − d32α22, (21)

e14 = c55d15, e15 = c66d15, ε̂1 = ε11 − d15e15, ε̂2 = ε22 − d24e24, (22)

ε̂3 = ε33 − d31β31 − d32β32, χ3 = ς33 − d31e31 − d32e32, (23)

The stress, strain and elasticity matrices in the material coordinate system are obtained, if the material principal
axes are not coincident with the material coordinate system, as

ε = T−1εm, S = T T Sm, c = T T cmT , (24)

where the subscript m represents the material principle axes and the transformation matrix T is given by

T =

⎡

⎢
⎢
⎢
⎣

cos2 θ sin2 θ sin θ cos θ 0 0
sin2 θ cos2 θ − sin θ cos θ 0 0

− sin 2θ sin 2θ cos 2θ 0 0
0 0 0 cos θ sin θ
0 0 0 − sin θ cos θ

⎤

⎥
⎥
⎥
⎦

. (25)

Using the following relation thermal fields can be expressed by temperature differences

h = κ∇ϑ, (26)

where κ is the heat conductivity matrix:

κ =
⎡

⎣
κ1 0 0
0 κ1 0
0 0 κ3

⎤

⎦ =
[ [κ1] 0(2×1)

0(1×2) [κ2]
]

. (27)

In a similar manner, the heat conductivity and thermal stress coefficient vectors require a transformation
from principal material axes to the material coordinate system as

λ = [T ]T λm, κ = [Tκ ]T κm[T κ ]. (28)

Here the transformation matrix [T3] is given by

[T κ ] =
⎡

⎣
cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤

⎦ . (29)
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2.3 Electric field equations

The electric field can be introduced as negative gradient of the scalar electric potential φ as

{E} = −{∇φ}. (30)

As observed in the analytical three-dimensional solutions [21], a quadratic variation of the electric potential
across the thickness is considered to model the bending-induced electromechanical stiffness very accurately:

φ(x, y, z)= 0
φ(x, y) + z

1
φ(x, y) + z2

2
φ(x, y), (31)

By using Eqs. (30) and (32), one obtains the electric field as

Eα = 0
Eα +z

1
Eα +z2

2
Eα,

E3 = 0
E3 +z

1
E3 .

(32)

2.4 Temperature difference distribution

In this finite element model, the temperature distribution in transverse direction is treated by adopting a cubic
variation of the temperature differences ΔT = ϑ . Thus,

ϑ(z) = 0
ϑ + z

1
ϑ + z2

2
ϑ + z3

3
ϑ. (33)

As a consequence of Eq. (33), the temperature gradients ϕ are expressed as

ϕα = 0
ϕα + z

1
ϕα + z2

2
ϕα + z3

3
ϕα,

ϕ3 = 0
ϕ3 + z

1
ϕ3 + z2

2
ϕ3 .

(34)

To overcome some discrepancies in physical interpretation of the assumed cubic polynomial distribution

which contains four thermal degrees of freedom
0
ϑ ,

1
ϑ ,

2
ϑ and

3
ϑ , these degrees of freedom are transformed

to temperature on bottom and top surfaces, and the transverse gradients on the bottom and top surfaces,

respectively,
−
ϑ ,

+
ϑ ,

−
ϕ3 and

+
ϕ3. With these degrees of freedom boundary conditions for the temperature on both

surfaces can be enforced, and additionally the heat flux into and out of the shell can be controlled.
This can be formulated in matrix form as

ϑ̌ = Lϑ ϑ, (35)

where

ϑ =
{−
ϑ

+
ϑ

−
ϕ3

+
ϕ3

}T

, (36)

ϑ̌ =
{

0
ϑ

1
ϑ

2
ϑ

3
ϑ

}T

, (37)

and Lϑ is the conversion matrix for the temperature field. The matrix Lϑ is given in Appendix A.

3 Finite element formulation

The variational formulation of the electromechanically coupled 3D boundary value problem can be written as
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∫

V
(S : δε − D · δE) dV =

∫

A
(T · δυ + Qδφ) dA +

∫

V
(ρ (b − ϋ)) · δυdV , (38)

where S is the second Piola–Kirchhoff stress tensor, D is the dielectric displacement vector, δε is the virtual
Green–Lagrange strain tensor, δE is the virtual electric field vector, T is the traction vector on the boundary,
Q is the surface related electric charge density, ρ is the mass density, b is the body force density, ϋ is the
acceleration vector, δυ and δφ are the virtual displacement vector and electric potential, respectively. In this
finite element shear locking is eliminated by assumed natural strain (ANS)methodwhichwas initially proposed
by [14,25] (see [31] for further details). The enhanced assumed strain(EAS) method is used to enhance the
shell element behaviour and to avoid the volume locking. This EAS method was first proposed by Simo and
Rifai [37]. An enhanced quantity, which consists of the kinematically obtained value� and the enhancing part
�̃, is denoted by �̂. Thus,

ε̂ = ε + ε̃. (39)

The volume integral in Eq. (38) is reduced to a surface integral by performing the transverse integration
analytically. The internal virtual work with both enhanced and kinematically obtained strains can be rewritten
in the form

∫

V

(
S : δε̂ − D · δE

)
dV =

∫

Ω

{δEε}T(Cc{Eε} + Cc{Ẽε} + Ce{EE} + Cλ{Et} + Cβ{EE}) dΩ

+
∫

Ω

{δẼε}T(Cc{Eε} + Cc{Ẽε} + Ce{EE} + Cλ{Et} + Cβ{EE}) dΩ

+
∫

Ω

{δEE}T(Ce{Eε} + Ce{Ẽε} + Cε{EE} + Cγ {Et} + Cχ {EE}) dΩ, (40)

where

Cc =

⎡

⎢
⎢
⎣

[ 0C1] [ 1C1]
[ 1C1] [ 2C1] 0(6×2)

0(2×6) [ 0C2]

⎤

⎥
⎥
⎦ , (41)

Ce = −

⎡

⎢
⎢
⎣

[0eP1 ] [1eP1 ]
0(6×6) [1eP1 ] [2eP1 ]

[0eP2 ] [1eP2 ] [2eP2 ] 0(2×2)

⎤

⎥
⎥
⎦ , (42)

Cλ = −

⎡

⎢
⎢
⎣

[0λ1] [1λ1] [2λ1] [3λ1]
[1λ1] [2λ1] [3λ1] [4λ1]

0(2×4)

⎤

⎥
⎥
⎦ , (43)

Cβ = −

⎡

⎢
⎢
⎣

[ 0βP
1 ] [ 1βP

1 ]
0(6×6) [ 1βP

1 ] [ 2βP
1 ]

0(2×6) 0(2×2)

⎤

⎥
⎥
⎦ , (44)

Cε = −

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[0εP1 ] [1εP1 ] [2εP1 ]
[1εP1 ] [2εP1 ] [3εP1 ] 0(6×2)

[2εP1 ] [3εP1 ] [4εP1 ]
[0εP1 ] [1εP1 ]

0(2×6) [1εP1 ] [2εP1 ]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (45)
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Cχ = −

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0(6×6) 0(6×2)

[ 0χP
1 ] [ 1χP

1 ]
0(2×6) [ 1χP

1 ] [ 2χP
1 ]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (46)

Cγ = −

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0(6×4)

[ 0γ P
1 ] [ 1γ P

1 ] [ 2γ P
1 ] [ 3γ P

1 ]
[ 1γ P

1 ] [ 2γ P
1 ] [ 3γ P

1 ] [ 4γ P
1 ]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (47)

and

{δEε}T =
{

δ
0
ε11, δ

0
ε22, 2δ

0
ε12, δ

1
ε11, δ

1
ε22, 2δ

1
ε12, 2δ

0
ε13, 2δ

0
ε23

}

, (48)

{δEE}T =
{

δ
0
E P

1 , δ
0
E P

2 , δ
1
E P

1 , δ
1
E P

2 , δ
2
E P

1 , δ
2
E P

2 , δ
0
E P

3 , δ
1
E P

3

}

. (49)

The variational formulation of the thermal field can be expressed as
∫

V
h · δϕ dV =

∫

∂V
n · h δϑ dA, (50)

where ϕ is the temperature gradient which is equal to the gradient of the temperature difference ∇ϑ . The heat
flux resultant vector {h} can be expressed equivalently by reducing the volume integral of the first term of LHS
of Eq. (50) to a surface integral, with implicitly including the transverse integration as

∫

V
h · δϕ dV =

∫

Ω

δEt
TCκEt dΩ, (51)

with

Cκ = −

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[0κ1] [1κ1] [2κ1] [3κ1]
[1κ1] [2κ1] [3κ1] [4κ1]
[2κ1] [3κ1] [4κ1] [5κ1] 0(8×3)

[3κ1] [4κ1] [5κ1] [6κ1]
[0κ2] [1κ2] [2κ2]

0(3×8) [1κ2] [2κ2] [3κ2]
[2κ2] [3κ2] [4κ2]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (52)

and

Et =
{

0
ϕ1

0
ϕ2

1
ϕ1

1
ϕ2

2
ϕ1

2
ϕ2

3
ϕ1

3
ϕ2

0
ϕ3

1
ϕ3

2
ϕ3

}T
. (53)

The first variation of the Green strain tensor components are

2δ
0
εαβ = r ,α · δr̄,β + δr ,β · r̄,α,

2δ
1
εαβ = r ,α · δd̄,β + r ,β · δd̄,α + d,α · δr̄,β + + d,β · δr̄,α,

2δ
0
εα3 = r ,α · δd̄ + d · δx̄,α. (54)
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The position vector of the middle surface of the shell and the initial director vector are approximated as

r =
4∑

I=1
N I r I , r̄ =

4∑

I=1
N I r̄I , (55)

d =
4∑

I=1
N I d I , (56)

where N I , I = 1, 2, 3, 4 are bilinear interpolation functions of the four-node element. The current director
vector is interpolated as

d̄ =
4∑

I=1
N I d̄I , (57)

where

d̄I = Λd I , (58)

and using the simplified Rodrigues’ formula for small rotations (see [6,44]) one can get

Λ = I + W , (59)

whereW = skeww andw is the rotation vector. The variation of δx̄I = δυ I with υ I denoting the displacement
vector at each node and the variation of the director at each node is obtained as

δd̄I = ΩTδw I , (60)

Ω = skew d̄. (61)

In finite element implementation at each node, by omitting the drilling rotation, defining local nodal rotations
as β I = {β1, β2}TI and the local coordinate system A = [ā1, ā2] which can be tracked also by using the
Rodrigues’ formula in Eq. (59), one can obtain the virtual rotation vector δw I as

δw I = A δβ I . (62)

By using the bilinear interpolation of the position vector and of the director, the first variation of the strains
can be described by

{δEε} =
4∑

I=1

[Bv
I ]{δvI }, (63)

where the matrix [B] contains the derivatives of the bilinear interpolation and {vI }T = {υ I , β I }. Following the
same, the variation of the electric field, Eq. (30), can be expressed using numerical approximation as

{δEE} =
4∑

I=1

[
Bφ

I

] {
δφ I

}
, (64)

with {φI }T = { 0φ I ,
1
φ I ,

2
φ I }, and the variation of the temperature field with numerical approximation using

Eq. (34) can be expressed as

{δEt} =
4∑

I=1

[
Bϑ

I

] {δϑ I } . (65)

The enhanced strain field ˜Eε can be obtained as

{ ˜Eε} = |J0|
|J | [Nε] {αε} , (66)

where [Nε] is an interpolation matrix with components {αε}, which appear as additional internal degrees of
freedom, is given in Appendix B. The various matrices are J the Jacobian matrix, and |J0| is the determinant
of the Jacobian matrix at ξ = 0, η = 0. In this finite element 774 scheme is adopted and the matrices related
to 774 scheme is defined in Appendix B.
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3.1 The mass matrix

The inertia part related to the momentum balance law appears in Eq. (38), which contains the acceleration
vector ϋ. By using the translational acceleration of the reference surface ¨̄x and the accelerative change of the
director ¨̄d, one can construct the acceleration vector ϋ as

ϋ = ¨̄r + z ¨̄d. (67)

By omitting the centripetal inertia forces and with the transformation matrix introduced in Eq. (60), one
can express

¨̄dI ≈ Ω I β̈r I . (68)

The inertia term is given in the weak formulation Eq. (38) by a surface integral as

∫

V
ρ ϋ · δυ dV ≈

4∑

I=1

4∑

K=1

{δvI }T [M I K ] {v̈K }, (69)

where

[M I K ] = NI

[ 0
m I (3×3)

1
mΩK

1
mΩT

I
2
mΩT

IΩK

]

NK , (70)

with

n
m =

+
z∫

−
z

zn ρ dz. (71)

The static system of equations by incorporating interpolation functions to displacement and electric poten-
tials for an element can be obtained as

⎡

⎣
Muu 0 0
0 0 0
0 0 0

⎤

⎦

⎧
⎨

⎩

Δu
Δφ
Δαε

⎫
⎬

⎭
+
⎡

⎢
⎣

K uu K uφ + K NL
uφ K uQε

Kφu Kφφ + K NL
φφ KφQε

KQεu KQεφ + K NL
Qεφ

K ε̃ε̃

⎤

⎥
⎦

⎧
⎨

⎩

Δu
Δφ
Δαε

⎫
⎬

⎭
=
⎧
⎨

⎩

Fu − Fi
u

Fφ − Fi
φ

−Fi
αε

⎫
⎬

⎭
, (72)

[Kϑϑ]
{
Δϑ

} = {
Fϑ − Fi

ϑ

}
, (73)

where

K uu =
∫

Ω

BT
uCc Bu dΩ,

K uφ = Kφu
T =

∫

Ω

BT
uCe Bφ dΩ,

K uε̃ = K ε̃u
T =

∫

Ω

BT
uCc N ε̃ dΩ,

Kφε̃ = K ε̃φ
T =

∫

Ω

BT
φCe N ε̃ dΩ,

K ε̃ε̃ =
∫

Ω

NT
ε̃Cc N ε̃ dΩ,

Kφφ =
∫

Ω

BT
φCε Bφ dΩ

Kϑϑ =
∫

Ω

BT
ϑCκ Bϑ dΩ

, (74)
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are the element systemmatrices related to the constitutive relations. The nonlinear stiffness matrices at element
level are

K NL
uφ =

∫

Ω

BT
uCβ Bφ dΩ,

K NL
φφ =

∫

Ω

BT
φCχ Bφ dΩ,

K NL
ε̃φ =

∫

Ω

NT
ε̃Cβ Bφ dΩ.

(75)

Here the generalised vector u = {v1, v2, v3, v4}T contains five mechanical DOFs per node, the generalised
electric potential vector φ = {φ1, φ2, φ3, φ4}T has three electrical DOFs per node and ϑ = {ϑ1, ϑ2, ϑ3, ϑ4}T
has four thermal DOFs per node. In Appendix A, the matrices Bu and Bφ are given. Further, Fu is the vector
containing the mechanical loads, Fφ is the electric load vector, Fi

u is the vector containing in-balance forces,
Fi

φ is the in-balance electric load vector, Fϑ is the thermal load vector, Fi
ϑ is the in-balance thermal forces

and Fαε is the in-balance force vector related to the enhanced parameters mentioned in Appendix B. For the
thermal load problems considered in this article, the temperature difference at top and bottom surfaces are
given. The distribution of temperature difference along the thickness is evaluated by solving Eq. (73), and this
becomes input to the thermal strains in Eqs. (6) and (7). By making nonlinear terms zero in Eqs. (6) and (7),
one can get the linear finite element model. The Newton–Raphson iteration and Newmark time integration
techniques are used solve the static and dynamic problems, respectively.

4 Results and discussion

4.1 Validation

In this section, validation of the proposed numericalmodel is carried out by performing simulations on examples
for which experimental data are available possessing nonlinear responses under strong applied electric fields.
Two examples are considered, the first one is a bimorph plate actuator and the second one is a composite plate
bonded with multiple piezopatches.

First, the bimorph plate actuator shown in Fig. 1 was studied experimentally by [22] and later with FE
simulations by [18]. The plate dimensions are specified in Fig. 2. The bimorph actuator is fabricated using two
PZT 3203 HD material layers with antiparallel polarisation direction configuration, where each PZT layer has
a thickness of 0.25 mm. The material properties of the PZT 3203 HD are reported in Table 1. The problem is
discretisedwith 120×25 elements. Since the developed shell element is based on equivalent single layer theory,
only one element through the thickness is considered. The tip deflection of the plate is studied by performing
static analysis using the present linear and materially nonlinear models. The tip deflection predicted by the

PZ
T 
32
03
HD

55x23x0.5

Fig. 2 Cantilevered bimorph plate actuator
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Table 1 Material properties data

Property Aluminium (Al)b T300/976a PZT 3203 HDc PSI-5A-4Ed PZT-G1195a

E11 (109 N/m2) 63.8 147.0 60.24 66.0 63.0
E22 (109 N/m2) 63.8 9.7 60.24 66.0 63.0
G12 (109 N/m2) 24.53 6.0 24.04 22.0 24.2
ν12 (109 N/m2) 0.3 0.3 0.253 0.5 0.3
ν23 (109 N/m2) 0.3 0.3 0.494 0.5 0.3
e31 (C/m2) 0.0 0.0 −25.84 −25.08 −27.9
e32 (C/m2) 0.0 0.0 −25.84 −25.08 −27.9
e15 (C/m2) 0.0 0.0 24.04 12.84 14.15
e24 (C/m2) 0.0 0.0 19.08 12.84 14.15
ε11 (10−9 F/m) 0.0 0.0 28.32 15.93 15.3
ε22 (10−9 F/m) 0.0 0.0 28.32 15.93 15.3
ε33 (10−9 F/m) 0.0 0.0 33.63 15.93 15.0
β31 (10−7 m2/V2) 0.0 0.0 520.0e 148.5f 148.5f

β32 (10−7 m2/V2) 0.0 0.0 520.0e 148.5f 148.5f

χ3 (10−15 F/m) 0.0 0.0 0.0 0.0 80.0g

λ11 (105 N/m2K) – 0.721 – – 5.45
λ22 (105 N/m2K) – 2.62 – – 5.45
γ11 (10−3 C/m2K) – – – – 0.25
γ22 (10−3 C/m2K) – – – – 0.25
γ33 (10−3 C/m2K) – – – – 0.25
κ11 (W/mK) – 5.0 – – 1.1
κ22 (W/mK) – 0.5 – – 1.1
κ33 (W/mK) – 0.5 – – 1.1

a[35]
b[10]
cData available online at www.ctscorp.com/components/pzt/downloads/PiezoConstantMatrix.pdf
dData available online at http://www.piezo.com
e[17]
f [49]
g[24]

materially nonlinear FE model over the applied electric field is plotted in Fig. 3. For comparison purposes,
the results from the experimental observations of [22] and also the numerical simulations of both linear and
nonlinear FE models are shown in Fig. 3. As it can be seen from Fig. 3, the tip deflections predicted by the
model are significantly nonlinear over the applied electric field. Furthermore, the present numerical simulations
are compared with the numerical FE predictions of [18] in Fig. 3. From Fig. 3, it can be observed that the
present simulations are in excellent agreement with the predictions of [18] and the better prediction capability
is observed concerning experimental measurements of [22].

Next, a cantilevered composite plate bondedwithmultiple piezopatches is studied using the present numeri-
calmodels. The geometry and the dimensions of themulti-piezoplate are shown in Fig. 4.Multiple piezopatches
of PZT G1195 material are glued on either side of the graphite-epoxy T300/976 core composite with lamina
sequence (302/0)s. The material properties of the composite and piezoelectrics are given in Table 1. The
multi-piezopatch problem was first studied experimentally by [4]. Here also one element through the thickness
is considered as described in the previous example.

An electric field of 472 V/mm is applied on either side of the piezolayers with opposite polarity to examine
the response of the plate. Following [4], the responses are plotted in non-dimensional displacements as bending
(w2/L2) and twisting ((w3 − w1)/L2) over the length (L) of the plate in Fig. 5, where L2 is the width of the
plate while w1, w3, and w2 are the transverse deflections in the corners 1, 3, and at the centre line 2 as shown
in Fig. 4, respectively. From the observations in Fig. 5, it can be seen that the present materially nonlinear FE
simulations predict the behaviour closer to the experimental results of [4], whereas the linear FEmodel predicts
stiffer response when compared to the experimental observations and nonlinear simulations. Considering the
above two examples as validation, it can be concluded that the nonlinear model analysis results predict the
actual response of piezolaminated structures more faithfully.

www.ctscorp.com/components/pzt/downloads/PiezoConstantMatrix.pdf
http://www.piezo.com
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Fig. 3 Tip deflection versus electric field
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Fig. 4 Cantilevered composite plate with multiple piezopatches

4.2 Active shape control of plates and shells

4.2.1 Shape control of a plate under thermal/elastic loads

A simply supported square composite plate (0.2 × 0.2m) with piezolaminated layers is shown in Fig. 6. The
host structure is fabricated from T300/976 graphite-epoxy with [45/ − 45/ − 45/45] laminate configuration.
It is bonded with two outer layers of PZT G1195 material. Each composite layer has a thickness of 0.5 mm,
and each piezoelectric layer has a thickness of 0.1 mm. Thus, the total thickness of the structure is 2.2 mm.
The material properties of the graphite-epoxy and those of the PZT are listed in Table 1. Here the aim of the
simulation is shape control of the plate structure under thermal gradient loading via PZT layers. To do so, a
double sinusoidal temperature difference of 40 K sin(πx/L) sin(πy/L) is enforced at the top surface of the
plate with respect to the stress-free temperature 293 K, and the lower surface of the plate is kept at stress-free
temperature.

By applying appropriate voltages, the shape control of the plate is simulated. Both linear and materially
nonlinear simulations are performed to revert the midpoint deflection of the plate. Figure 7 shows the linear
and nonlinear deflections of the centre line of the plate under different applied actuator voltages to top and
bottom surfaces. On the other hand, Table 2 summarises the required voltages using both linear and nonlinear
FE models to suppress the centre deflection to the extent of 100, 80, 60, 20% of the uncontrolled deflection
under the temperature gradient. From Table 2, it is clearly seen that the linear model predicts higher values of
the required actuator voltages for deflection control when compared to the nonlinear model. With the increase
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Fig. 5 Non-dimensional deflection of the cantilevered plate bondedwith multiple piezopatches under actuation field of 472V/mm
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Fig. 6 Piezolaminated composite plate

in the decline of the central deflection, the difference between the linear and nonlinear predictions of actuator
voltages also increases. This phenomenon occurs because of the large applied voltages required to control
the higher amount of deflection. Thus, those large applied voltages induce a greater degree of piezoelectric
nonlinearity.

A set of computations is performed with the same example by varying the piezoelectric layer thickness
values. The host layer is the same as in the previous study. The piezoelectric layer thickness ranges from
0.05 to 0.2 mm. Here the temperature difference at the top surface is the same as for the problem mentioned
above, i.e. double sinusoidal along the in-plane dimensions of the plate, with magnitude 40 K at the plate
centre. Figure 8 illustrates the effect of piezoelectric thickness over the control voltages of the piezolaminated
composite plate. Using both linear and materially nonlinear models, the prediction of actuation voltages to
control the centre deflection to zero is plotted as a function of 10 (h p/hc) in Fig. 8. As the thickness of the PZT
decreases, the thermal stresses also decrease resulting in both linear and nonlinear control voltages decrease.
The%-difference between linear and nonlinear FEmodels is plotted as a function of PZT thickness 10 (h p/hc)
in Fig. 9. From Fig. 9, it can be observed that the %-difference varies nonlinearly over the thickness of the
PZT layer. In a similar manner, some more computations are carried out with the same example by varying the
piezoelectric layer thickness values under a point load of 100 N at the plate centre. The host layer is the same
as in the previous study but with a different dimension of the host structure thickness which is 3 mm for the
present study. The shape control problem is as described above analysed here also. Figure 10 represents linear
and nonlinear control voltages required to suppress 80% of centre deflection of the plate under point load. One
can observe from Fig. 10 that the control voltages needed for the same amount of the point load in linear case
increase as the PZT thickness decreases. This behaviour is due to the fact that for lesser thickness of the PZT
one can observe larger deflections of the plate since the stiffness of the whole structure decreases. However,
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Fig. 7 Centre line deflection of the plate under thermal loading at the top surface of the plate

Table 2 Tip deflections over applied voltage

%-Reduction of the centre deflection Voltage

SH4TPL SH4TPNL % difference

20 13.486 12.690 5.89
40 26.970 24.153 10.44
60 40.453 34.656 14.33
80 53.938 44.423 17.64
100 67.420 53.580 20.05
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Fig. 8 Actuation voltage variation for different piezoelectric layer thickness under temperature gradient

lower values of control voltages are predicted by the nonlinear model (see Fig. 10). One can easily explain the
reason for this behaviour as the consequence of lower PZT thickness values leading to higher electric fields;
thus, the nonlinear effect is also higher. Figure 11 shows the %-difference between linear and nonlinear FE
models plotted as a function of PZT thickness 10 (h p/hc) under point load.
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Fig. 9 %-Difference between linear and nonlinear predictions of actuation voltage under thermal load
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Fig. 10 Actuation voltage variation for different piezoelectric layer thickness under point load at the centre of the plate

4.2.2 Shaping of a spherical antenna reflector via PZT patches

In this section, a spherical antenna reflector laminated with piezoelectric patches (see Fig. 12) is considered.
This example was initially studied by [10] with experimental observations. The geometric parameters of the
shell and the patches are shown in Fig. 12, radius (“R”) of 203 mm, and semi-aperture angle “θ” of 45◦. The
piezopatches have the length “l” of 36 mm and are located at a distance “a” of 50 mm from the 2◦ angle in
the middle. The host substrate is made up of isotropic material (aluminium) and has a thickness of 0.36 mm.
The PSI 5A piezopatches have a thickness of 0.267 mm. At the inner hole, clamped boundary conditions are
enforced and also the displacements in the vertical direction are fixed.

This type of spherical antennas with PZT patches have properties like manoeuvrability, beam steering and
shaping. Alteration of the area from one position to another position is called beam steering, while shaping is
the phenomenon of increasing or decreasing the area covered/radiation pattern around the principle direction.
Here, the goal is shaping of the spherical antenna reflector which can be achieved by inducing a strain by
application of an electric field to the piezopatches.
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Fig. 11 %-Difference between linear and nonlinear predictions of actuation voltage under point load at the centre of the plate
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Fig. 12 Spherical antenna reflector with PZT actuator patches

Table 3 Transverse deflection at point “1”: w1 over applied voltage

Voltage (V) Transverse deflection at point “1”: w1 (μm)

SH4TPL SH4TPNL Exp. [10] Error

14.5 7.34 7.46 8.03 7.09
29.5 14.94 15.50 16.98 8.76
43 21.78 22.51 25.30 11.02
62 31.40 32.50 34.76 6.50
74.5 37.73 39.00 41.30 5.57
90.5 45.83 48.00 50.25 4.48

At first, the deflection at point “1”, i.e. (w1), which is 50 mm from the apex outer side (see Fig. 12) is
simulated with both linear and nonlinear constitutive models by applying the actuation voltage of 100 V to the
both PSI 5A patches. The material properties of PSI-5A are reported in Table 1.

Thew1 displacements predicted by the SH4TPL and SH4TPNL along with experimental measurements of
[10] are summarised in Table 3. From Table 3, it is noticed that once again results predicted by the SH4TPNL
model are better than by linearmodels concerning the experiments of [10]. The%-error of nonlinear predictions
regarding the experiments is also given in Table 3. However, the discrepancies between the experiments and
our nonlinear models are because the experiments were conducted on the imperfect shell (imperfections arise
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Fig. 13 Shaping of antenna: left, deflection along the line AB; right, deflection along the line CD (scaled 10× w)
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Fig. 14 Cantilevered composite beam with PZT layers

due to the fabrication process like wrinkles). In the next study, the shaping of the spherical antenna reflector
is performed by enforcing the actuation voltage of 140 V to each piezopatch. Deflections along the line AB
and CD are plotted in Fig. 13. In satellite antennas usually high precision is required to change the radiation
pattern. Thus, using nonlinear PZT modelling alteration of the radiation can be achieved more precisely.

4.3 Active vibration control of piezolaminated shells

In the aforementioned subsections, it was shown how the nonlinear SH4TPNL model can be used to control
the static deflections under mechanical/thermal loads. We also have demonstrated the predicting capabilities
of SH4TPNL and SH4TPL models in earlier sections, and now continue to display the potentiality of the
nonlinear model (SH4TPNL) over the linear model (SH4TPL) in dynamics and vibration suppression.

4.3.1 Vibration control of a beam with PZT layers at temperature gradient

The problem studied here is the active vibration control of a cantilevered composite beam as shown in Fig. 14.
Two PZT layers are bonded on either side of the host surface. The material properties of the T300/976 and
PZT G1195 are listed in Table 1. The temperature difference of 20◦ C and 10◦ C are applied to the lower and
upper surfaces, respectively. The stress-free temperature is taken as 10◦ C. The problem is discretised with a
mesh of size [20 × 4] elements.
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Fig. 16 Actuation voltages over time

The transient response of the problem is studied by imposing an initial transverse displacement of 28mm at
the free end of the beam, and the beam oscillates afterwards freely. The initial displacement is chosen such that
the deformation of the structure does not exceed the thickness of the complete structure. The Newmark method
with a time step of 1 × 10−4 s is considered with Rayleigh damping of 0.2%. First, the response is simulated
without any feedback control, and the tip deflection is shown in Fig. 15. Next, the control voltages are applied to
both piezolayers in opposite directions using a negative velocity feedback technique as V = G · u̇n,tip. Here, the
gain G = 500 Vs/m is applied and u̇n,tip is the tip normal velocity. The controlled response simulated by both
SH4TPL and SH4TPL along with uncontrolled tip deflections are shown in Fig. 15. Figure 16 illustrates the
actuation voltages required to suppress the deformations by linear and materially nonlinear models. However,
the controlled response of the structure is staying at the deformation corresponding to the bending moments
generated due to the temperature difference on top and lower surfaces. To get back the structure into the zero
displacement conditions an electric voltage proportional to the static deflection which is due to the temperature
difference is applied additionally along with the negative velocity feedback control.
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Fig. 17 Cantilevered composite cylindrical shell with PZT patches as distributed layers

4.3.2 Smart cantilevered fibre metal-laminated composite cylindrical shell

The last numerical example considered here is the cantilevered fibre metal-laminated composite cylindrical
shell as shown in Fig. 17. Tzou and Ye initially calculated the isotropic version of this problem [42] for active
control of small amplitude vibrations using linear piezoelectric constitutive relations. Later by [3,32], this
problem has been used for suppression of geometrically nonlinear vibrations. The host structure consists of
fibre metal composite of steel/0/90/steel with each layer thickness of 1.25 mm and piezoelectric PZT 3203
HD material in either layer or patch forms bonded to both sides of the shell. The thickness of the PZT 3203
HD material is 0.1 mm. The inner PZT layer/patches serve as the sensors, and the external ones as actuators.
The material properties of the steel, T300/976 and PZT 3203 HD, are listed in Table 1. Here, simulations are
performed to observe the uncontrolled transient response of the structure under impact loading by applying
dynamic load configurations as

P(t) =

⎧
⎪⎨

⎪⎩

(Pt · t)/0.01 if t ≤ 0.01 s,
Pt if 0.01 s ≤ t ≤ 0.19 s,
Pt − (Pt · t/0.2) if 0.19 s ≤ t ≤ 0.2 s,
0 else,

(76)

along with 0.2% Rayleigh damping for each mode without considering the continuous PZT layers.
Next, the active vibration control of the cylindrical shell is performed by continuous PZT actuator–sensor

layers using negative velocity feedback control algorithm. First, u̇n,avg, the average of normal velocities are
calculated in the centre points of piezopatches of the sensor layer and then a voltage proportional to the average
normal velocity V = G · u̇n,avg, with the gain G = 2000 Vs/m, is applied. For 100% covered actuator–sensor
patches (i.e. distributed layers), the controlled response of the structure simulated by SH4TPNL and SH4TPL
models is illustrated in Figs. 18a, b. Figure 18c shows the predicted actuator voltages over time with linear
and materially nonlinear models. From Figs. 18a, b, it can be observed that the decay of vibration amplitude
estimated by the SH4TPLmodel is larger compared to the nonlinear SH4TPLmodel. In Fig. 18d, the deformed
configurations at various time instants are presented.

Next, the same study is performed with 50% covered by piezopatches from the fixed end (i.e. five patches)
as shown in Fig. 19. The simulated linear and nonlinear controlled responses along with the deformed config-
urations at different time instants are shown in Fig. 20. The control effect is more time-consuming for a fixed
ratio of suppression of vibration amplitude when compared to the structure is 100% covered by piezoelectric
sensor and actuator layers.

Furthermore, the structure is treated when 50% are covered with patches from the free end (see Fig. 21).
The tangential and normal deflections of the tip are shown in Figs. 22 and 23, respectively. It can be observed
that the control effect is very small for both the linear model and nonlinear models. By examining the two
problems of 50 % covered patches together, one can notice that the decay of vibrations is larger in the first
case compared to the second case.

5 Conclusions

In this article, a two-way coupled nonlinear piezoelectric finite element for shape control and vibration sup-
pression analysis of multilayered composite plates/shells are presented. Second-order approximation of the
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Fig. 18 Controlled and uncontrolled response of composite cylindrical shell covered with 100% PZT patches: a tangential
deflection, b normal deflection, c actuator voltages and d deformed configurations
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Fig. 19 Cantilevered composite cylindrical shell with 50% covered by PZT patches from fixed end

electric potential over the thickness is assumed. ANS and EAS methods are used to enrich the strain fields of
FE element. Third-order approximation is used for the temperature difference distribution along the thickness,
and one-dimensional heat conduction equation is solved in equivalent single-layer hypothesis. The potentiality
and effectiveness of the SH4TPNL/SH4TPL elements is demonstrated with several examples. A bimorph plate
and a composite plate with bonded piezopatches are considered to validate the numerical simulations. The
given examples in this paper contribute to benchmark problems of future works, and in conclusion, predictive
capabilities of the proposed numerical model under strong electric fields are illustrated with a wide variety of
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Fig. 20 Controlled and uncontrolled response of composite cylindrical shell covered with 50% PZT patches from the fixed end:
a tangential deflection, b normal deflection, c actuator voltages and d deformed configurations
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Fig. 21 Cantilevered composite cylindrical shell with 50% covered by PZT patches from free end

smart structures numerical examples. Shape control of laminated plate with piezoelectric active layers under
both thermal and mechanical load environments are performed using the linear and nonlinear models to high-
light predictive capabilities as well as the difference of required actuator voltages. Additionally, shaping of
a spherical shell antenna reflector is also discussed. A cantilevered beam with PZT layers under temperature
gradient is considered to show the effects of nonlinear terms of the constitutive relations in vibration suppres-
sion analysis. Furthermore, three different arrangements of piezopatches are deemed to illustrate the effect of
position of piezoelectrics in cantilevered cylindrical shells to control vibrations under impulsive force at the
free end of the shell.
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Fig. 22 Controlled tangential deflection, 50% patches from free end
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Fig. 23 Controlled normal deflection, 50% patches from free end

In particular, stress softening behaviour under large applied electric fields of PZT actuators cannot be
estimated with the linear constitutive models. Therefore, it is essential to adopt the advanced finite element
formulations for the precise prediction of actuator response and also for the design of PZT structures with
higher authority of actuation. It was justified with the proposed nonlinear constitutive piezo shell finite element
to predict the actual responses since the analysis results are better estimated from the viewpoint of experimental
data. Hence it is confirmed that the developed element could be a useful tool for predicting actual responses
in both static and dynamics.

Large applied electric voltages result in higher actuation and lead to more substantial shape control attain-
ment. However, increasing the thickness of PZT actuators results in lower applied electric fields across the
thickness of the actuators and also the stiffness against bending deformation enhances. The effect of piezo-
electric nonlinearity has a significant influence on the performance of the PZT actuators in the active shape
control phenomenon. In this manner, the optimal shape control of laminated structures can be accomplished
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by choosing suitable actuators regarding the size and shape of elastic/electrical (either linear or nonlinear)
properties.

The size and position where the actuators are mounted also alters the performance of the active vibration
control of smart structures. Usually, actuators in the form of layers have higher authority actuation area causing
better control of vibrations when compared with the actuator patches. Furthermore, actuator patches situated
proximate to the fixed/clamped ends have more vibration control performance, while their competence to
suppress the vibrations decreases substantially when placed far from the fixed end.

Appendix A: Various rigidity matrices

The following abbreviations have been used:

[ nC i ] =
+
z∫

−
z

zn[C i ] dz, (A.1)

[nλ1] =
+
z∫

−
z

zn[λ1] dz, (A.2)

[ne i ] = −
+
z∫

−
z

zn[ei ] dz, (A.3)

[nε i ] = −
+
z∫

−
z

zn[εi ] dz, (A.4)

[ nβ 1] = −
+
z∫

−
z

(

zn[β1]Δ
1
φ +zn+1[β1]Δ

2
φ

)

dz, (A.5)

[ nγ 1] =
+
z∫

−
z

zn[γ 1] dz, (A.6)

[ nχ 1] = −
+
z∫

−
z

(

zn[χ1]Δ
1
φ +zn+1[χ1]Δ

2
φ

)

dz, (A.7)

[nκ i ] =
+
z∫

−
z

zn[κ i ] dz, (A.8)
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, (A.9)

with

k1 = (
−
z − +

z )3 and k2 = (
−
z − +

z )2. (A.10)

The matrices in Eq. (74) are

Bu = {Bv
1, B

v
2, B

v
3, B

v
4}, (A.11)

Bφ = {Bφ
1 , Bφ

2 , Bφ
3 , Bφ

4 }, (A.12)

Bϑ = {Bϑ
1 , Bϑ

2 , Bϑ
3 , Bϑ

4 }. (A.13)

Appendix B: Interpolation functions for EAS method

The 774 scheme in the EAS (i.e. 18 additional internal DOFs) for the strain field is constructed by using the
following matrices:

N ε̃ = T−1
ε̃

M ε̃, (B.1)

with

T ε̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

J 011 J
0
11 J 012 J

0
12 J 011 J

0
12 0 0 0 0 0

J 021 J
0
21 J 022 J

0
22 J 021 J

0
22 0 0 0 0 0

2J 011 J
0
21 2J 012 J

0
22 J 011 J

0
22 + J 012 J

0
21 0 0 0 0 0

0 0 0 J 011 J
0
11 J 012 J

0
12 J 011 J

0
12 0 0

0 0 0 J 021 J
0
21 J 022 J

0
22 J 021 J

0
22 0 0

0 0 0 2J 011 J
0
21 2J 012 J

0
22 J 011 J

0
22 + J 012 J

0
21 0 0

0 0 0 0 0 0 J 011 J 012
0 0 0 0 0 0 J 021 J 022

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎥
⎥
⎥
⎥
⎥
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(B.2)

and

M ε̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ξ 0 ξη 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 η 0 ξη 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ξ η ξη 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 ξ 0 ξη 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 η 0 ξη 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 ξ η ξη 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ξ 0 ξη 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 η 0 ξη

⎤
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⎥
⎥
⎥
⎥
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. (B.3)
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