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Abstract Transient simulation is very important to protect the water supply pipeline system from extreme
pressures. In order to numerically simulate the transient response in a variable–property series pipe system, the
water hammer model and matched boundary conditions are developed by introducing the MacCormack time
marching scheme. Based on the proposed method, the transient pressure and flow velocity are numerically
predicted for a variable–property series pipe, and then the results are compared to the classical method of
characteristics (MOC). The improved method can yield a reasonable numerical solution for a closed pipe, and
the solution agrees well with the MOC and existing experimental results. In the proposed model, the time
step is no longer subjected to the length of the space step; consequently, it is more convenient in meshing and
modifying the x − t grid. Especially, it is very advantageous in establishing the simultaneous calculation in
water hammer simulation for a variable–property series pipes system or complicated distribution networks.

List of symbols

A Area of section (m2)
a Wave speed of water hammer (m/s)
C Constant
Zu Upstream constant water level (m)
C∗ Vardy’s shear decay coefficient
Cd Discharge coefficient of valve
CT Dimensionless time consumed
CR Refining coefficient of time interval
CTMO Dimensionless time consumed in MOC
CTMT Dimensionless time consumed in MTMS
CTR The ratio of the computing times
Cx Dimensionless space step
D Main pipe diameter (m)
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e Internal energy (J)
f Darcy–Weisbach friction factor
fq Quasi-steady friction factor
g Acceleration of gravity (m/s2)
h Pressure head (m)
hns The head of the valve (m)
hw The head loss between section (m)
i Serial number of nodes (s)
j Serial number of nodes (s)
k Brunone friction coefficient
n The number of elements in a single pipe
pa Atmospheric pressure (Pa)
p Pressure (Pa)
Q Instantaneous discharge at section (m3/s)
s Section area at nodes (m2)
S Square integral domain
S Vector surface area
T Time (s)
t Time, as subscript to denote time (s)
TMO Total time consumed in MOC
TMT Total time consumed in MTMS
v Flow velocity (m/s)
v Velocity vector
x Distance along pipe from the inlet (m)
θ Pipe slope
ρ Fluid density (kg/m3)
�x Length of element, space interval step (m)
CxMO Dimensionless space step in MOC
CxMT Dimensionless space step in MTMS
�t Time interval step (s)
� Volume integral domain

Symbols

∼ Superscript denotes estimated values
− Superscript denotes average values

Abbreviations

MOC Method of characteristics
MTMS MacCormack time marching scheme
FW Forward wave
RW Reverse wave

1 Introduction

Water hammer can cause severe vibrations, cavitations, and breaks in a pipes system [1]. It is very important to
simulate and control the water hammer in pressurized-pipe system [2,3], in order to protect the pipe apparatus
in a pumps system [4,5], unclear system [6], and hydropower station [7,8]. Experimental and numerical
simulations can be used to predict hydraulic transient processes, especially extreme pressures. However, in an
experiment it is very difficult to combine the state and space boundary conditions. Moreover, an experiment
also costs much in terms of time and expense. With the development of computers and computing techniques,
numerical simulation is more widely used to predict water hammer in scientific and engineering applications.
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Over the past few decades, various numerical methods have been developed to simulate and control
hydraulic transient processes [9]. The most common method employed is the explicit-format method of char-
acteristics (MOC) [1], which has been widely used and improved in the applications of multi-pipe systems
[10]. Other approaches include the implicit-formatmethod of characteristics [11] and the finite elementmethod
[12]. Typically, Guinot et al. [13] investigated the finite-volume method (FVM) for water hammer simulation,
and proposed first-order and second-order approximate Riemann solvers using the Godunov scheme. Wood
et al. [14] proposed the interesting wave characteristic method (WCM) based on pressure wave propagations
and the pipe wall resistances in a single sonic flow. Kim et al. [15] proposed an impulse response method to
analyze the transient process of water distribution systems with surge protection devices, and he also improved
the impedance matrix method for transient computation of large pipe networks [16]. Niroomandi et al. [17]
proposed a time-splitting projection method for simulating water hammer in deformable pipes. Alamian et al.
[18] developed a state space model for water hammer simulation in gas pipelines and networks. Hwang [19]
proposed a characteristic particle method to simulate the water hammer in piping systems.

As the most popular numerical method, explicit MOC is widely and conventionally used in the water
hammer simulation induced by valves [20,21], pumps [22,23], and air pockets [24]. The implicit method of
characteristics (IMOC) canbe applied tomore complicatedwater hammers in someparticular conditions [6,11];
however, the irregular x − t mesh and complicated data structure have significantly limited its application.
Moreover, somemixed-method coupled traditionalMOC has also been proposed to simulate the water hammer
[25]. As a second-order finite difference method, the MacCormack method [26] is widely used to solve the
hyperbolic partial differential equation in computational fluid dynamics [27–30]. However, the method hardly
plays its role in practical water hammer simulation and prediction. In fact, Chaudhry [12] referred briefly to
the method for solving the water hammer equation in general middle nodes. Amara [31] applied the method
to solve the middle node of water hammer in a single pipe. However, the literature has not considered the
convective acceleration terms, and no matched end boundaries were established. Because the end boundaries
still depend on the characteristic line method, the time and space step cannot be defined independently.

In this paper, the improved approach, including regular nodes and matched boundary model, is established
to numerically simulate thewater hammer in a subsonic-flowpipeline system. TheMacCormack timemarching
scheme (MTMS) is used to simulate thewater hammer in a variable–property series pipe system; especially, the
convective acceleration terms andmatched end boundaries were considered. The proposedmethod is generally
different from the MOC in structure and boundary constraints. In this method, the numerical solution is first
established using the MTMS, and the matched boundary conditions models are developed for the valve and
connection in a variable–property pipe system. The time step is no longer subjected to the space interval
step when meshing the x − t grid. It can decrease the computing time by optimizing the computational grid.
Moreover, for a variable–property series pipe system, the new method is convenient to select the same time
step for all pipes without wave-speed adjustment or interpolation, since the time step is no longer depending
on the space step. It is therefore more efficient in the numerical simulation of water hammer analysis for a
variable–property pipe system.

2 Control equations of transient flow

2.1 Basic fluid dynamics equations

The general physical equation system of the fluid movement consists of the continuity equation, momentum
equation, and energy equation. They can be expressed as a closed equation system as follows [28]:
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2.2 Control equations for closed-pipe flow

For the one-dimensional flow in a closed pipe, considered as an isothermal process, without energy transforma-
tion, the flow is only subjected to the continuity and momentum equations. Therefore, the system of equations
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can be written as follows: ⎡
⎣

∂(ρA)
∂t + ∂(ρAv)

∂x

ρ ∂v
∂t + ρv ∂v

∂x

⎤
⎦ =

[
0

− ∂p
∂x

]
. (2)

Considering the friction of the pipe wall, in the pressure head form, the general water hammer equations
of a pipe flow can be expressed as [1]

⎡
⎣

∂h
∂t + v ∂h

∂x + a2
g

∂v
∂x − v sin θ

∂v
∂t + g ∂h

∂x + v ∂v
∂x + f v|v|

2D

⎤
⎦ =

[
0

0

]
. (3)

Equation (3) combines the entire system of equations to describe the water hammer process in a closed-
pipe system. Here, the general continuity and movement equations are briefly introduced, especially, because
they are fundamental for water hammer simulation in a closed-pipe system. Similarly, they are also used in
the following analysis. In general, while solving, the convective acceleration terms are commonly omitted to
simplify the simultaneous equations in conventional methods [1,12,14,31]. This is reasonable when the wave
speed is much more important than the pipe flow velocity. In fact, the waves propagate with the speed of v + a
in the forward direction and v − a in the backward direction. For some elastic pipes, the influence of the flow
velocity on the water simulation is significant, which requires extra interpolation and a more complex solving
process.

The aim of this paper is to establish an entire solution model for the closed expressed equations by
introducing the MTMS. Matched boundary condition constraints are analyzed and established for coupling
the proposed model. In the proposed model, all terms will not be omitted in the derivation, and it still has the
regular x − t mesh structure and accurate solutions. Especially, the time step is no longer subjected to the
characteristics line when meshing the x − t grids.

3 Solution model of transient flow

3.1 Water hammer model in MTMS

3.1.1 Numerical discrete format for partial differential equation

TheMacCormackmethod [26] has been used to solve hyperbolic partial differential equations in computational
fluid dynamics [27–30]. It has also been used to solve water hammer equations without convective acceleration
terms [12,31]. As seen, Eq. (3) consists of two hyperbolic partial differential equations. In order to establish
a two-variable iterative model in MTMS, Eq. (3) can be written in the time marching format as

⎡
⎣

∂h
∂t

∂v
∂t

⎤
⎦ =

⎡
⎣−v ∂h

∂x − a2
g

∂v
∂x + v sin θ

−g ∂h
∂x − v ∂v

∂x − f v|v|
2D

⎤
⎦ . (4)

In Eq. (4), f is the general Darcy–Weisbach friction factor. In the classical MOC model, the coefficient
is approximately treated as a quasi-steady friction factor fq. Bergant et al. [32–34] clearly showed that the
quasi-steady friction method can effectively simulate the peak pressure at the first and second pulse. However,
in the simulation of rapid water hammer, there may be some deviations in the attenuation and phase shift
of the pressure surges. In order to analyze the effects of unsteady friction, several typical models have been
proposed by Zielke [35], Hino et al. [36], and Brunone et al. [37]. These models are widely applied and
improved to evaluate the unsteady friction [32–34,38–44]. Especially, many studies show that the Brunone
model is almost the most popular model and the form has been continuously improved [34,38,39]. The model
takes into account the instantaneous local acceleration ∂v/∂t and the instantaneous convective acceleration
∂v/∂x on the unsteady head losses. Therefore, the model is also selected to evaluate the unsteady friction in
the presented research. The latest form can be written as [38]

f = fq + 2kD

v |v|
(

∂v

∂t
+ sgn(v)a

∣∣∣∣
∂v

∂x

∣∣∣∣
)

. (5)
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Fig. 1 Time marching mesh for a pipe flow

According to Vardy’s shear decay coefficient C∗, the Brunone friction coefficient is calculated empirically
[34,45],

k =
√
C∗
2

⎧⎨
⎩
C∗ = 0.00476 For laminar flow

C∗ = 7.41/Relog(14.3/Re
0.05) For turbulent flow.

(6)

Therefore, Eq. (4) can be converted into the following form:
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To express the discretization scheme and solve the marching process clearly, next, a simple time marching
mesh is illustrated. Figure 1 shows an x − t grid for a single closed pipe, which is meshed over five sections
(nodes), and the time interval �t is specified as the marching time step. Especially, the time step is no longer
subjected to the space step (length of the element) depending on the characteristics path line. Consequently,
without the limitation of the characteristics line, it is convenient to modify the time step and space step in
order to optimize the computational mesh. Three kinds of nodes are marked in Fig. 1. The solid dot, denoting
the node, is known at the beginning of the present time step. The entire hollow circle denotes the unknown
internal nodes, which have two adjacent nodes. The semicircle denotes the unknown side nodes, which have
only an adjacent node in the left or right.

In the figure, the marching step is always from the known nodes to the unknown nodes. According to the
known nodes, in the forward difference format, the general spatial derivatives of node i at the beginning of the
present step can be written as

⎡
⎣
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According to the spatial derivatives, the value of node i at time t + �t can be estimated as
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Similarly, the value of node i − 1 at time t + �t can be estimated as

⎡
⎣ h̃t+�t

i−1
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(10)
Based on the estimated value at time t + �t , in rearward differences, the spatial derivatives of node i at

time t + �t can be estimated as
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3.1.2 Solution model for regular nodes

Equation (9) estimates the value of node i at time t + �t using the spatial derivatives of node i at time t . As
a correction, the spatial derivative can be replaced by the average at the present step, which can be calculated
by combining Eqs. (8) and (11) as follows:

⎡
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i

⎤
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Thus, the corrected value of node i at time t + �t can be obtained by Eq. (13). The final solution can be
written as [

hi

vi

]∣∣∣∣∣ t + �t =
[
hi

vi

]∣∣∣∣∣ t + �t

[(
∂h
∂t

)t+�t/2

i

(
∂v
∂t

)t+�t/2

i

]T
. (13)

The model can yield all values at time t + �t for all internal nodes, as shown in Fig. 1. Unlike the
conventional water hammer simulation, as seen in the derivation process, the proposed model still includes the
convective acceleration terms. The wave propagations are separately considered with different speeds in the
forward and backward directions, and the regular, fixed x − t mesh is still available in the proposed model.
Theoretically, it is very convenient and most suited for all water hammer simulations in a closed-pipe system.

In MOC, the wave propagates with the same speed in both forward and backward directions, so a regular
fixed x − t mesh can be established, which is very convenient in practical application. In theory, a slight
deviation in phase shift may raise, since the effect of the flow velocity is neglected. IMOC is suitable for an
elastic pipe, but the irregular x − t grids limit its application. WCM can simplify the calculation and save time,
but it cannot give the extreme pressure along the pipe. MTMS is improved to make up for these deficiencies.
(i) The new method includes the convective acceleration term, which considers separately the different wave
speeds in the forward and backward directions, so it is also suitable for application to elastic pipes. (ii) The
method still uses a regular x − t grid, so it is elegant and convenient to apply. (iii) It can provide the extreme
pressure along the pipeline, so it is easy to predict the weakest section due to the internal transient pressure.

3.2 General boundary model for single subsonic pipe flow

As shown in Fig. 2, a single pipe commonly includes only an inlet boundary and an outlet boundary. For
subsonic flow, the forward wave speed v + a is always larger than zero, and the reverse wave speed v − a is
always less than zero. Consequently, in the inlet, the forward wave (FW) always propagates into the pipe flow
domain, and the rearward wave (RW) always propagates out the pipe flow domain. Conversely, in the outlet,
the FW always propagates out the pipe flow domain, and the RW propagates into the pipe flow domain. If the
inlet and outlet are free, the boundary condition can be written as [28]

ht+�t
i = 2ht+�t

i+1 − ht+�t
i+2 (14)
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Fig. 2 Boundary conditions for a single isotropic pipe

Fig. 3 Boundary conditions for a series variable pipe system

or
vt+�t
i = 2vt+�t

i+1 − vt+�t
i+2 . (15)

3.3 Boundary model for variable–property pipes in series

In fact, the two sides of the single pipe are always restrained by connecting to other pipes and devices in
a closed-pipe system. The boundary conditions vary with the connection type. Figure 3 illustrates the basic
components and the boundary conditions of a variable–property series pipe system. The system consists of the
upstream pool with a steady water level, the junction connecting two variable–property pipes, and the control
valve at the end. These boundary models needed in the system are very useful and convenient in the water
hammer simulation.

3.3.1 Inlet boundary condition

In the inlet, the forward wave (FW) propagates into the pipe flow domain, and the rearward wave (RW)
propagates out of the pipe flow domain. Thus, the boundary condition includes an independent variable and a
dependent variable. For a constant upstream water level, the boundary constraint condition can be written as

{
ht+�t
1 = Zu,

∂h1
∂t

= 0

}
. (16)
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The final solution can be established as
⎡
⎣ ht+�t

1

vt+�t
1

⎤
⎦ =

⎡
⎣

Zu

−a2vt+�t
2 /

[(
ht+�t
2 − ht+�t

1 − �x sin θ
)
g − a2

]
⎤
⎦ . (17)

3.3.2 Connection section boundary

In the connection section, both sides have a characteristic line that enters into the pipe flow domain. According
to the continuity condition and head condition, the boundary constraint conditions can be expressed as

⎧⎨
⎩

ht+�t
i = ht+�t

j , ∂hi/∂t = ∂h j/∂t

siv
t+�t
i = s jv

t+�t
j , si∂vi/∂t = s j∂v j/∂t

⎫⎬
⎭ . (18)

The solution of the equations can be written as
⎡
⎣ ht+�t

i vt+�t
i

ht+�t
j vt+�t

j

⎤
⎦

=
[
1 1

1 1

] ⎡
⎢⎣

(
ht+�t
i−1 �x j + ht+�t

j+1 �xi
)
/
(
�xi + �x j

)
0

0
(
vt+�t
i−1 si�x j + vt+�t

j+1 s j�xi
)
/
(
si�x j + s j�xi

)

⎤
⎥⎦ .

(19)

Especially, though ht+�t
i−1 , ht+�t

j+1 , vt+�t
i−1 , and vt+�t

j+1 are the parameters at the end of the time step, they have
been determined previously by the middle node model, as seen in Eq. (13).

3.3.3 Valve boundary control equation

A valve can induce water hammer in pipe systems. In general, the boundary model of the valve consists of
compound simultaneous equations, which may yield an extraneous solution during the solution process in
the quadratic equations system [1]. Especially, for the valve with a backflow, a check process is necessary to
meet the valve resistance [23]. For subsonic pipe flow, the rearward characteristic line will propagate into the
internal domain; thus, a variable needs to be specified. According to the additional constraint equation of the
valve, choosing the head as the free variable, the solution model of the outlet can be written as

[
ht+�t
ns

vt+�t
ns

]
=

[
hns

sgn (hns − pa)Cdsqrt (2g |hns − pa |)

]∣∣∣∣∣ hns = 2ht+�t
ns−1 − ht+�t

ns−2
. (20)

The flow rate at the end is zero after the valve is completely closed. Therefore, the velocity becomes known,
and the boundary can be written as follows:

{
vt+�t
ns = 0,

∂vns

∂t
= 0

}
. (21)

Using backward difference, the solution model can be established as
[
ht+�t
ns

vt+�t
ns

]
=

[
htns + a2vt+�t

ns−1/(g�x)
0

]
. (22)

Compared to the traditional valve boundary condition model, the valve boundary model is advantageous.
The flow can be directly determined after the pressure is estimated by a simple extrapolation method. In the
solution process, there is no extraneous solution, and the check step is avoided.
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3.4 Initial state conditions

The initial value is very important to improve the calculations. They can be simulated by an iterative process
from some specified values in computational fluid dynamics. For some complicated system, they can also be
computed by unsteady flow simulation. Here, the initial boundary condition can be determined by solution
at steady conditions. According to the head loss principle, the initial values of the nodes can be expressed as
follows: [

vi = v0A0/Ai i = 1, 2 . . . n

hi+1 = hi − hi, j+1
w

∣∣∣
h1=h0

i = 1, 2 . . . n

]∣∣∣∣∣
t=0

. (23)

Equations (17), (19), and (20) establish the entire boundary numerical solution for the inlet, the connection,
and the outlet in water hammer simulation. It is very important to obtain a reasonable solution in a closed-pipe
unsteady flow. Equation (23) provides the initial values of the steady flow at the initial time. It makes sure
that the initial parameters are reasonable and leads to a faster numerical convergence. Now, the regular middle
nodes model and the boundary model, as well as the initial values, constitute simultaneously a self-governed
water hammer numerical simulation system.

4 Model validation

4.1 Comparison with existing experiment for a single pipe

In order to validate the proposed model, the numerical simulation results are compared with the existing
experimental measurement. In particular, the experiment was conducted by Bergant and Simpson et al. [32–
34]. Here, it is simply introduced and referenced to verify the numerical simulation by the proposed model.
The experimental apparatus consists of a single copper pipe with 37.2 m in length, 22 mm in internal diameter
and a 1.63 mm in wall thickness and two pressurized tanks. The steady state flow velocity is 0.3 m/s, the
upstream pressurized is 32.0 m, valve closure time is 0.09 s, wave speed is 1319 m/s, and the quasi-steady
friction coefficient is 0.034. The details can be referred to the references [32–34]. With the same boundary
conditions, three different models were used to simulate the instantaneous transient by fast valve closure in
a single pipe. These compared models are separately the classical MOC, MTMS with steady friction, and
MTMS with unsteady friction.

Figure 4 compares the transient pressure surges at the endpoint near the valve, and Fig. 5 compares the
transient pressure surges at the midpoint of the pipe. As seen in Figs. 4 and 5, theMOC can accurately simulate
the maximum pressure and the initial phases. However, the deviation occurs and increases with time during the
last period. For MTMS with steady friction, it can obtain similar results with MOC. Obviously, the result of
MTMSwith unsteady friction is more consistent with themeasurement, and this proposedmethod significantly
reduces the deviation of attenuation and phase shifts.

Fig. 4 Comparison of the transient pressure surges of the endpoint
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Fig. 5 Comparison of the transient pressure surges at the midpoint

Fig. 6 Comparison of transient pressure process caused by valve closing

4.2 Variable–property pipes in series

In order to validate the proposed simulation method and boundary conditions model, a water hammer process
is analyzed and simulated with MTMS and MOC. As shown in Fig. 3, the system consists of two different
steel pipes in series and two reservoirs. The first pipe is 2720 m in length and 0.5 m in internal diameter, and
the wave speed is 1000 m/s. The second pipe is 2652 m in length and 0.4 m in internal diameter, and the wave
speed is 1200 m/s. The upstream water level is 40 m, and the flow discharge is 0.05m3/s. In order to generate
a slow water hammer in the pipe system, the valve is partly closed in linear, and the flow changes from 0.05
to 0.01m3/s in 8 s. The pressure and flow fluctuation are analyzed and compared with the MOC method.

4.2.1 Transient pressure and flow process at a specific section

It is very important to predict the transient pressure and discharge processes in water hammer simulation.
Based on the proposed method, Figs. 6 and 7 show the transient pressure head and flow, respectively, caused
by closing the valve. In order to validate the result, simultaneously, the figure also shows the results solved
by the traditional MOC method. As a traditional method, MOC has been verified and widely used to simulate
water hammer inmany research and industrial areas. By comparing the hydraulic process, the proposedmethod
is verified to simulate the transient pressure and flow fluctuation in the connection section. Like MOC, it can
also yield the same accurate numerical solution for water hammer in a closed pipe, including transient pressure
and the flow process.
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Fig. 7 Comparison of flow surge process caused by valve closing

Fig. 8 Extreme transient pressure distribution along the pipeline

4.2.2 Extreme pressure distribution along the pipeline

Besides the end nodes, MTMS can compute all the internal nodes along the pipe. Consequently, the proposed
method can provide the extreme pressure distribution along the pipe, which is important to determine the
maximum internal pressure along the pipeline. Figure 8 shows themaximumandminimumpressure distribution
along the entire pipeline. Analogously, MOC is also used to provide a reference to validate the newmethod. As
shown in Fig. 6, both MTMS and MOC provide almost similar solutions with the same numerical precision.
The comparison shows that the new method is capable of simulating the extreme pressure along the pipeline.

4.2.3 A fast water hammer analysis

As shown in the single pipe, the proposed method can improve the numerical results in attenuation and phase
shifts. In order to analyze the rapid water hammer in the variable–property pipes in series, the same valve
closure is completed in only 0.1 s. Figure 9 shows the transient pressure process of fast valve closure. As
shown in Fig. 9, the result of the proposed model is similar to that of the classical model. In the enlarged
figure, the slight deviation in attenuation and phase shifts comes out, since the instantaneous local acceleration
and the instantaneous convective acceleration are taken into account. Unlike the complete valve closure, the
unsteady friction has only slight effect on the transient process in a partial valve closure.
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Fig. 9 Comparison of transient pressure process of fast valve closure

Fig. 10 Transient pressure process of various points along the pipe

4.3 Pressure and flow fluctuation at the pipeline

In Sect. 4.2, we compared the numerical results in the connection and extreme pressure along the pipe. Next,
take the 8 s valve closure as an example, and all the pressure and flowfluctuations are simulated by the proposed
MTMS. Figure 10 shows the transient pressure fluctuation process for the end and middle nodes along the
pipeline. For each point, there are two lines: the red lines are the pressure processes simulated by MOC, and
the blue lines are the pressure processes simulated by MTMS. As shown in Fig. 10, these results are almost
overlapping, thus validating the proposed model. Analogously, Fig. 11 shows the transient flow processes in
different sections. These results show that the proposed method can accurately simulate the transient process
as with MOC.

4.4 Meshing constraint and time consumption analysis

4.4.1 Constraint on x–t meshing

In the fixed, explicit MOC format, in order to establish the fixed mesh, the time step is subjected to the distance
step according to the characteristics path line. The constraint conditions of MOC can be expressed as

�x = a�t. (24)
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Fig. 11 Transient flow process of various points along the pipe

The constraint conditions of MTMS can be expressed as Courant condition [28]

�x ≥ (a + |v|)�t. (25)

Compared to the traditional method, MTMS is not constrained by the characteristic line. In MOC format,
the space step increment and the time increment are strictly one to one correspondence. In other words, every
space step increment is fixed with a given time step increment. However, in the proposed method, the time step
and the space step can more freely be chosen within the Courant condition. As shown in Fig. 1, the x − t grid
is still regular, and the time interval step can be conveniently modified without changing the distance step. It
is very significant to decrease the computing time and conduct synchronous iteration for complicated pipe net
systems, based on the same concise structure and program as the explicit MOC format.

4.4.2 Meshing of pipes in series

In the traditional model, it is very difficult to mesh a pipe with the same time increment, which is necessary to
conduct simultaneous computation. In other words, in meshed pipes, all pipes in the system need to meet the
following equations [1]:

�t = li
ai ni

. (26)

Considering the different wave speeds and pipe lengths, it is very difficult to meet the above condition
in most pipe systems, especially a complicated pipe network. In general, it is necessary to adjust the wave
speed or the pipe length in order to keep the same time step for all pipes. Sometimes, if a very short pipe
is connected in the pipe system, a very small time step is necessary, which will also fix the space steps of
other pipes according to Eq. (24). Absolutely, it increases the computational difficulty and the time consumed.
Conversely, in the same conditions, MITS can adopt a larger space step for other pipes according to Eq. (26).

In the proposed model, the time step is no longer subjected to the space step according to the characteristic
line. Consequently, it is very convenient to use a consistent time step, especially for a complicated pipe network.
The proposed method is more convenient in executing simultaneous calculation and saving time. Figure 12a
shows the meshing process in MOC, where the indivisible remainder needs to be re-meshed by adjusting the
wave speed according to the characteristic line. Obviously, Fig. 12b shows the simpler meshing process in the
proposed method without limit of the characteristic line

4.4.3 Sensitivity analysis of time consumed

For a specific wave period, generally, numerous data points are required to capture the peak pressure value and
describe the accurate waveform; in other words, the time step should be small enough to describe the entire
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Fig. 12 Comparison of meshing in x − t grid for variable–property pipes in series

Table 1 Dimensionless space step and time consumption

CR �t (s) CxMO CxMT TMO (s) TMT (s) CTMO CTMT CTR

1 0.1000 1.00* 1.00 0.1289 0.4102 1.00 3.18 3.18
2 0.0500 0.50* 1.00 0.3711 0.8516 2.88 6.61 2.29
3 0.0333 0.33* 1.00 0.7773 1.3203 6.03 10.24 1.70
4 0.0250 0.25* 1.00 1.4023 1.7266 10.88 13.39 1.23
5 0.0200 0.20* 1.00 2.1719 2.1602 16.85 16.76 0.99
6 0.0167 0.17* 1.00 3.0586 2.6094 23.73 20.24 0.85
7 0.0143 0.14* 1.00 4.2305 2.9922 32.82 23.21 0.71
8 0.0125 0.13* 1.00 5.4219 3.4805 42.06 27.00 0.64
9 0.0111 0.11* 1.00 6.9180 3.8516 53.67 29.88 0.56
10 0.0100 0.10* 1.00 8.4883 4.3008 65.85 33.36 0.51

waveform accurately. The comparison in Fig. 6 shows that the proposed method can accurately predict the
water hammer waveform. In order to analyze the influence of meshing on the time consumed, we have chosen
a basic MOC grid as the reference, the time step as �t0 = 0.1 s, and the basic space step as �x0 = 10 m
in the first pipe and �x0 = 12 m in the second pipe, T0 = 0.1406 s. Based on the reference, Table 1 shows
the dimensionless space step and time consumption, which are defined as CR = �t0/�t , Cx = �x/�x0,
CT = T/T0,CTR = TMT/TMO.As shown in Table 1, whenwe refined thewaveform inMTMS, the space step is
not subjected to the change of the time step. However, inMOC, the space step must be simultaneously adjusted
with the decrease in the time step according to the characteristic line. In the table, the symbol∗ denotes that the
space step depends on the time step in the MOC model. Accordingly, Fig. 13 shows that the time consumed
decreases with the increase in the time interval step. As shown in the figure, MOC will require more time
for an accurate waveform, since the space interval step must match the change of time interval step. On the
contrary, the proposed method can still use the original space interval step when the time step is refined, so
the increase in time consumption is less than in the MOC.

As shown in Fig. 13, when the same time and space interval x − t grid are used, the MTMS takes a little
more computing time, since it has an extra estimating process in the MacCormack time marching scheme.
However, its space step is not subjected to the constraint of the characteristic line; thus, MTMS can save more
time when using an extended space step.
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Fig. 13 Time consumed with the density of time step

Fig. 14 Comparison of transient pressure process simulated with different time interval steps

4.4.4 Influence of modified time interval on the numerical result in MTMS

In order to analyze the influence of the time steps on the numerical precision, Fig. 14 shows the various
numerical solutions with different time interval steps, based on the same space step. The results show that a
reasonable adjustment in time step increment has hardly influence on the numerical results of the transient
pressures. Consequently, a modified time interval step can be used to decrease the computing time without
changing the space step increment.

4.4.5 Saving time by increasing the space interval step

As shown in the above analysis, in MTMS, the time interval step and the space step can be adjusted to a certain
extent without change in the numerical precision. Given the time interval step, various space interval steps can
also be adjusted to decrease the computing time, since the x − t is no longer subjected to the integral process
along the characteristics path line. For a specific time interval, without distorting the water hammer waveform,
a larger space step can save time for the computing process. Table 2 shows the time consumed for different
space steps for a fixed time interval step. As shown in Fig. 15, the runtime decreases significantly with the
increase in the space interval step. Figure 16 shows that the increase in the space interval step hardly affects
the numerical results of water hammer in a closed pipe. Consequently, without changing the time step, the
computing time decreases by adopting a larger space interval (length of element).
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Table 2 Sensitivity of time consumed with the refining mesh

Cx �t (s) TMT (s) CTMT

1 0.01 7.613 1.000
2 0.01 3.828 0.503
3 0.01 2.551 0.335
4 0.01 1.910 0.251
5 0.01 1.520 0.200
6 0.01 1.270 0.167
7 0.01 1.109 0.146
8 0.01 0.961 0.126
9 0.01 0.859 0.113
10 0.01 0.781 0.103

Fig. 15 Sensitivity analysis of the space interval steps on time consumed

Fig. 16 Comparison of transient pressure process simulated with different space interval steps

5 Analysis and discussion

Compared with MOC, the proposed approach can directly solve the partial differential equation without
omitting the convective acceleration term. In theory, the proposed approach includes the pipe flow velocity’s
influence on the transient wave propagation, and it is important for water hammer simulations with higher flow
velocity and lowwave speed. It is more convenient without the specified path dependence for the integral of the
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partial difference equations in MOC when establishing the x − t time marching mesh. In MOC, it is difficult
to establish a uniform x − t time marching mesh for a variable–property series pipe system. However, the
approach canmore conveniently compute the hydraulic transient in variable–property pipes in series, because a
uniform time step can be established by modifying the space steps for serial pipes without the constraint of the
characteristic line. Consequently, it is simpler to implement a simultaneous solution process using the MTMS
time marching scheme, considering the desired time and space steps for a series pipe system. Moreover, the
proposed approach is simpler in dealing with the valve boundary condition than the MOC method. A regular
x − t grid mesh is always available, even if the wave propagation is considered as the coupling of water
hammer speed and flow velocity. Obviously, the MTMS is still as concise in structure and process as MOC.
Though an estimation process is needed in the iteration, it is better simplified without the integral process and
limitation of the characteristic line in MOC. In summary, MTMS has the following advantages: (i) MTMS
takes less time than MOC when refining the time interval step to obtain an accurate waveform. In other words,
a smaller time step can be used for a specified space step. (ii) It can simplify the simultaneous calculation
for variable–property pipes, since the identical time interval steps are available for different space steps in the
x − t grid. (iii) Boundary conditions, especially valve boundary condition, can be considerably simplified. (iv)
The proposed model couples the influence of flow velocity on the wave propagation. (v) The time step and
space step can be set up as desired within the Courant condition.

6 Conclusions

An alternativewater hammer numerical model is established by using theMacCormack timemarching scheme.
The boundary conditions are also established with more simplified and distinct processes. The result of simu-
lation with MTMS agreed well with that of MOC. It shows that the proposed method can yield a reasonable
numerical solution for the equations in water hammer simulation. Since the MTMS considers the convective
acceleration term, which is usually omitted to simplify the water hammer equations in traditional numerical
simulations, it is better suited for various water hammer simulations. The regular mesh is still available in the
MTMS, so it simplifies the numerical scheme and simultaneous solving process for variable–property pipes
in series, since it is not subjected to integration along the specific characteristic line. Moreover, the proposed
approach can save computing time by modifying the space step increment.
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