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Abstract Propagation of harmonic Lamb waves in plates made of functionally graded materials with trans-
verse inhomogeneity is studied by the modified Cauchy six-dimensional formalism. For arbitrary transverse
inhomogeneity, a closed-form dispersion equation is derived. Dispersion relations for materials with different
kinds of inhomogeneity are obtained and compared.

1 Introduction

Functionally graded materials (FGMs) with continuous transverse inhomogeneity can considerably change
acoustical properties of functionally graded (FG) plates resulting in either filtering of some kinds of acoustic
waves at particular frequencies [1], or considerably changing dispersion curves and the corresponding disper-
sion relations [2–5]. These properties of wave propagation in FGM plates are of particular interest in various
NDT applications [6,7].

In most works on acoustic wave propagation in FG plates, various numerical approaches are suggested.
One of the modifications of FEM, known as the “strip FEM” was used in [1]; in [5] the hybrid FEM was
used for modeling fundamental modes of Lamb waves in FG plates. In [9,10], a spectral variant of FEM was
used to obtain dispersion curves in FG rods. Legendre polynomials and the accompanying functions were
used in [11] for constructing dispersion relations for Lamb waves in FG plates. Peano series expansions for
analyzing dispersion of piezoelectric FG plates were exploited in [8]. Asymptotic methods based on WKB
(Wentzel–Kramers–Brillouin) technique for analyzing dispersion of Lamb modes in FG plates were suggested
in [12].

The present work is devoted to constructing explicit secular equation and the corresponding (implicit)
solution by the Cauchy six-dimensional formalism, previously developed for analysis of Lamb waves in
homogeneous stratified plates [13]. Herein, only traction-free boundary conditions are considered. Numerical
examples are also presented revealing some peculiarities in the dispersion curves of the fundamental symmetric
modes of Lamb waves in FG plates.

It should also be mentioned that as the literature review shows, the developed method is currently the
only theoretical method for analyzing dispersion of Lamb waves propagating in anisotropic FG plates with no
restriction on elastic anisotropy and transverse inhomogeneity.

2 Governing equations

Herein, the main equations for constructing the solution for Lamb waves in a functionally graded plate are
derived.
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2.1 Equations of motion and Lamb wave representation

The linear equations of motion for anisotropic inhomogeneous material can be written in the form

divC(x) · ·∇u(x, t) = ρ(x)ü(x, t) (2.1)

where double dots “··” stand for convolution in two indices; u is the displacement field; x is the position vector;
t is time; ρ is the material density; andC(x) is the fourth-order elasticity tensor assumed to be strongly elliptic:

∀x
︸︷︷︸

x∈R3

∀m,n
︸ ︷︷ ︸

m,n∈R3,m,n �=0

m ⊗ n · ·C(x) · ·n ⊗ m > 0 (2.2)

and C(x) ∈ C1(R3), i.e., C(x) is continuously differentiable in R
3.

Hereafter, the propagation of a harmonic Lamb wave in a plate with transverse inhomogeneity is specified
by the transverse dimensionless complex coordinate

x = irx · ν, (2.3)

where “·” stands for the scalar product; ν is the unit normal to the median plane; r is the wave number having
dimension l−1 and i = √−1; see Fig. 1. Origin of the global coordinate system belongs to themedian plane�ν.

The following wave representation for the Lamb wave is adopted:

u(x, t) = m(x)eir(n·x−ct), (2.4)

wherem is the (unknown) variation of the vector wave amplitude across the thickness of the plate; n is the unit
vector indicating the direction of propagation; c is the phase velocity of the Lamb wave and is independent of
the direction.

Substituting representation (2.4) into the equations of motion yields
(

A1(x)
d2

dx2
+ A2(x)

d

dx
+ A3(x)

)

· m(x) = 0, (2.5)

where

A1(x) = ν · C(x) · ν,

A2(x) = ν ·
(

dC(x)

dx

)

· ν + ν · C(x) · n + n · C(x) · ν,

A3(x) = ν ·
(

dC(x)

dx

)

· n + n · C(x) · n − ρ(x)c2I. (2.6)

In Eqs. (2.6), A1(x) is the acoustical tensor and I denotes the unit diagonal 3× 3-matrix. Note that the strong
ellipticity condition (2.2) ensures

detA1(x) > 0 (2.7)
and

detA3(x) > 0 (2.8)
provided c satisfies the following condition:

c <

√

λ3

ρ(x)
, (2.9)

where λ3 is the smallest eigenvalue of the tensor: ν ·
(

dC(x)
dx

)

· n + n · C(x) · n. Hereafter, it is assumed that

condition (2.9) is satisfied.

Fig. 1 Plate of thickness 2h; unit vectors n and ν indicate direction of propagation and normal to themedian plane�ν, respectively
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2.2 Six-dimensional Cauchy formalism

Introducing a new vector wave amplitude

w(x) = d

dx
m(x) (2.10)

yields equations of motion in terms of two unknown vector amplitudesm and w:

d

dx
m(x) = w(x),

d

dx
w(x) = −A−1

1 (x) · A3(x) · m(x) − A−1
1 (x) · A2(x) · w(x), (2.11)

where it is assumed that the acoustical tensor A1(x) is invertible.
Introducing a new six-dimensional amplitude

Y(x) =
(

m(x)
w(x)

)

(2.12)

allows us to rewrite Eqs. (2.11) in the following form:

d

dx
Y(x) = G(x) · Y(x), (2.13)

where G(x) is a six-dimensional matrix:

G(x) =
(

0 I
−A−1

1 (x) · A3(x) −A−1
1 (x) · A2(x)

)

. (2.14)

Herein, “·” stands for matrix multiplication; 0 is a 3 × 3-matrix with zero components. Equation (2.13) is the
main equation of the Cauchy formalism, and the matrixG will be called fundamental matrix. Conditions (2.2)
and (2.9) ensure

detG(x) = detA−1
1 (x) detA3(x) > 0. (2.15)

2.3 Boundary conditions

Traction-free boundary conditions have the form

tν(x, t) ≡ ν · C(x) · ·∇u(x, t)|x=±irh = 0, (2.16)

where the plate thickness is 2h (Fig. 1). Substituting the representation (2.4) into the boundary conditions
(2.16) with account of the notations (2.6), (2.10) yields

A1(x) · w(x) + A4(x) · m(x)|x=±irh = 0, (2.17)

where

A4(x) = ν · C(x) · n. (2.18)

Finally, the conditions (2.17) can be rewritten in terms of the vector Y(x):

tν(x) ≡ (A4(x),A1(x)) · Y(x)|x=±irh = 0. (2.19)
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2.4 Matrix equation

Let E be a matrix satisfying Eq. (2.13):

d

dx
E(x) = G(x) · E(x). (2.20)

The matrix E is assumed to be non-degenerate, i.e., detE �= 0.
If such a matrix exists, then any vectorial solution Y(x) of Eq. (2.13), due to the linearity of the problem,

takes the form
Y(x) = E(x) · 	C, (2.21)

where 	C is a six-dimensional vector of unknown coefficients, defined by the boundary conditions (2.16).
Equation (2.20) can obviously be rewritten in the equivalent form

(

d

dx
E(x)

)

· E−1(x) = G(x). (2.22)

2.5 Matrix solution

Applying matrix function analysis [14] allows the construction of a matrix solution for Eq. (2.22) in the form

E(x) = eF(x)+A, (2.23)

where

F(x) ≡
∫

G(x)dx (2.24)

stands for an indefinite integral of G(x). It will be shown that the arbitrary constant matrix appearing in
Eq. (2.23) does not affect the final result.

Direct verification reveals that the matrix (2.23) satisfies Eq. (2.22). The right-hand side of expression
(2.23) shows that matrix E(x) is non-degenerate for the phase velocity satisfying condition Eqs. (2.9), that is
due to (2.15), Now, combining Eqs. (2.21) and (2.23), the vector-valued general solutionY can be constructed.

3 Dispersion equation

Substituting the general solution at x = +irh into the representation (2.21) with account of (2.12) yields

E(x) · 	C
∣

∣

∣

x=+irh
= Y(irh), (3.1)

from where
	C = E−1(irh) · Y(irh). (3.2)

Equation (3.1) yields
Y(−irh) = E(−irh) · E−1(irh) · Y(irh)

︸ ︷︷ ︸

	C=E−1·Y
. (3.3)

The following 6 × 6 matrix is needed for the subsequent analysis:

Z(x) =
(

I 0
A4(x) A1(x)

)

. (3.4)

Note, that the matrixZ(x) is invertible at any x , since detZ = detA1 > 0 due to the strong ellipticity condition
(2.2). Thus, the matrix Z(x) can be considered as one-to-one mapping in R

6, and taking into account (2.12),
(2.19),

(

m(x)
tν(x)

)

= Z(x) ·
(

m(x)
w(x)

)

. (3.5)
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Now, both surface displacement magnitude m and surface traction tν at x = −irh can be written in terms of
the matrix Z and the expressions (3.3) and (3.5) as

(

m(−irh)
tν(−irh)

)

= T(irh) ·
(

m(irh)
tν(irh)

)

, (3.6)

where
T(irh) ≡ Z(−irh) · E(−irh) · E−1(irh) · Z−1(irh). (3.7)

Useful for computation purposes formula comes fromanalyzing the compositionE(−irh)·E−1(irh), revealing

E(−irh) · E−1(irh) = eF(−irh)−F(irh) = exp

⎛

⎝−
irh
∫

−irh

G(x)dx

⎞

⎠ . (3.8)

Thus, composition E(−irh) · E−1(irh) does not contain an arbitrary (constant) matrix A; see Eq. (2.23).
Since the surface traction fields in (3.6) vanish at x = ±irh, the following 3 × 3 matrix operator

B ≡ (0, I) · T ·
(

I
0

)

(3.9)

from the 3D space of surface displacements and vanishing surface tractions on the “upper” surface to the 3D
space of surface tractions on the “bottom” surface should be degenerate to ensure existence of a non-trivial dis-
placement magnitude on the “upper” surface resulting in vanishing surface tractions on the “bottom” surface.
The latter equation is equivalent to

det

(

(0, I) · T ·
(

I
0

))

= 0. (3.10)

Equation (3.10) is the desired dispersion equation for a plate with free boundaries. The dispersion equation
(3.10) coincides with one obtained for a homogeneous anisotropic plate [13].

4 Special cases

Here, two special kinds are considered.

4.1 Homogeneous anisotropy

It is supposed that both the elasticity tensor and the material density are homogeneous,

C(x) = C0, ρ(x) = ρ0, (4.1)

where C0 is the fourth-order strongly elliptic tensor, and ρ0 > 0 is the material density.
Substituting (4.1) into Eqs. (2.6), (2.14) yields the fundamental matrix G0 independent of the exponential

multiplier eλx ,G(x) = G0. Thus, for the considered case, the fundamental solution of Eq. (2.20) takes the form

E(x) = eG0x . (4.2)

And due to the assumed homogeneity condition (4.1), the matrix defined by Eq. (3.4) is independent of x , so
Z(x) = Z0 and the transfer matrix T contains the argument irh accounting for dispersion only within the term

E(−irh) · E−1(irh) = e−2irhG0 . (4.3)

Now, due to (4.3), the dispersion relation (3.10) for a homogeneous plate becomes

det

(

(0, I) · Z0 · e−2irhG0 · Z−1
0 ·

(

I
0

))

= 0. (4.4)
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4.2 Exponential inhomogeneity

Now, it is assumed that both the elasticity tensor and the material density have an exponential inhomogeneity

C(x) = C0e
λx , ρ(x) = ρ0e

λx , (4.5)

whereC0 is the fourth-order strongly elliptic tensor, and ρ0 > 0. Note, that due to Eq. (2.3) the exponent factor
λ should be imaginary to ensure real values for both C(x) and ρ(x).

Substituting Eqs. (4.5) into Eqs. (2.6) yields

A1(x) = (ν · C0 · ν) eλx ,

A2(x) = (λν · C0 · ν + ν · C0 · n + n · C0 · ν) eλx ,

A3(x) = (

λν · C0 · n + n · C0 · n − ρ0c
2I

)

eλx . (4.6)

Substituting Eqs. (4.6) into Eq. (2.14) yields the fundamental matrix independent of the exponential factor
eλx . However, in view of Eq. (4.6)2, the fundamental matrix depends upon the exponent multiplier λ, thus
G(x) = G0(λ). Now, the fundamental (matrix) solution of Eq. (2.20) or (2.22) takes the form

E(x) = eG0(λ)x . (4.7)

The expressions (2.18), (4.6) yield the matrix Z(x):

Z(λx) =
(

I 0
(ν · C0 · n) eλx (ν · C0 · ν) eλx

)

. (4.8)

Thus, for the considered case of exponential homogeneity, the matrix Z(x) contains the dispersive terms due
to the presence of multipliers eλx . With (4.8), the inverse matrix Z−1(x) becomes

Z−1(λx) =
(

I 0
− (ν · C0 · ν)−1 · (ν · C0 · n) (ν · C0 · ν)−1 e−λx

)

. (4.9)

The constructed matrices yield the dispersion equation (3.10) in the form

det

(

(0, I) · Z(−irhλ) · e−2irhG0(λ) · Z−1(irhλ) ·
(

I
0

))

= 0. (4.10)

5 Examples

While the theory, developed in Sect. 3, refers to the general heterogeneous anisotropy, herein, an isotropic
FGM plate with transverse heterogeneity is analyzed. The dispersion curves for the considered FGM plate are
compared with ones for the corresponding homogenized isotropic plates.

5.1 FGM plate

Consider an isotropic FGM plate with the following physical properties:

E(x) = E0
(1 + α cosh(iβx))

2
, ν = const., ρ = const., (5.1)

where E0 corresponds to Young’s modulus at the median plane x = 0 at α �= 0; here α and β �= 0 are dimen-
sionless real-valued constants; x is the dimensionless imaginary coordinate; ν ∈ (−1; 0.5) is the Poisson ratio,
ρ is the material density. The inequality

α > − 1

cosh(βh)
(5.2)

ensures that E(x) > 0 at −ih < x < +ih. For the considered FGM plate, both the Poisson ratio and the
material density are assumed constant with respect to depth.
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Fig. 2 Variation of Young’s modulus with depth: left (α > 0); right (α < 0)

Depending on the sign of the constant α, Young’s modulus variation with depth is ether convex (α > 0) or
concave (α < 0); see Fig. 2:

With the elastic constants (5.1), the components of the elasticity tensor become

Ci jkl(x) = λ(x)δi jδkl + μ(x)
(

δikδ jl + δilδik
)

, (5.3)

where δi j is the Kronecker delta, and λ,μ are Lamé constants:

λ(x) = E(x)ν

(1 + ν)(1 − 2ν)
; μ(x) = E(x)

2(1 + ν)
. (5.4)

With account of Eqs. (5.3), (5.4), the equations (2.6) become

A1(x) = (λ(x) + 2μ(x)) ν ⊗ ν,

A2(x) =
(

d (λ(x) + 2μ(x))

dx
ν ⊗ ν + (λ(x) + μ(x)) (ν ⊗ n + n ⊗ ν)

)

,

A3(x) = dλ(x)

dx
ν ⊗ n + dμ(x)

dx
n ⊗ ν + (λ(x) + 2μ(x)) n ⊗ n − ρ0c

2I. (5.5)

5.2 Homogenized plate

Along with the FGM plate, a plate with homogenized properties is also considered with averaged Young’s
modulus (Ehom)

Ehom ≡ E0

2

⎛

⎝1 + α

2ih

ih
∫

−ih

cosh(iβx)dx

⎞

⎠ = E0

2

(

1 + α

βh
sinh(βh)

)

. (5.6)

As the right-hand side of Eq. (5.6) shows, Ehom > E0/2 at α > 0, and Ehom < E0/2 at α < 0.

5.3 Dispersion curves

The following nondimensional numerical values for the parameters (5.1) were adopted:

E0 = 1; α = ±0.5; β = 1; ν = 0.25; ρ = 1; h = 1. (5.7)

Direct verification shows that the condition (5.2) is satisfied for these numerical values. For the parameters
(5.7), Eq. (5.6) yields: Ehom ≈ 0.794 at α = 0.5 and Ehom ≈ 0.206 at α = − 0.5.

Applying the method developed in Sect. 3 and substituting the isotropic elasticity tensor defined by (5.3)
with the material constants (5.7) allows us to plot dispersion curves for the considered FGM and homogenized
plates in terms of nondimensional phase speed c vs. nondimensional frequency ω; see Fig. 3.

Comparing the plotted dispersion curves for the considered symmetric fundamental modes reveals:
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Fig. 3 Dispersion curves related to the fundamental symmetric Lamb modes: a α = + 0.5; b α = − 0.5

(I) For both cases α = + 0.5 and α = − 0.5, the FGM dispersion curves vary considerably in the whole
frequency range ω ∈ (0;∞).

(II) For homogenized plates at small frequencies ω → 0, the corresponding phase velocities coincide with
the second limiting wave velocity: c2,lim = √

Ehom/ρ, see [13]; thus c2,lim ≈ 0.892 at α = + 0.5 and
c2,lim ≈ 0.454 at α = −0.5.

(III) For homogenized plates at high frequencies ω → ∞, the corresponding phase velocities coincide with
the Rayleigh wave velocities cR ≈ 0.518 at α = + 0.5 and cR ≈ 0.264 at α = − 0.5.

(IV) For FGM plates at high frequencies ω → ∞, the corresponding phase velocities are very close to the
Rayleigh wave velocities that relate to physical properties of the outer layers: at α = + 0.5, according
to Eq. (5.1), E(±h) ≈ 0.885 which yields cR ≈ 0.547, and at α = − 0.5, according to Eq. (5.1),
E(±h) ≈ 0.114 which yields cR ≈ 0.197.

(V) For the considered FGMplates, frequency values of nonexistence of symmetric fundamental modes were
not observed.

Generally, as the corresponding plots in Fig. 3 show for the considered FGM plates, homogenization leads
to a substantial discrepancy in the dispersion curves in the whole frequency range ω ∈ (0;∞).

6 Conclusions

Propagation of harmonic Lamb waves in plates made of functionally graded materials (FGM) with trans-
verse inhomogeneity is studied by the modified Cauchy six-dimensional formalism. For arbitrary transverse
inhomogeneity, a closed-form dispersion equation is derived.

Dispersion curves for FGM isotropic plates with different kinds of exponential inhomogeneity are obtained
and compared with those for homogenized isotropic plates, revealing a substantial discrepancy in the shape of
the corresponding dispersion curves.

For the considered inhomogeneities, no frequency values were found at which nonexistence of the sym-
metric fundamental Lamb wave modes could occur.
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