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Abstract The nonlocal effect on functionally graded multilayered quasicrystal nanoplates is investigated.
The functionally graded quasicrystal is assumed to be exponentially distributed along the thickness direction
of the simply supported nanoplates. The exact solution for functionally graded multilayered two-dimensional
quasicrystal nanoplates subjected to a patch loading on their top surfaces is derived using the extended nonlocal
elastic theory, pseudo-Stroh formalism, and propagator matrix method. The patch loading is indicated by the
form of a double Fourier series expansion. Numerical examples are presented to reveal the influences of patch
size, nonlocal parameter, and stacking sequence on the phonon, phason, and electric fields.

1 Introduction

Since the significant discovery of the icosahedral quasicrystals (QCs) first from the diffraction image of rapidly
cooled Al-Mn alloys in 1982, a new research field for solid-state physics has been opened [1]. Unlike crystals
and noncrystals, QCs possess long-range orientational order and no translational symmetry [2]. According to
the elastic energy theory of QCs [3], there are two elementary excitations of low-energy in QCs: phonon and
phason fields. The phason field describes the local rearrangement of atoms in a unit cell, whereas the phonon
field is similar to the field in crystals. The existence of the phason field increases the complexity of the study
on the QCs compared with crystals. QCs in the real three-dimensional (3D) physical space can be seen as a
projection of a periodic lattice in the higher dimensional mathematic space [4]. A two-dimensional (2D) QC
is generated by projecting the periodic lattice at five-dimensional space to the physical space, in which atom
arrangement is periodic along one direction and quasiperiodic in a plane vertical to the periodic direction [5].

Due to the quasiperiodic atomic structure of QCs, they own many desirable properties, such as high
hardness, high wear resistance, low friction coefficients, low adhesion [6–9]. Moreover, piezoelectricity is
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also one physical property of QCs [10,11]. QCs are expected to be used as surface coatings and particulate-
reinforcing phase for an alloy [12–14]. Intensive study focusing on QCs has been done, such as 2D [15–17]
and 3D [18–20] problems in QCs. Li [21,22] obtained the thermoelastic and electric–elastic general solutions
of a 1D QC using the rigorous operator theory. Fan et al. [23] used the extended displacement discontinuity
method to analyze cracks in 1D QCs and obtained the fundamental solutions. Li and Liu [24] obtained the
analytical solutions for a 2D decagonal QC plate with elliptic hole by using the Stroh-like formalism. Sladek
et al. [25] utilized the meshless Petrov–Galerkin method to analyze the bending behavior of 1D QC plate.
Waksmanski et al. [26] studied the dynamic response of layered 1D QC plates in terms of the pseudo-Stroh
formalism.

Al-based alloys composed of nanoquasicrystalline particles embedded in an α-Al matrix have been devel-
oped in the last decade, which show excellent mechanical properties relative to nanocrystalline alloys [27,28].
The classical continuum theory is not applicable for the study of the mechanical behavior of the nanostructure
because the finite range of interatomic and intermolecular forces cannot be neglected. Therefore, some non-
classical continuum theories, such as the nonlocal elastic theory [29,30] and nonlocal strain gradient theory
[31], and modified couple stress theory [32], are proposed to investigated the quantum size effect in nanostruc-
tures. Among these theories, Eringen’s nonlocal elastic theory is well accepted and widely applied [33–35].
The nonlocal elastic theory assumes that the stress at a point is a function of strains at all points of the body,
and introduces internal characteristic parameters into the constitutive relations to account for the size effect in
nanostructures [36].

The layered nanoplates play an important role in nanostructures. However, the sharp change in the material
properties of laminated composites at the interface between two adjacent layers may result in microcrack
or delamination [37]. Functionally graded (FG) materials are proposed to reduce the interface effects in the
layered system, whosematerial properties vary continuously along one direction [38]. Due to the advantages of
FG materials, static [39,40] and dynamic analyses [41] of FG multilayered plates have aroused great interest.
Combining the advantages of functionally graded materials and QCs, functionally graded QCs are expected to
be used as coating of cooker, thermal barrier coating, and surface coating of engines [42,43]. FG QCs can not
only reduce stress concentration problems at the interfaces of the layers, but also have good performance and
meet most stringent requirements in engineering compared with traditional FG materials. To the best of the
authors’ knowledge, most of the previous works focus on the multilayered plates made of QCs [5,18,20,26],
no literature is available for the analysis of FG layered QC nanoplates.

The present paper focuses on the quantum size effect on FGmultilayeredQCplates,which combines 2DQC
constitutive behavior with nonlocal effect, piezoelectric effect, and exponent-law distribution of constitutive
coefficients. The nanoplates are simply supported and subjected to patch loading on their top surfaces. Based
on the extended nonlocal theory and pseudo-Stroh formalism [44], the exact solution for a single FG nanoplate
is derived. Afterward, the propagator matrix method [44] is introduced to treat the multilayered case. The
influences of patch size, nonlocal parameter and stacking sequenceon stresses, displacements, electric potential,
and electric displacements are fully discussed.

2 Problem description and basic equations

Consider an N -layered FG 2D QC nanoplate with one of the four corners on the bottom surface being the
origin of the coordinate system, as shown in Fig. 1. Related to a fixed material coordinate system (x1, x2, x3),
the global one has the relations (x, y, z) = (x1, x2, x3). The dimensions of the simply supported nanoplate are
x × y × z = Lx × Ly × H . The poling and periodic directions for the 2D piezoelectric QC are along the z
direction, and x−y plane is the quasiperiodic plane. The j th layer with thickness h j = z j+1 − z j is bounded
by the lower interface at z = z j and the upper interface at z = z j+1. It follows that the bottom and top surfaces
of the nanoplate are z1 = 0 and zN+1 = H , respectively. The material properties of the nanoplate are assumed
to be exponentially distributed along the z-direction, and the displacement and traction components along the
interfaces of the layers are continuous.

According to Refs. [19,34,45], the nonlocal constitutive relations for 2D decagonal QCs with the point
groups 10mm, 1022, 10/mmm can be written as
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Fig. 1 An N -layered FG 2D QC nanoplate

(
1 − l2∇2

)
σ11 = C11ε11 + C12ε22 + C13ε33 + R1(w11 + w22) − e31E3,(

1 − l2∇2
)
σ22 = C12ε11 + C11ε22 + C13ε33 − R1(w11 + w22) − e31E3,(

1 − l2∇2
)
σ33 = C13ε11 + C13ε22 + C33ε33 − e33E3,(

1 − l2∇2
)
σ23 = (

1 − l2∇2
)
σ32 = 2C44ε23 − e15E2,(

1 − l2∇2
)
σ31 = (

1 − l2∇2
)
σ13 = 2C44ε13 − e15E1,(

1 − l2∇2
)
σ12 = (

1 − l2∇2
)
σ21 = 2C66ε12 − R1w12 + R1w21,(

1 − l2∇2
)
H11 = R1(ε11 − ε22) + K1w11 + K2w22 − d112E2,(

1 − l2∇2
)
H22 = R1(ε11 − ε22) + K1w22 + K2w11 + d112E2,(

1 − l2∇2
)
H23 = K4w23,(

1 − l2∇2
)
H12 = −2R1ε12 + K1w12 − K2w21 − d112E1,(

1 − l2∇2
)
H13 = K4w13,(

1 − l2∇2
)
H21 = 2R1ε12 − K2w12 + K1w21 − d112E1,(

1 − l2∇2
)
D1 = 2e15ε13 + d112(w12 + w21) + κ11E1,(

1 − l2∇2
)
D2 = 2e15ε23 + d112(w11 − w22) + κ22E2,(

1 − l2∇2
)
D3 = e31(ε11 + ε22)+e33ε33 + κ33E3

(1)

where ∇2 is the 3D Laplace operator; l = e0a is the nonlocal parameter, which shows the quantum size effect
on the nanostructure, with a being the internal characteristic length and e0 being a constant appropriate for each
material; σi j , Hi j , and Dj represent the phonon stress, phason stress, and electric displacement, respectively;
the phonon, phason, and phonon–phason coupling elastic coefficients are denoted by Ci jkl , Ki jkl , and Ri jkl ,
respectively; εi j andwi j are the phonon and phason strains, respectively; the electric field intensity, permittivity
constant, phonon piezoelectric constant, and phason piezoelectric constant are represented by Ek , κi j , ei jk ,
and di jk , respectively; the subscripts obey the Einstein summation convention with i , j , k, l = 1, 2, 3.

In order to analyze functionally graded materials in an efficient manner, the material properties of FG 2D
QCs are assumed to follow an exponential variation in the z-direction of the nanoplate and are given by [46]:

Ci jkl(z) = C0
i jkle

ηz, Ri jkl(z) = R0
i jkle

ηz, Ki jkl(z) = K 0
i jkle

ηz,

ei jk(z) = e0i jke
ηz, di jk(z) = d0i jke

ηz, κi j (z) = κ0
i je

ηz (2)

where η is the FG exponential factor denoting the degree of the material gradient in the z-direction, and
the superscript ‘0’ indicates material constants at the bottom surface for each layer of the FG multilayered
nanoplate.

In the absence of body force and electric charge, the equilibrium equations are governed by [19]

σi j, j = 0, Hi j, j = 0, Dj, j = 0. (3)

For 2DpiezoelectricQCs, there are nonzero phonondisplacementsui (i =1, 2, 3), and phason displacements
w1 and w2. According to the 2D QC linear elastic theory [3], the gradient relations can be expressed as

εi j = (
ui, j + u j,i

)
/2, wi j = wi, j , E j = −φ, j . (4)
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3 General solution

For a simply supported FG multilayered 2D QC nanoplate, the general solution of the extended displacement
vector is expressed as

u =

⎡

⎢⎢
⎢⎢⎢
⎣

ux
uy
uz
wx
wy
φ

⎤

⎥⎥
⎥⎥⎥
⎦

=
∑

p,q

esz

⎡

⎢⎢
⎢⎢⎢
⎣

a1 cos px sin qy
a2 sin px cos qy
a3 sin px sin qy
a4 cos px sin qy
a5 sin px cos qy
a6 sin px sin qy

⎤

⎥⎥
⎥⎥⎥
⎦

(5)

where

p = mπ/Lx , q = nπ/Ly, (6)

m and n are two positive integers, s and ai (i = 1, 2, …, 6) are the unknowns to be determined. Notice that the
extended displacement vector satisfies the simply supported boundary conditions as follows:

uy = uz = wy = φ = σxx = 0 at x = 0 and Lx ,

ux = uz = wx = φ = σyy = 0 at y = 0 and Ly . (7)

With the exponent-law-dependent material properties in Eq. (2), the extended traction vector is assumed
as

t =

⎡

⎢
⎢⎢
⎢⎢
⎣

σxz
σyz
σzz
Hxz
Hyz
Dz

⎤

⎥
⎥⎥
⎥⎥
⎦

=
∑

p,q

e(s+η)z

⎡

⎢
⎢⎢
⎢⎢
⎣

b1 cos px sin qy
b2 sin px cos qy
b3 sin px sin qy
b4 cos px sin qy
b5 sin px cos qy
b6 sin px sin qy

⎤

⎥
⎥⎥
⎥⎥
⎦

. (8)

The other in-plane stresses and electric displacements can be also derived as

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢
⎣

σxx
σxy
σyy
Hxx
Hyy
Hxy
Hyx
Dx
Dy

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥
⎦

=
∑

p,q

e(s+η)z

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢
⎣

c1 sin px sin qy
c2 cos px cos qy
c3 sin px sin qy
c4 sin px sin qy
c5 sin px sin qy
c6 cos px cos qy
c7 cos px cos qy
c8 cos px sin qy
c9 sin px cos qy

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥
⎦

. (9)

The three vectors

a = [a1, a2, a3, a4, a5, a6]
T , b = [b1, b2, b3, b4, b5, b6]

T ,

c = [c1, c2, c3, c4, c5, c6, c7, c8, c9]
T (10)

are introduced to denote the coefficients in Eqs. (5), (8), and (9). The superscript ‘T’ represents a vector or
matrix transpose.

Utilizing the constitutive relation in Eq. (1), the relation between vectors a and c reads
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[
1 − (e0a)2

(
s2 − p2 − q2

)]

⎡

⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢
⎣

c1
c2
c3
c4
c5
c6
c7
c8
c9

⎤

⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥
⎦

=

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

−C0
11 p −C0

12q C0
13s −R0

1 p −R0
1q e031s

C0
66q C0

66 p 0 −R0
1q R0

1 p 0

−C0
12 p −C0

11q C0
13s R0

1 p R0
1q e031s

−R0
1 p R0

1q 0 −K 0
1 p −K 0

2q d0112q

−R0
1 p R0

1q 0 −K 0
2 p −K 0

1q −d0112q

−R0
1q − R0

1 p 0 K 0
1q −K 0

2 p d0112 p

R0
1q R0

1 p 0 −K 0
2q K 0

1 p d0112 p

e031s 0 e015 p −d0112q d0112 p −κ0
11 p

0 e015s e015q −d0112 p d0112q −κ0
22q

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

a1
a2
a3
a4
a5
a6

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

.

(11)
Similarly, the relation between vectors a and b can be achieved by substituting Eq. (5) into Eqs. (4) and

(1) as
[
1 − (e0a)2

(
s2 − p2 − q2

)]
b = (−PT + sT

)
a = − 1

s + η
(Q + sP) a (12)

where

P =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

0 0 C0
13 p 0 0 e031 p

0 0 C0
13q 0 0 e031q

−C0
44 p −C0

44q 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

e015 p e015q 0 0 0 0

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

, T =

⎡

⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢
⎣

C0
44 0 0 0 0 0

0 C0
44 0 0 0 0

0 0 C0
33 0 0 e033

0 0 0 K 0
4 0 0

0 0 0 0 K 0
4 0

0 0 e033 0 0 −κ0
33

⎤

⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥
⎦

, (13.1)

Q =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎣

− (
C0
11 p

2 + C0
66q

2
) −pq

(
C0
12 + C0

66

)
0 R0

1

(
q2 − p2

) − 2R0
1 pq 0

−pq
(
C0
12 + C0

66

) − (
C0
66 p

2 + C0
11q

2
)

0 2R0
1 pq R0

1

(
q2 − p2

)
0

0 0 −C0
44

(
p2 + q2

)
0 0 −e015

(
p2 + q2

)

R0
1

(
q2 − p2

)
2R0

1 pq 0 −K 0
1

(
p2 + q2

)
0 0

−2R0
1 pq R0

1

(
q2 − p2

)
0 0 −K 0

1

(
p2 + q2

) −d0112
(
p2 + q2

)

0 0 −e015
(
p2 + q2

)
0 −d0112

(
p2 + q2

)
κ0
11 p

2 + κ0
22q

2

⎤

⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎦

.

(13.2)

Substituting Eqs. (8) and (9) into Eq. (3) yields the eigenequation as
[
Q − ηPT + s(P − PT + ηT) + s2T

]
a = 0. (14)

In order to convert the quadratic equation (14) into a linear equation, the intermediate linear transformation
vector d is introduced as

d = (−PT + sT
)

a = − 1

s + η
(Q + sP) a. (15)

With the aid of the intermediate linear transformation vector d, the standard eigenrelation can be obtained
as follows:

N
[

a
d

]
= s

[
a
d

]
(16)

where

N =
[

T−1PT T−1

−Q − PT−1PT −PT−1 − ηI

]
. (17)

The 12 eigenvalues si (i = 1, 2, …, 12) and the corresponding eigenvector a can be solved from Eq. (16). The
eigenvectors b should be obtained from Eq. (12), which is different from the local case [20]. A subscript is
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attached to eigenvectors a and b to distinguish them. Then, the general solution for the extended displacement
and traction vectors is obtained as

[
u
t

]
=

[
I 0
0 eηzI

] [
A1 A2
B1 B2

] 〈
es

∗z
〉 [

D1
D2

]
(18)

where

A1 = [a1, a2, a3, a4, a5, a6] , A2 = [ a7, a8, a9, a10, a11, a12] ,
B1 = [b1, b2, b3, b4, b5, b6] , B2 = [b7, b8, b9, b10, b11, b12] ,〈
es

∗z
〉
= diag

[
es1z, es2z, es3z, es4z, es5z , es6z , e(−s1−η)z, e(−s2−η)z, e(−s3−η)z, e(−s4−η)z,

e(−s5−η)z, e(−s6−η)z
]
,

(19)

D1 and D2 are two 6 × 1 constant column matrices to be determined from boundary conditions, and I is the 6
× 6 unit matrix.

From Eq. (18), the constant column matrices D1 and D2 for the j th layer can be derived as
[

D1
D2

]

j
=

〈
e−s∗(z−z j)

〉 [
A1 A2
B1 B2

]−1 [
I 0
0 e−η(z−z j)I

] [
u
t

]

j

. (20)

For the lower surface z j and upper surface z j+1 of the j th layer, we have

[
D1
D2

]

j
=

[
A1 A2
B1 B2

]−1 [
u
t

]

z j

=
〈
e−s∗h j

〉 [
A1 A2
B1 B2

]−1 [
I 0
0 e−ηh j I

] [
u
t

]

z j+1

. (21)

Therefore, the physical quantities at the upper surface z j+1 can be expressed in terms of those at the lower
surface z j as [

u
t

]

z j+1

=
[

I 0
0 eηh j I

] [
A1 A2
B1 B2

] 〈
es

∗h j
〉 [

A1 A2
B1 B2

]−1 [
u
t

]

z j

. (22)

With the continuity condition of the displacement and traction components across the interfaces, the
physical quantities at the bottom surface z = 0 can propagate to any z-level (0 < z ≤ H ) of the nanoplate
by using the propagator matrix repeatedly. Therefore, the extended displacement and traction vectors at any
z-level can be derived as

[
u
t

]

z
= P j (z − z j )P j−1(h j−1)...P2(h2)P1(h1)

[
u
t

]

0
(23)

where the propagator matrix P j (h j ) is

P j (h j ) =
[

I 0
0 eηh j I

] [
A1 A2
B1 B2

] 〈
es

∗h j
〉 [

A1 A2
B1 B2

]−1

. (24)

Consider a layered nanoplate subjected to a z-direction uniformly distributed patch loading on its top
surface, and all other traction boundary conditions at the top and bottom surfaces are zero, i.e.,

{
t(H) = [

σxz, σyz, σzz, Hxz, Hyz, Dz
]T = [0, 0, f (x, y), 0, 0, 0]T

t(0) = 0
, (25)

where the loading function f (x , y) can be approximately written in a dual Fourier series expansion as

f (x, y) ≈
M∑

m=1

N∑

n=1

amn sin px sin qy (26)

with amn being the loading coefficients, and they take the form as [47]

amn = 4

Lx L y

∫ Lx

0

∫ Ly

0
f (x, y) sin px sin qydxdy. (27)
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Ly

Lx

y 

x 

y

α

x
β

(a) (b)

Fig. 2 a FG layered 2D QC nanoplate subjected to patch loading. b Vertical view of rectangular patch loading in x − y plane

For the uniformly distributed patch loading with intensity f0 over an area of α × β located at (x̄, ȳ), as
shown in Fig. 2, the loading coefficients amn can be rewritten as

amn = 16 f0
π2mn

sin px̄ sin q ȳ sin
pα

2
sin

qβ

2
. (28)

A uniform loading is a special case for patch loading in which the loading coefficients amn can be obtained
when α × β = Lx × Ly .

The exact solution in Eq. (23), when the z-level is replaced by the top surface z = H of the nanoplate, can
be recast into the following form: [

u (H)
t (H)

]
=

[
C1 C2
C3 C4

] [
u (0)
0

]
(29)

where C1, C2, C3, and C4 are the submatrices of the propagator matrix.
The unknown displacements at the bottom and top surfaces of the layered nanoplate are derived in terms

of Eqs. (25) and (29) as
u(0) = C−1

3 t(H), u(H) = C1C−1
3 t(H). (30)

4 Numerical examples

Numerical results are presented to illustrate the size-dependent behavior of simply supported FG multilayered
nanoplates subjected to a top surface patch loading with an intensity f0 = −1 N/m2. The center of patch
loading is located at (x̄, ȳ)= (Lx /2, Ly /2), and the appropriate M and N in Eq. (26) are taken to ensure the
series expansion truncation error for patch loadings less than 1%. The horizontal dimensions of the nanoplates
are Lx × Ly = 50 nm × 50 nm, and the total thickness for a single nanoplate is 3 nm. As for the layered
nanoplates modeling with three layers, each layer has an equal thickness of 1 nm. The stacking sequence of the
FG multilayered nanoplates is BaTiO3/Al–Ni–Co/BaTiO3 (called C/QC/C) and Al–Ni–Co/BaTiO3/Al–Ni–
Co (called QC/C/QC), respectively. The influences of patch size and nonlocal parameter on a single FG QC
nanoplate are numerically investigated, and the effect of the stacking sequence on the FG layered nanoplates
is also studied.

Thematerial properties for the crystal BaTiO3 are listed in Table 1 [48]. Because it is difficult tomeasure the
piezoelectric and permittivity constants for 2D piezoelectric QCs, therefore 0.5 times piezoelectric constant
and 2 times permittivity constant of BaTiO3 are taken for them. The material properties for the QC alloy
Al–Ni–Co are listed in Table 2 [5]. In order to avoid singular matrices during calculation, the crystals BaTiO3
are regarded as special QCs, and approximately 10−8 of the corresponding Ki value in the QC layer is taken
for the crystal layer.

4.1 Influence of patch size on a single FG nanoplate

In order to investigate the effect of patch size on a single FG nanoplate, the patch loading area is taken as α × β
=0.5Lx× 0.5Ly , 0.7Lx× 0.7Ly and 1.0Lx× 1.0Ly , respectively. Both nonlocal parameter l and exponential
factor η are equal to 2.
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Table 1 Material properties of BaTiO3

Phonon elastic coefficients (×109 N/m2)

C0
11 = 166 C0

12 = 77 C0
13 = 78 C0

33 = 162 C0
44 = 43 C0

66 = 44.5

Piezoelectric constants (C/m2) Permittivity constants (×10−9 C2/(N m2))

e015 = 11.6 e031 = − 4.4 e033 = 18.6 d0112 = 0 κ0
11 = κ0

22 = 11.2 κ0
33 = 12.6

Table 2 Material properties of Al-Ni-Co

Phonon elastic coefficients (×109 N/m2)

C0
11 = 234.3 C0

12 = 57.4 C0
13 = 66.6 C0

33 = 232.2 C0
44 = 70.2 C0

66 = 88.5

Phonon–phason coupling coefficients (×109 N/m2) Phason elastic coefficients (×109 N/m2)

R0
1 = 8.85 K 0

1 = 122 K 0
2 = 24 K 0

4 = 12

Piezoelectric constants (C/m2) Permittivity constants (×10−9 C2/(N·m2))

e015 = 5.8e031 = − 2.2e033 = 9.3d0112 = 0 κ0
11 = κ0

22 = 22.4κ0
33 = 25.2

-1.0
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0.0

0.5

1.0
0.5Lx × 0.5Ly

0.7Lx × 0.7Ly

1.0Lx × 1.0Ly

x (nm)
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/m
2 )

0 10 20 30 40 50 0 10 20 30 40 50

0.5Lx × 0.5Ly

0.7Lx × 0.7Ly

1.0Lx × 1.0Ly

x (nm)

Fig. 3 Effect of patch size on phonon stress σzz along lateral x-direction in a single FG nanoplate. a σzz at z = 2 nm. b
σzz at z = 1 nm

Figure 3a, b shows the distribution of phonon stress σzz along lateral x-direction in the fixed vertical plane
at y = 0.5Ly with z = 2 nm and 1 nm, respectively. The value of σzz outside the scope of the loading is zero,
and its maximum value under patch load area is not sensitive to patch size. Furthermore, σzz at z = 2 nm in
Fig. 3a is larger than that at z = 1 nm in Fig. 3b on account of the top surface loading.

Figure 4 presents the variations of phonon and phason stresses for different patch sizes along the z-direction
of the nanoplate. The influence of patch loading area on the following induced physical quantities along the
z-direction in this Subsection is shown at the fixed horizontal coordinates (x /Lx , y/Ly) = (0.4, 0.4). The small
influence of patch loading area on phonon stress σzz is observed from Fig. 4a, because of the same applied
load on the top surface of the nanoplate, and the similar effect of it can be also found from phonon stress
σyz (Fig. 4b). The in-plane phonon stresses σxx and σxy shown in Fig. 4c, d display a different trend with the
out-plane stresses σzzand σyz , and their magnitudes increase as the patch size increases. Comparing with the
influence of patch size on σyz , it is more obvious on phason stress Hyz (Fig. 4e). Phason stress Hxx (Fig. 4f)
depending on patch size follows the similar trend with the in-plane phonon stresses. σxx , σxy , and Hxx are
zero at the middle of the nanoplate owing to geometry symmetry about the z-axis.

Figure 5 depicts the dependence of phonon displacement uz and phason displacement wx along the z-
direction on patch size, and the effect of it on the electric potential φ and electric displacements is shown in
Fig. 6. uz in Fig. 5a and φ in Fig. 6a increase with increasing patch loading area, and a similar trend can be
observed from Fig. 5b for wx . Not only that, wx is nearly anti-symmetry with respect to z = 1.5 nm, which
is somewhat similar to the behavior of Hxx . The electric displacements Dz (Fig. 6b) and Dy (Fig. 6d) are not
very sensitive to patch size, whereas the electric displacement Dx (Fig. 6c) is dependent on it. In addition, the
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Fig. 5 Effect of patch size on phonon and phason displacements along the z-direction in a single FG nanoplate. a uz . b wx

maximum value of φ for a given patch size occurs at the middle of the nanoplate, whereas the value of Dz at
the same z-level is nearly zero.

The satisfaction of the boundary conditions at the top and bottom surfaces can be observed from phonon
stresses σzz , σyz , phason stress Hyz , and electric displacement Dz , which can partly demonstrate the exactness
of the obtained solution.
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4.2 Influence of the nonlocal parameter on a single FG nanoplate

The responses of a single FG nanoplate with different nonlocal parameters are investigated in this Subsec-
tion. The nonlocal parameter is taken in the conservative range of l = 0, 1, 2 nm [33]. The patch loading
area is α × β = Lx × Ly , and the exponential factor η is selected as 2. The induced physical quantities
along the thickness of the nanoplate are shown at the fixed horizontal coordinates (x /Lx , y/Ly) = (0.15,
0.15).

Figure 7 shows the variation of the stress components in the phonon and phason fields along the z-
direction for different nonlocal parameters l. The out-plane phonon stresses σzz and σyz in Fig. 7a, b are almost
independent of l, while the relatively obvious effect of l on the in-plane stresses σxx and σxy in Fig. 7c, d is
found. Moreover, σxx and σxy increase with decreasing l. There is nearly no influence of l on phason stress
Hyz (Fig. 7e), which is similar to the trend of out-plane phonon stresses with respect to l. By comparing the
effect of l on Hyz , the quite overt response of in-plane phason stress Hxx is seen in Fig. 7f.

The effect of nonlocal parameter l on displacements, electric potential, and electric displacements is
shown in Figs. 8 and 9, respectively. The noticeable changes induced by different l are presented in Fig. 8a
for phonon displacement uz , in Fig. 9a for electric potential φ, and they increase with increasing l. Sim-
ilar to the trend of uz , l has a significant influence on phason displacement wx in Fig. 8b. Due to the
geometry symmetry about the z-axis, wx is zero at the middle of the nanoplate. Electric displacement Dz
(Fig. 9b) is nearly independent of l, while the dependence of electric displacements Dx (Fig. 9c) and Dy
(Fig. 9d) on l is obvious. Furthermore, the maximum values of φ, Dx , and Dy appear at the middle of the
nanoplate.

4.3 Influence of stacking sequence on FG layered nanoplates

Considering FG sandwich nanoplates with two stacking sequences (i.e., QC/C/QC and C/QC/C) subjected
to a uniform loading on their top surfaces, the effect of stacking sequence on the nanoplates is studied. The
nonlocal parameter is l = 2, and the exponential factor is taken as η = 2. The responses of the physical quantities
along the z-direction of the FG multilayered nanoplates are also fixed at horizontal coordinates (x /Lx , y/Ly)
= (0.15, 0.15).
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Fig. 8 Effect of the nonlocal parameter on phonon and phason displacements along the z-direction in a single FG nanoplate. a
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The effect of stacking sequence on phonon and phason stresses is presented in Fig. 10. The value of phonon
stress σzz (Fig. 10a) is −1 at the top surfaces, and zero at the bottom surfaces of the nanoplates, and phonon
stress σyz (Fig. 10b) and phason stress Hyz (Fig. 10e) are zero at the top and bottom surfaces, so they satisfy
the boundary conditions. The different behaviors of σzz and σyz are induced by different stacking sequences



3512 Y. Li et al.

-0.2 -0.1 0.0 0.1
0

1

2

3
 l = 0 nm
l = 1 nm
l = 2 nm

φ (V)

z  
(n

m
)

-0.0010 -0.0005 0.0000 0.0005 0.0010

 l = 0 nm
l = 1 nm
l = 2 nm

Dz (10-8C/m2)

(a) (b) 

(d) (c) 

-1.10 -1.08 -1.06 -1.04 -1.02 -1.00
0

1

2

3
 l = 0 nm
l = 1 nm
l = 2 nm

Dx (10-8C/m2)

z  
(n

m
)

-0.030 -0.015 0.000 0.015 0.030

 l = 0 nm
l = 1 nm
l = 2 nm

Dy (10-8C/m2)

Fig. 9 Effect of the nonlocal parameter on electric potential and electric displacements along the z-direction in a single FG
nanoplate. a φ. b Dz . c Dx . d Dy

due to the change of the material properties. Furthermore, σzz and σyz are continuous at the interfaces of the
layers, which meets the agreement with continuity boundary condition. σyz in QC/C/QC nanoplate is smaller
than that in C/QC/C nanoplate. The significant feature means that QCs are expected to be used as the surface
layer of the sandwich nanoplates, which may be related to the high wear resistance of QCs. The discontinuous
phonon stresses σxx and σxy in Fig. 10c, d appear at the interfaces of the layers, and the discontinuity of σxx in
QC/C/QC nanoplate is a little bit smaller than that in C/QC/C nanoplate. Compared with the phonon stresses,
the smaller phason stresses Hyz and Hxy (Fig. 10f) are induced. Furthermore, Hyz and Hxy are sensitive to
stacking sequence, and they are zero in the crystal layer due to no phason fields in the crystal.

Figures 11 and 12 show, respectively, the variation of phonon displacement, phason displacement, electric
potential, and electric displacements along the thickness direction of the nanoplates with different stacking
sequences. The stacking sequence has a conspicuous influence on all physical quantities in the displacement
and electric fields. uz (Fig. 11a) in C/QC/C nanoplate is larger than that in QC/C/QC nanoplate, and they
are continuous at the interfaces of the layers. The atomic rearrangement does not occur in crystals, so the
phason displacement in the crystal layer is zero. Moreover, the maximum values of wx appear at the top and
bottom surfaces of the layered nanoplates. The continuous behavior like uz is also found for electric potential
φ (Fig. 12a) and z-direction electric displacement Dz (Fig. 12b), while a similar trend does not exist in electric
displacements Dx (Fig. 12c) and Dy (Fig. 12d). The maximum value of φ for any sandwich nanoplates
appears at the middle layer, whereas the maximum value for Dz occurs at the interfaces of the layers. The
discontinuity of Dx in QC/C/QC nanoplates is relatively smaller than that in C/QC/C nanoplates, and Dy
follows a similar trend. Therefore, QC/C/QC nanoplates can be selected as engineering structural materials to
reduce the discontinuity at the interfaces.

5 Conclusions

The static deformation of the simply supported FG multilayered 2D QC nanoplates subjected to patch loading
on their top surfaces is analyzed. The exact solution is achieved on the basis of the extended nonlocal elastic
theory, pseudo-Stroh formalism, and propagator matrix method. Typical numerical examples presented have
shown the noticeable influences of patch size, nonlocal parameter, and stacking sequence on the nanoplates.
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The in-plane phonon and phason stresses, phonon and phason displacements, electric potential, and in-
plane electric displacements are sensitive to patch size and nonlocal parameter. The stacking sequence has a
pronounced effect on almost all physical quantities at any z-level (including the surfaces and interfaces) of the
nanoplates. Furthermore, the smaller phonon stresses and displacement are induced in QC/C/QC nanoplates,
which can promote the application of QCs as surface coatings. The results of the current study can be used to
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Fig. 12 Effect of stacking sequence on electric potential and electric displacements along the z-direction in the FG-layered
nanoplates. a φ. b Dz . c Dx . d Dy

validate the accuracy of other numerical methods, and serve as benchmarks in the design for the FG layered
nanoplates made of QCs.
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