
Acta Mech 229, 3415–3436 (2018)
https://doi.org/10.1007/s00707-018-2176-5

ORIGINAL PAPER

S. J. D. D’Alessio

Flow past a slippery cylinder: part 2 - elliptic cylinder

Received: 9 January 2018 / Revised: 29 April 2018 / Published online: 26 May 2018
© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Abstract Part 2 of this paper is devoted to two-dimensional unsteady flow of a viscous incompressible fluid
past an inclined elliptic cylinder subject to impermeability and Navier slip conditions on the surface. As in Part
1, the flow is calculated using two methods: an approximate analytical solution in the form of an asymptotic
expansion and a numerical solution based on a spectral-finite difference scheme. The results reveal excellent
agreement between the analytical and numerical solutions for small times and moderately large Reynolds
numbers. Extensive results focussing on asymmetrical flows are presented for Reynolds numbers 500 and
1000 for various aspect ratios, inclinations, and slip lengths. Comparisons with the no-slip case are also made
to elicit the effects of the Navier slip condition. The main findings include a reduction in drag as well as a
suppression in vortex shedding.

1 Introduction and mathematical formulation

Outlined in Part 1 were various underlying assumptions. These include the impulsive start at t = 0 whereby the
cylinder moves with uniform speed U0 in the positive x direction through a viscous incompressible fluid. The
flow is then assumed to remain laminar and two dimensional for all time, t .We continuewith these assumptions
in Part 2 and discuss themore general flow past an inclined elliptic cylinder. As a result of themore complicated
geometry, there are several subtleties that arise, and these will be explained in detail. We begin by formulating
the governing equations and corresponding boundary and initial conditions in a coordinate system that is best
suited for the problem. Following that, the problem is then cast into boundary-layer coordinates to better
resolve the early development of the flow. An analytical solution that describes the early stages of the flow is
then constructed. A numerical method for solving the governing equations is also presented. Following that,
results and comparisons are discussed, and lastly, the key findings are summarized in the conclusions. An
Appendix outlining the derivation of the drag, lift, and pressure coefficients is also included.

The problem we are interested in is illustrated in Fig. 1, which shows an elliptic cylinder inclined at an
angle of α with respect to the horizontal. The x- and y-axes are oriented along the major and minor axes of
the ellipse, where a, b denote the semimajor and semiminor axes lengths, respectively. We define the aspect
ratio, r , as the ratio of the minor to major axis of the ellipse (i.e., r = b/a) with 0 < r < 1. We note that r = 0
corresponds to a flat plate while r = 1 a circular cylinder. Posed in Cartesian coordinates and in dimensionless
form, the Navier–Stokes equations are given by

∂2ψ

∂x2
+ ∂2ψ

∂y2
= ζ, (1)
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Fig. 1 The flow setup

Fig. 2 Conformal transformation

∂ζ

∂t
= ∂ψ

∂y

∂ζ

∂x
− ∂ψ

∂x

∂ζ

∂y
+ 2

R

(
∂2ζ

∂x2
+ ∂2ζ

∂y2

)
. (2)

Here, the dimensionless stream function, ψ , and vorticity, ζ , are related to their dimensional counterparts,
ψ∗, ζ ∗ throughψ∗ = cU0ψ and ζ ∗ = U0ζ/c, where c = √

a2 − b2 is the semi-focal length of the ellipse. The
dimensionless time t is related to the dimensional time t∗ by t∗ = ct/U0, and the dimensionless coordinates
are related by (x∗, y∗) = c(x, y). Lastly, R denotes the Reynolds number defined by R = 2cU0/ν, where ν
is the kinematic viscosity.

A more convenient coordinate system is introduced by the conformal transformation

x + iy = cosh[(ξ + ξ0) + iθ ], (3)

which, as shown in Fig. 2, transforms the contour of the ellipse into ξ = 0, θ = 0 to the positive x-axis, and the
infinite region exterior to the cylinder to the semi-infinite rectangular strip ξ ≥ 0, 0 ≤ θ ≤ 2π . The constant
ξ0 appearing in (3) is defined by tanh ξ0 = r . In terms of the modified polar coordinates (ξ, θ), the governing
equations become

∂2ψ

∂ξ2
+ ∂2ψ

∂θ2
= M2ζ, (4)

M2 ∂ζ

∂t
= ∂ψ

∂θ

∂ζ

∂ξ
− ∂ψ

∂ξ

∂ζ

∂θ
+ 2

R

(
∂2ζ

∂ξ2
+ ∂2ζ

∂θ2

)
. (5)

In the above, M refers to the metric of the transformation and is given by

M2 = 1

2
[cosh[2(ξ + ξ0)] − cos(2θ)]. (6)
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The dimensionless radial and transverse velocity components (u, v) can be obtained using

u = − 1

M

∂ψ

∂θ
, v = 1

M

∂ψ

∂ξ
, (7)

and the vorticity is related to these velocity components by

ζ = 1

M2

[
∂

∂ξ
(Mv) − ∂

∂θ
(Mu)

]
. (8)

The surface boundary conditions include the impermeability and Navier slip conditions (according to
Beavers and Joseph [1]) given by

u = 0, v = β
∂v

∂ξ
at ξ = 0,

respectively. The parameter β denotes the dimensionless slip length which is related to the dimensional slip
length β∗ through β = β∗/c. When β = 0, this reduces to the usual no-slip condition. In terms of ψ and ζ ,
these conditions become

ψ = 0,
∂ψ

∂ξ
=

(
βM4

0

M2
0 + β

2 sinh(2ξ0)

)
ζ at ξ = 0 where M2

0 = 1

2
[cosh(2ξ0) − cos(2θ)] (9)

and correspond to the metric evaluated on the surface. In addition, we have the periodicity conditions

ψ(ξ, θ, t) = ψ(ξ, θ + 2π, t), ζ(ξ, θ, t) = ζ(ξ, θ + 2π, t), (10)

and the far-field conditions

ψ → 1

2
eξ+ξ0 sin(θ + α), ζ → 0 as ξ → ∞. (11)

Conditions (11) are a result of the uniform oncoming flow.
The boundary conditions (9) reveal a complicated coupling between the surface vorticity and stream

function gradient. As mentioned in Part 1, the integral conditions proposed by Dennis and Quartapelle [2]
provide an alternative. For the geometry considered in Part 2, these conditions become

∫ ∞

0

∫ 2π

0
e−nξ M2ζ(ξ, θ, t) sin(nθ)dθdξ = πeξ0 cosαδ1,n

−β

∫ 2π

0

(
M4

0

M2
0 + β

2 sinh(2ξ0)

)
ζ(0, θ, t) sin(nθ)dθ , n = 1, 2, . . . , (12)

∫ ∞

0

∫ 2π

0
e−nξ M2ζ(ξ, θ, t) cos(nθ)dθdξ = πeξ0 sin αδ1,n

−β

∫ 2π

0

(
M4

0

M2
0 + β

2 sinh(2ξ0)

)
ζ(0, θ, t) cos(nθ)dθ , n = 0, 1, 2, . . . , (13)

where δi,n is the Kronecker delta, defined by

δi,n =
{
1 if n = i
0 if n �= i .

Later, we will explain how to determine surface vorticity using these integral constraints.
As a consequence of the impulsive start delivered to the cylinder, a thin boundary layer of thickness

√
8t/R

will surround the cylinder. For this reason, we stretch the coordinate ξ and flow variables according to

ξ = λz, ψ = λ, ζ = ω/λ where λ =
√
8t

R
. (14)
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Fig. 3 Typical boundary-layer coordinates expanding with time: t1 (left) and t2 > t1 (right)

This has the effect of removing the inherent initial singularity and also better resolving the early development
of the flow. To appreciate the impact of using these so-called boundary-layer coordinates (z, θ), shown in Fig. 3
in Cartesian coordinates are lines of constant z at two different times. We see from this that the grid is alive
and expands with time. This is extremely beneficial from a numerical point of view because it guarantees that
we maintain adequate resolution within the growing boundary layer where the flow is changing rapidly.

In terms of the boundary-layer coordinates (z, θ), Eqs. (4)–(5) transform to

∂2

∂z2
+ λ2

∂2

∂θ2
= M2ω, (15)

1

M2

∂2ω

∂z2
+ 2z

∂ω

∂z
+ 2ω = 4t

∂ω

∂t
− λ2

M2

∂2ω

∂θ2
− 4t

M2

(
∂

∂θ

∂ω

∂z
− ∂

∂z

∂ω

∂θ

)
. (16)

These equations are to be used to solve the early stages of the flow. It is worth adding that this transformation
along with the integral conditions has been successfully used in previous studies involving this geometry. For
example, the study of D’Alessio’ and Perera [3] adopted this approach to solve the problem of unsteady free
convection from an elliptic cylinder for large Grashof numbers while Steinmoeller, D’Alessio, and Poulin [4]
modified this procedure to solve the geophysical fluid mechanics problem of flow past an elliptic obstacle in
the ocean.

Presented in the next Section is an analytical procedure by which we can derive an approximate solution
for small times and large Reynolds numbers. As part of this process, we will obtain the exact initial solution
which will be used as an initial condition for the numerical solution procedure outlined in the subsequent
Section.

2 Analytical solution procedure

As in Part 1, we expand the flow variables in a double series in terms of λ and t . That is, we first expand 
and ω in a series of the form

 = 0 + λ1 + λ22 + · · · ,

ω = ω0 + λω1 + λ2ω2 + · · · , (17)

and then each n, ωn, n = 0, 1, 2, . . . , is further expanded in a series,

n(z, θ, t) = n0(z, θ) + tn1(z, θ) + · · · ,

ωn(z, θ, t) = ωn0(z, θ) + tωn1(z, θ) + · · · . (18)

Substituting the series (17)–(18) into Eqs. (15)–(16) and using the expansions

M2 = M2
0 + sinh(2ξ0)λz + cosh(2ξ0)λ

2z2 + · · · ,
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e−nλz = 1 − nλz + 1

2
n2λ2z2 + · · · ,

with M0 given by (9), will produce a hierarchy of problems at various orders. The leading-order terms in the
series, 0 and ω0, referred to as the boundary-layer solution, satisfy

∂20

∂z2
= M2

0ω0, (19)

1

M2
0

∂2ω0

∂z2
+ 2z

∂ω0

∂z
+ 2ω0 = 4t

∂ω0

∂t
− 4t

M2
0

(
∂0

∂θ

∂ω0

∂z
− ∂0

∂z

∂ω0

∂θ

)
(20)

and are still too complicated to solve analytically.
To make analytical progress, we further expand (19)–(20) in powers of t . The leading-order terms in this

second expansion, 00 and ω00, correspond to the initial solution at t = 0 and satisfy

∂200

∂z2
= M2

0ω00, (21)

1

M2
0

∂2ω00

∂z2
+ 2z

∂ω00

∂z
+ 2ω00 = 0. (22)

It follows that the solution to (22) satisfying all the conditions is the trivial solution ω00 = 0. Further, it can
be shown that ω0n = 0 for n = 1, 2, 3 . . .. Using this result and integrating (21) twice and imposing the
impermeability condition yield 00 = A(θ)z. The function A(θ) can be determined by applying the Navier
slip condition which when expanded yields

∂00

∂z
=

(
βM4

0

M2
0 + β

2 sinh(2ξ0)

)
ω10 at z = 0.

From this, we see that in order to determine 00, we must first solve for ω10.
The term ω10 satisfies the equation

1

M2
0

∂2ω10

∂z2
+ 2z

∂ω10

∂z
= 0. (23)

The solution satisfying the far-field condition ω10 → 0 as z → ∞ is given by

ω10(z, θ) = B(θ)erfc(M0z),

where erfc(z) = 1 − erf(z) is the complementary error function and

erf(z) = 2√
π

∫ z

0
e−u2du

denotes the error function. In order to determine the function B(θ), the integral conditions (12)–(13) need to be
enforced. Switching to boundary-layer coordinates and expanding them, the leading-order terms in (12)–(13)
become

β

∫ 2π

0

(
M4

0

M2
0 + β

2 sinh(2ξ0)

)
B(θ) sin(nθ)dθ = πeξ0 cosαδ1,n, n = 1, 2, . . . ,

β

∫ 2π

0

(
M4

0

M2
0 + β

2 sinh(2ξ0)

)
B(θ) cos(nθ)dθ = πeξ0 sin αδ1,n, n = 0, 1, 2, . . . ,

from which it follows that

B(θ) = eξ0

β

(
M2

0 + β
2 sinh(2ξ0)

M4
0

)
sin(θ + α) and hence A(θ) = eξ0 sin(θ + α).
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Thus, the leading-order nonzero terms in the solution become

00(z, θ) = eξ0 z sin(θ + α), ω10(z, θ) = eξ0

β

(
M2

0 + β
2 sinh(2ξ0)

M4
0

)
erfc(M0z) sin(θ + α).

The leading-order solution constructed can be checked against the potential flow solution which satisfies

∂2ψ

∂ξ2
+ ∂2ψ

∂θ2
= 0

subject to

ψ = ∂ψ

∂θ
= 0 on ξ = 0 and ψ → 1

2
eξ+ξ0 sin(θ + α) as ξ → ∞.

The solution is easily found to be

ψ(ξ, θ) = eξ0 sinh ξ sin(θ + α),

from which we obtain

v = 1

M

∂ψ

∂ξ
= eξ0

M
cosh ξ sin(θ + α).

Now, in the large R limit, the transverse velocity according to our expansion becomes

v = 1

M0

∂00

∂z
= eξ0

M0
sin(θ + α).

Evaluating this in the limit as z → ∞, we see that it is in full agreement with the corresponding potential flow
expression when evaluated on the surface ξ = 0.

Continuing the procedure and solving for the next terms,10 andω20, in the series we find thatω20 satisfies

∂2ω20

∂s2
+ 2s

∂ω20

∂s
− 2ω20 = −2 sinh(2ξ0)

M3
0

s2
∂ω10

∂s
(24)

andmust obey the far-field conditionω20 → 0 as s → ∞. Here, we havemade the change of variable s = M0z.
The solution for ω20(s, θ) obeying the far-field condition has been found to be

ω20(s, θ) = C(θ)(e−s2 − √
πserfc(s)) − sinh(2ξ0)B(θ)

4M3
0

(
serfc(s) + 2√

π
s2e−s2

)
.

The unknown function C(θ) must be determined by imposing the integral conditions given by

β

∫ 2π

0

(
M4

0

M2
0 + β

2 sinh(2ξ0)

)
ω20(0, θ) sin(nθ)dθ = −

∫ ∞

0

∫ 2π

0
M0ω10(s, θ) sin(nθ)dθds,

for n = 1, 2, . . ., and

β

∫ 2π

0

(
M4

0

M2
0 + β

2 sinh(2ξ0)

)
ω20(0, θ) cos(nθ)dθ = −

∫ ∞

0

∫ 2π

0
M0ω10(s, θ) cos(nθ)dθds,

for n = 0, 1, 2, . . .. It follows that C(θ) is given by

C(θ) = − M0eξ0

√
πβ2

(
M2

0 + β
2 sinh(2ξ0)

M4
0

)2

sin(θ + α).
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The solution for 10(s, θ) can be easily found by integrating

∂210

∂s2
= ω10 (25)

twice and imposing the conditions

10 = 0,
∂10

∂s
=

(
βM3

0

M2
0 + β

2 sinh(2ξ0)

)
ω20 at s = 0.

The resulting solution for 10 is given by

10(s, θ) = eξ0

β

(
M2

0 + β
2 sinh(2ξ0)

M4
0

) (
s2

2
erfc(s) − 1

4
erf(s) − s

2
√

π
e−s2

)
sin(θ + α) .

In summary, we have the approximate solution given by

 ∼ 00 + λ10, ω ∼ λ ω10 + λ2 ω20.

Later, this solution will be used to validate the numerical solution which is described in the next Section.

3 Numerical solution procedure

Although the numerical method used to solve Eqs. (15)–(16) is identical to that discussed in Part 1, there are
some subtleties that arise as a result of the geometry which will be explained. Before proceeding to outline
the scheme, we first discretize the computational domain bounded by 0 ≤ z ≤ z∞ into L equally spaced grid
points located at

z j = j�z, j = 0, 1, . . . , L , (26)

where �z = z∞/L and z∞ denotes the outer boundary approximating infinity.
The flow variables (,ω) are next expanded in the truncated Fourier series

 = F0(z, t)

2
+

N∑
n=1

[Fn(z, t) cos (nθ) + fn(z, t) sin (nθ)], (27)

ω = G0(z, t)

2
+

N∑
n=1

[Gn(z, t) cos (nθ) + gn(z, t) sin (nθ)]. (28)

Substituting these series into (15)–(16) yields the following system of 4N + 2 equations for the Fourier
coefficients:

∂2F0
∂z2

= 1

2
(cosh [2(λz + ξ0)]G0 − G2) , (29)

∂2Fn
∂z2

− (nλ)2Fn = 1

2
cosh [2(λz + ξ0)]Gn − 1

4
(Gn+2 + G |n−2|), (30)

∂2 fn
∂z2

− (nλ)2 fn = 1

2
cosh [2(λz + ξ0)] gn − 1

4
(gn+2 + sgn(n − 2)g|n−2|) (31)

where n = 1, 2, . . . , N , and

∂2G0

∂z2
+ cosh[2(λz + ξ0)]

(
z
∂G0

∂z
+ G0

)

= 2t cosh[2(λz + ξ0)]∂G0

∂t
− 2t

∂G2

∂t
+ z

∂G2

∂z
+ G2 − 4t S0, (32)

∂2G1

∂z2
+ cosh[2(λz + ξ0)]z ∂G1

∂z
+ (cosh[2(λz + ξ0)] − λ2)G1
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= −t

(
∂G3

∂t
+ ∂G1

∂t

)
+ z

2

(
∂G3

∂z
+ ∂G1

∂z

)

+2t cosh [2(λz + ξ0)]
∂G1

∂t
+ 1

2
(G3 + G1) − 2t S1, (33)

∂2Gn

∂z2
+ cosh [2(λz + ξ0)] z

∂Gn

∂z
+ (cosh [2(λz + ξ0)] − (nλ)2)Gn

= −t

(
∂Gn+2

∂t
+ ∂G |n−2|

∂t

)
+ z

2

(
∂Gn+2

∂z
+ ∂G |n−2|

∂z

)

+2t cosh [2(λz + ξ0)]
∂Gn

∂t
+ 1

2
(Gn+2 + G |n−2|) − 2t Sn, (34)

∂2g1
∂z2

+ cosh [2(λz + ξ0)] z
∂g1
∂z

+ (cosh [2(λz + ξ0)] − λ2)g1 = z

2

(
∂g3
∂z

− ∂g1
∂z

)

−t

(
∂g3
∂t

− ∂g1
∂t

)
+ 2t cosh [2(λz + ξ0)]

∂g1
∂t

+ 1

2
(g3 − g1) − 2tT1, (35)

∂2gn
∂z2

+ cosh [2(λz + ξ0)] z
∂gn
∂z

+ (cosh [2(λz + ξ0)] − (nλ)2)gn

= z

2

(
∂gn+2

∂z
+ sgn(n − 2)

∂g|n−2|
∂z

)
− t

(
∂gn+2

∂t
+ sgn(n − 2)

∂g|n−2|
∂t

)

+2t cosh [2(λz + ξ0)]
∂gn
∂t

+ 1

2
(gn+2 + sgn(n − 2)g|n−2|) − 2tTn (36)

where sgn(m) denotes the sign ofm with sgn(0) = 0, and n = 2, 3, . . . , N . The quantities S0, Sn, Tn represent
nonlinear terms and are given by

S0 =
N∑

n=1

∂

∂z
[n( fnGn − Fngn)], (37)

Sn =
N∑

m=1

(∂Gm

∂z
[(m + n) fm+n + |m − n| f|m−n|]

+mGm

[∂ fm+n

∂z
+ sgn(m − n)

∂ f|m−n|
∂z

]

−mgm
[∂Fm+n

∂z
+ ∂F|m−n|

∂z

]

−∂gm
∂z

[(m + n)Fm+n + (m − n)F|m−n|]
)

+n fn
∂G0

∂z
− ngn

∂F0
∂z

, (38)

Tn =
N∑

m=1

(∂gm
∂z

[|m − n| f|m−n| − (m + n) fm+n]

−mGm

[∂Fm+n

∂z
− ∂F|m−n|

∂z

]

−mgm
[∂ fm+n

∂z
− sgn(m − n)

∂ f|m−n|
∂z

]

−∂Gm

∂z
[(m + n)Fm+n − (m − n)F|m−n|]

)

+nGn
∂F0
∂z

− nFn
∂G0

∂z
. (39)



Flow past a slippery cylinder 3423

We first discuss the procedure for solving for the vorticity. This requires solving (32)–(36) subject to the
far-field condition (11) which, in terms of the Fourier coefficients, becomes

Gn, gn → 0 as z → ∞, (40)

for n = 0, 1, 2, . . . , N . Rewriting the integral conditions in terms of the boundary-layer coordinate z and the
Fourier coefficients G0,Gn, gn yields∫ ∞

0
(cosh[2(λz + ξ0)]G0 − G2)dz = −βK1

λ
G0(0, t) + β

λ
G2(0, t)

−β3 sinh2(2ξ0)

πλ

∫ 2π

0

ω(0, θ, t)dθ

K2 − cos(2θ)
, (41)

∫ ∞

0
e−nλz(2 cosh[2(λz + ξ0)]Gn − G |n−2| − Gn+2)dz = 4eξ0 sin αδ1,n − 2βK1

λ
Gn(0, t)

+β

λ

(
G |n−2|(0, t) + Gn+2(0, t)

) − 2β3 sinh2(2ξ0)

πλ

∫ 2π

0

ω(0, θ, t) cos(nθ)dθ

K2 − cos(2θ)
, (42)

∫ ∞

0
e−nλz(2 cosh[2(λz + ξ0)]gn − sgn(n − 2)g|n−2| − gn+2)dz = 4eξ0 cosαδ1,n − 2βK1

λ
gn(0, t)

+β

λ

(
sgn(n − 2)g|n−2|(0, t) + gn+2(0, t)

) − 2β3 sinh2(2ξ0)

πλ

∫ 2π

0

ω(0, θ, t) sin(nθ)dθ

K2 − cos(2θ)
, (43)

for n = 1, 2, 3, . . ., where

K1 = cosh(2ξ0) − β sinh(2ξ0), K2 = cosh(2ξ0) + β sinh(2ξ0).

For simplicity, we illustrate the numerical method using Eq. (32) with the understanding that (33)–(36) are
solved in a similar manner. Equation (32) may be rewritten in the generic form

2t
∂G0

∂t
− 2t

cosh[2(λz + ξ0)]
∂G2

∂t
= Q(z, t) (44)

where

Q(z, t) = 1

cosh[2(λz + ξ0)]
∂2G0

∂z2
+ z

∂G0

∂z
+ G0

+ 1

cosh[2(λz + ξ0)]
(
z
∂G2

∂z
+ G2

)
+ 4t

cosh[2(λz + ξ0)] S0. (45)

Assuming the solution at time t is known, we can advance the solution to time t + �t by integrating Eq. (44).
Integration by parts yields

2τG0
∣∣t+�t
t − 2

∫ t+�t

t
G0dτ − 2

cosh[2(λz + ξ0)] (τG2)
∣∣t+�t
t

− 2

cosh[2(λz + ξ0)]
∫ t+�t

t
G2dτ =

∫ t+�t

t
Qdτ (46)

where �t is the time increment. In arriving at (46), we have made the reasonable approximation of treating
cosh[2(λz + ξ0)] as a constant over the time increment. We now approximate the integrals using

∫ t+�t

t
χdτ ≈ �t[�χ(z, t + �t) + (1 − �)χ(z, t)] (47)

where � is a weight factor and χ is a generic function. In general, 0 ≤ � ≤ 1, and we treat � as a
computational parameter still to be specified. When � = 1/2, we obtain the well-known Crank–Nicolson
scheme while � = 1 yields the fully implicit scheme. The case � = 0 corresponds to an explicit scheme
which will not be considered.
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With this approximation in place, Eq. (46) brings us to the expression

2[t + (1 − �)�t](G0(z, t + �t) − G0(z, t))

− 2

cosh[2(λz + ξ0)] [t + (1 − �)�t](G2(z, t + �t) − G2(z, t))

= �t[�Q(z, t + �t) + (1 − �)Q(z, t)]. (48)

We next substitute Q(z, t+�t) given by (45) into (48) and replace all spatial derivatives by central differences
at the point z. Now (48) can be written in the form

C1(z, t + �t)G0(z − �z, t + �t) + C2(z, t + �t)G0(z, t + �t)

+C3(z, t + �t)G0(z + �z, t + �t) = D(z, t + �t) + E(z, t). (49)

The functions C1,C2,C3, D, E can be easily obtained and do not involve G0. The function E is known
from the previous time step while the functions C1,C2,C3, D are computed using the most recent available
information as an initial guess. Thus, when represented in matrix form, Eq. (49) becomes a tri-diagonal system
for the unknown values of G0 at the grid points z = 0,�z, 2�z, . . .. When the region 0 ≤ z ≤ z∞ is divided
into L equally spaced intervals of �z, an (L − 1) × (L − 1) tri-diagonal matrix is resulting.

At each time step, we need to solve this system subject to the far-field conditionG0(z∞, t+�t) = 0 and the
integral condition given by (41). To enforce the integral constraint, we proceed as follows. First, we obtain the
homogeneous solution,Gh

0, by setting the right-hand side in (49) to zero, withG
h
0 satisfyingG

h
0(0, t+�t) = 1

and Gh
0(z∞, t +�t) = 0. Then, we find the particular solution Gp

0 to (49) again satisfying Gp
0 (0, t +�t) = 1

and Gp
0 (z∞, t + �t) = 0. We form the complete solution as

G0(z, t + �t) = γGh
0(z, t + �t) + Gp

0 (z, t + �t) . (50)

Plugging the decomposition (50) into the integral condition (41) and solving for γ yields γ = Num/Denom
where

Num = −
∫ z∞

0
(cosh[2(λz + ξ0)]Gp

0 − G2)dz − β

λ
(K1 − G2(0, t)) − β3 sinh2(2ξ0)

λ

√
K 2
2 − 1

−β3 sinh2(2ξ0)

πλ

N/2∑
n=1

∫ 2π

0

G2n(0, t) cos(2nθ)dθ

K2 − cos(2θ)
,

Denom =
∫ z∞

0
cosh[2(λz + ξ0)]Gh

0dz + βK1

λ
+ β3 sinh2(2ξ0)

λ

√
K 2
2 − 1

.

In arriving at this expression, we have made use of

∫ 2π

0

ω(0, θ, t)dθ

K2 − cos(2θ)
= πG0(0, t)√

K 2
2 − 1

+
N/2∑
n=1

∫ 2π

0

G2n(0, t) cos(2nθ)dθ

K2 − cos(2θ)
,

since ∫ 2π

0

sin(nθ)dθ

K2 − cos(2θ)
=

∫ 2π

0

cos[(2n + 1)θ ]dθ
K2 − cos(2θ)

= 0,

for n = 1, 2, 3, . . ., and
∫ 2π

0

dθ

K2 − cos(2θ)
= 2π√

K 2
2 − 1

.

The integrals appearing in the above are computed using Simpson’s rule. An efficient solver is implemented
to solve the tri-diagonal systems for Gh

0 and Gp
0 . With our approximate solution to G0(z, t + �t) now found,

we then repeat this procedure for obtaining approximate solutions to Gn(z, t + �t), gn(z, t + �t) for n =
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1, 2, . . . , N . It must be remembered that when solving for Gn or gn , quantities having a subscript larger than
n (such as n + 2) are unknown and therefore must be approximated using the values at the previous time step
and then continuously update their values during the iterative procedure. Further, whenever the subscript n+2
of a quantity exceeds N , the value taken by that quantity is zero.

The method used here to solve (29)–(31) for the stream function is identical to that outlined in Dennis
and Chang [5] and will be briefly described. First, the right-hand sides of these equations are obtained using
the computed solutions G0,Gn, gn for n = 1, 2, . . . , N . These stream function coefficient equations are then
integrated using stable marching algorithms satisfying the Navier slip and impermeability conditions at z = 0

F0 = Fn = fn = 0,
∂F0
∂z

= 4λ

a1

∂F2
∂z

+ a2
a1

G0 − a3
a1

G2 + β

a1
G4,

∂Fn
∂z

= 2λ

a1

(
∂F|n−2|

∂z
+ ∂Fn+2

∂z

)
+ a2

a1
Gn − a3

2a1

(
G |n−2| + Gn+2

) + β

2a1

(
G |n−4| + Gn+4

)
,

∂ fn
∂z

= 2λ

a1

(
sgn(n − 2)

∂ f|n−2|
∂z

+ ∂ fn+2

∂z

)
+ a2

a1
gn

− a3
2a1

(
sgn(n − 2)g|n−2| + gn+2

) + β

2a1

(
sgn(n − 4)g|n−4| + gn+4

)

where

a1 = 4λ[cosh(2ξ0) + β sinh(2ξ0)], a2 = β[1 + 2 cosh2(2ξ0)], a3 = 4β cosh(2ξ0),

and the far-field conditions

F0 → 0 as z → ∞, (51)

Fn → − 1

2λ
eξ0+λz sin αδ1,n as z → ∞, (52)

fn → − 1

2λ
eξ0+λz cosαδ1,n as z → ∞, (53)

for n = 1, 2, . . . , N . The marching algorithms used are identical to those presented in Part 1.
The entire cycle described above is repeated until convergence is reached. The convergence criterion

adopted is given by

|G(k+1)
0 (z, t + �t) − G(k)

0 (z, t + �t)| < ε, |G(k+1)
n (z, t + �t) − G(k)

n (z, t + �t)| < ε,

and |g(k+1)
n (z, t + �t) − g(k)

n (z, t + �t)| < ε for n = 1, 2, . . . , N .

Here, the superscripts k, k+1 refer to two successive iterations in the cyclic procedure, and ε is some specified
tolerance. To initiate the integration procedure, we use the solution at t = 0 given by 00 and ω00 which when
expressed in terms of the Fourier coefficients become

G0(z, 0) = Gn(z, 0) = gn(z, 0) = 0,

F0(z, 0) = 0, F1(z, 0) = zeξ0 sin α, Fn(z, 0) = 0, f1(z, 0) = zeξ0 cosα , fn(z, 0) = 0,

for n = 2, 3, . . . , N .
Presented in the next Section are analytical and numerical results along with various comparisons.

4 Results and comparisons

The flow is completely characterized by the Reynolds number, R, the slip length, β, the inclination, α, and
the aspect ratio, r . To confirm numerical convergence, numerous numerical experiments were carried out with
different grids and time steps. From our numerical experiments, the following values for the computational
parameters were used: z∞ = 10, N = 25, �z = 0.05 and ε = 10−6. We have decided to run the scheme in
fully implicit mode (� = 1). Running in Crank–Nicolson mode (� = 1/2) exhibited similar convergence
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Table 1 Comparison in CD between unsteady present and previous steady-state no-slip results for the case α = 0◦, r = 0.2, and
Reynolds numbers R = 20, 40

R Dennis and Young [8] (steady state) Present (unsteady, t = 30)
CD CD

20 0.789 0.806
40 1.228 1.224

Table 2 Comparison in CD,CL between unsteady present and previous steady-state no-slip results for the case R = 20, r = 0.2
and inclinations α = 20◦, 40◦, 60◦

α Dennis and Young [8] (steady) D’Alessio and Dennis [7] (steady) Present (unsteady, t = 10)

CD CL CD CL CD CL

20◦ 1.296 0.741 1.305 0.751 1.382 0.737
40◦ 1.602 0.947 1.620 0.949 1.786 0.985
60◦ 1.911 0.706 1.931 0.706 2.228 0.748

characteristics; however, it produced oscillations in the drag and lift coefficients for a brief time after start-
up, which is a signature of the Crank–Nicolson scheme. Initial time steps of 10−4 were used for the first 10
advances. Then, the next ten time steps were proceeded with �t = 10−3 and continued after with �t = 0.01.
At t = 1, the time step was increased to �t = 0.05. Unlike the symmetric case in Part 1 where no stability
difficulties were encountered, we have observed numerical stability challenges for some of the asymmetrical
cases considered. In particular, we have noticed difficulties when r ≤ 0.2 for β �= 0.

Of particular importance is the determination of the drag and lift coefficients, CD and CL, respectively, and
their variation with time. The dimensionless drag and lift coefficients are derived in the “Appendix” and were
computed using formula (A12). We note that for the no-slip case only the first two terms in (A10) and (A11)
survive. The numerical scheme was first tested by setting β = 0 (i.e., no-slip) and comparing the drag and lift
coefficients with those reported in previous studies [6–8].We beginwith the small Reynolds number symmetric
case having α = 0◦ and r = 0.2. Contrasted in Table 1 are drag coefficients with previous steady-state results.
Since we are solving the unsteady equations, time-stepping was carried out to t = 30, when the flow has settled
down appreciably. As expected, CL was numerically found to be zero to within our specified tolerance ε.

In Table 2, comparisons are made for the no-slip asymmetrical case having r = 0.2, R = 20, and inclina-
tions of α = 20◦,40◦,60◦ against documented steady-state results. Full agreement could not be demonstrated
because time-steppingwas not carried out to large times. Here, time-stepping terminated at t = 10 since numer-
ical instabilities set in beyond that. We speculate that the numerical instabilities may be due to the fact that the
boundary-layer coordinate is not suitable for larger t when R is small. Although this was not done, results for
larger times could be obtained by switching back to the physical coordinates (ξ, θ) and solving Eqs. (4)–(5)
instead of (15)–(16). The optimal time to make the switch would be when the parameter λ = √

8t/R = 1
since ξ = z at that moment. For R = 20, this occurs at t = 2.5.

Wenowmake a comparison for the largeReynolds number no-slip case having R = 6250, r = 0.6, α = 15◦
with the unsteady results of Staniforth [6]. Figure 4 compares the time variation of both the drag and lift
coefficients. As in Part 1, we have plotted the absolute value of CD. A discrepancy is observed in these time
variations, and we think that this is due to the fact that because of the impulsive start CD and CL are infinite
at t = 0, and one set of results may be better resolving this singular behavior than the other.

Another check was conducted by comparing the computed surface vorticity distribution with that predicted
by our approximate analytical solution for small times. Using the analytical solution derived in Sect. 2 for the
vorticity, the following expression for the surface vorticity, ζ(0, θ, t), can be obtained:

ζ(0, θ, t) ∼ eξ0

β

(
M2

0 + β
2 sinh(2ξ0)

M4
0

) [
1 − λM0√

πβ

(
M2

0 + β
2 sinh(2ξ0)

M4
0

)]
sin(θ + α)

where, as previously defined, the function M0(θ) is given by

M2
0 = 1

2
[cosh(2ξ0) − cos(2θ)].
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Fig. 4 Comparison in |CD|,CL between present (solid line) and Staniforth [6] (dashed line) no-slip results for the case R =
6250, r = 0.6, and α = 15◦
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Fig. 5 Numerical (solid line) and analytical (dashed line) surface vorticity distributions for R = 1000, β = 0.5, α = 45◦, and
r = 0.5 at various times

Contrasted in Fig. 5 are surface vorticity distributions at times t = 0.1, 0.5, 1 for the case R = 1000, β =
0.5, α = 45◦, and r = 0.5. As observed for the case of a circular cylinder in Part 1, the agreement between the
numerical and analytical results is excellent for small times and worsens as time progresses. Of course, if more
terms in the expansion were retained, then the agreement would persist for a slightly longer time. We note that
the largest discrepancy occurs at the tips of the ellipse. This is to be expected since the vorticity variation is
most rapid in the vicinity of the tips. For the elliptic cylinder, the general trend is that the agreement improves
as R, β, and r increase.

We next consider the case with R = 500, r = 0.5, and α = 45◦. We present the no-slip case (i.e., β = 0)
first to establish a baseline as a basis for comparison. Shown in Fig. 6 are instantaneous snapshots of the flow at
selected times in the interval 0 < t ≤ 10 which serve to illustrate the vortex-shedding process. We see the first
sign of vortex formation taking place between t = 0.65 and t = 0.75. At t = 1, the vortex is shed and carried
downstream. This process then continues; for example, at t = 3, another vortex is formed while at t = 5 it is
just starting to detach from the rear of the cylinder. The next formed vortex is seen at t = 9 and separates from
the cylinder at t = 10. With time, the formed vortices grow in size and then eventually shed. As the vortices
are advected downstream, they weaken and are shown as wavy streamlines. The vortex-shedding process has a
significant impact on the drag and lift coefficients, which are illustrated in Fig. 7 over the interval 0 < t ≤ 15.
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Fig. 6 Streamline plots for R = 500, r = 0.5, α = 45◦, and β = 0 at selected times t = 0.65, 0.75, 1, 3, 5, 9, 10 from top to
bottom, respectively
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Fig. 7 Time variation in |CD|,CL for the case R = 500, r = 0.5, α = 45◦, and β = 0
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Fig. 8 Time variation in |CD| for the cases R = 500, r = 0.5, α = 45◦, and β = 0, 0.25, 0.5

Fluctuations in CD,CL are clearly visible, and the frequency of the oscillations in CL appears to be about half
of the frequency of the oscillations in CD. In addition, the oscillations in CL are more pronounced than those
in CD, and what is most striking is that CL < 0 for a brief period.

We now present results for the corresponding slip case. The situation is dramatically different when com-
pared to the no-slip case. As β increases, vortex shedding gets more suppressed. This is best illustrated by
contrasting time variations of the drag and lift coefficients shown in Figs. 8 and 9, respectively. We see a
significant reduction in the amplitude of oscillation in both CD and CL as β increases. In fact, when β = 0.5,
we see no oscillations in CD. The frequency of the oscillations also appears to be affected as β increases. More
importantly, there is a noticeable reduction in drag as the slip length increases, as observed with the circular
cylinder. The suppression in vortex shedding is clearly illustrated in the streamline plots shown in Fig. 10,
where we contrast the cases β = 0.25 and β = 0.5; there is no sign of vortex shedding prior to t = 3. Another
feature associated with the slip condition is apparent in the surface vorticity distribution displayed in Fig. 11.
As β increases, there is less variation in ζ0. This is especially evident in the vicinity of the tips of the cylinder.
Computations were also repeated for R = 1000, and similar findings were observed. Figures 12, 13, and 14
for the drag, lift, and surface vorticity, respectively, all display the same features detailed above for R = 500.

To investigate the dependence between the parameters r and β, numerous simulations were carried out
whereby the Reynolds number was fixed at R = 500 and the inclination was held constant at α = 45◦. Shown
in Figs. 15 and 16 are time variations in the drag and lift coefficients, respectively, over the interval 0 < t ≤ 15
for various values of r and β. Unfortunately, due to numerical instabilities, we were not able to obtain results
for r = 0.2 with β �= 0. From these plots, we are able to make the following observations. First, for a given
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Fig. 9 Time variation in CL for the cases R = 500, r = 0.5, α = 45◦, and β = 0, 0.25, 0.5

Fig. 10 Streamline plots for R = 500, r = 0.5, and α = 45◦ at t = 3, 5, 7, 9, 10, 15 from top to bottom, respectively, with
β = 0.25 (left) and β = 0.5 (right)
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Fig. 11 Surface vorticity distributions at t = 15 for R = 500, r = 0.5, and α = 45◦ with β = 0, 0.25, 0.5
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Fig. 12 Time variation in |CD| for the cases R = 1000, r = 0.5, α = 45◦, and β = 0, 0.25, 0.5

0 5 10 15−1

−0.5

0

0.5

1

1.5

2

2.5

3

t

C L

β = 0
β = 0.25
β = 0.5

Fig. 13 Time variation in CL for the cases R = 1000, r = 0.5, α = 45◦, and β = 0, 0.25, 0.5
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Fig. 14 Surface vorticity distributions at t = 15 for R = 1000, r = 0.5, and α = 45◦, with β = 0, 0.25, 0.5
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Fig. 15 Time variation in |CD| for the cases R = 500, α = 45◦, β = 0, 0.25, 0.5, and r = 0.8 (solid line), r = 0.5 (dashed line),
and r = 0.2 (dotted line)

value of β, as r increases, the oscillations in the drag and lift coefficients are reduced. This makes sense since
as r → 1 we approach a circular cylinder, and so the flow becomes more symmetric which, as we learned in
Part 1, is free of oscillations. Second, as β increases, the drag profiles become flatter and less dependent on
the value of r . For example, for β = 0.5 and t � 2, the CD curves for r = 0.5 and r = 0.8 almost lie on top
of each other. Third, as was already noted, the drag decreases as β increases.

Lastly, we explore the relationship between the parameters α and β. To establish this relationship, several
numerical experiments were performed whereby the Reynolds number and aspect ratio were fixed at R = 500
and r = 0.5, respectively. Shown in Figs. 17 and 18 are the results from these simulations. Figure 17 shows
the time variations in the drag coefficient while Fig. 18 illustrates the time variations in the lift coefficient.
These were done over the time interval 0 < t ≤ 15 for selected values of α and β. From these experiments,
we notice that for a specified value of β the drag increases with α as do the oscillations in CD. This finding
comes as no surprise because for small α the flow is more symmetric and streamlined. On the other hand,
for a fixed value of α, we see not only a reduction in drag oscillations but also a decrease in the drag as β
increases. These observations are consistent with our previous results. As for the lift, for a given value of β,
the fluctuations in CL increase noticeably as the inclination increases. Also, for α = 30◦ and α = 45◦, the CL
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Fig. 16 Time variation in CL for the cases R = 500, α = 45◦, β = 0, 0.25, 0.5, and r = 0.8 (solid line), r = 0.5, (dashed line),
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Fig. 17 Time variation in |CD| for the cases R = 500, r = 0.5, β = 0, 0.25, 0.5, and α = 30◦ (solid line), α = 45◦ (dashed
line), and α = 60◦ (dotted line)

profiles become flatter as β increases. For α = 60◦, we see fluctuations in CL for all values β, although there
is a slight reduction as β increases.

5 Conclusions

In Part 2, the unsteady problem of two-dimensional flow of a viscous incompressible fluid past an inclined
elliptic cylinder subject to impermeability andNavier slip surface conditionswas solved. Two types of solutions
have been obtained: an approximate analytical solution in the form of an asymptotic expansion valid for small
times and large Reynolds numbers and a numerical solution based on a spectral–finite differencemethod. These
two solutions were found to be in excellent agreement over the appropriate parameter intervals. In addition,
comparisons made with previous studies for the no-slip case were also found to be in reasonable agreement.

Numerous numerical experiments were conducted for no-slip and slip cases having Reynolds numbers 500
and 1000. The effect of varying the parameters r, α, and β was also investigated. The asymmetrical case is
inherentlymore complicated and interesting than the symmetric case due to the vortex-shedding process. To our
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Fig. 18 Time variation in CL for the cases R = 500, r = 0.5, β = 0, 0.25, 0.5, and α = 30◦ (solid line), α = 45◦ (dashed line),
and α = 60◦ (dotted line)

knowledge, no results currently exist in the literature for asymmetrical slip flowpast an inclined elliptic cylinder.
In addition to the reduction in drag, we have also discovered that vortex shedding undergoes suppression as
the slip length increases. Evidence of this comes from the streamline plots as well as the time variations of
the drag and lift coefficients. The streamline plots clearly illustrate that the formation of vortices behind the
cylinder is delayed as a result of the slip condition. Also, the fluctuations in CD and CL associated with vortex
shedding can be significantly reduced as β increases. Another feature connected to the slip condition is that,
as β increases, there is less variation in the surface vorticity distribution. Lastly, little change in the flow was
observed when R was increased from 500 to 1000, that is, all the features observed for R = 500 also occurred
for R = 1000.
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Appendix: Derivation of drag, lift, and pressure coefficients

The drag and lift forces acting on a body can be determined by integrating the normal, σ , and shear, τ , stresses
around the body surface. The dimensionless stresses in Cartesian coordinates are given by

σx = −P + 4

R

∂U

∂x
, σy = −P + 4

R

∂V

∂y
, τxy = τyx = 2

R

(
∂U

∂y
+ ∂V

∂x

)
. (A1)

In the above, (U, V ) represent the velocity components in the (x, y) directions, respectively. If l and m denote
the direction cosines of the outward normal to the surface where

l = dy

dS
, m = −dx

dS
, (A2)

with S denoting arc length, then the dimensionless forces on the body per unit length in the x, y directions are

X =
∮
C
[lσx + mτxy −U (lU + mV )]dS, Y =

∮
C
[mσy + lτxy − V (lU + mV )]dS, (A3)

respectively. Here, C refers to the contour of the body surface. Substituting (A1) and (A2) into (A3) and
introducing the vorticity, we arrive at

X = −
∮
C
Pdy + 2

R

∮
C

ζdx −
∮
C
U 2dy +

∮
C
UV dx, (A4)
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Y =
∮
C
Pdx + 2

R

∮
C

ζdy −
∮
C
UV dy +

∮
C
V 2dx . (A5)

We point out that the continuity equation

∂U

∂x
+ ∂V

∂y
= 0

was also used in obtaining (A4)–(A5). It is also useful to note that theNavier–Stokes equations can be expressed
as

∂U

∂t
+ ∂

∂x

[
P + 1

2
(U 2 + V 2)

]
= − 2

R

∂ζ

∂y
+ ζ

∂ψ

∂x
, (A6)

∂V

∂t
+ ∂

∂y

[
P + 1

2
(U 2 + V 2)

]
= 2

R

∂ζ

∂x
+ ζ

∂ψ

∂y
. (A7)

For the elliptic cylinder

x = cosh(ξ + ξ0) cos θ, y = sinh(ξ + ξ0) sin θ. (A8)

Using (A8) it can be shown that for the elliptic cylinder

M
∂v

∂t
+ ∂

∂θ

[
P + 1

2
(u2 + v2)

]
= 2

R

∂ζ

∂ξ
+ ζ

∂ψ

∂θ
(A9)

follows from (A6)–(A7) with the understanding that (u, v) in (A9) represent the velocity components in the
(ξ, θ) directions, respectively. After some algebra, it can also be shown that for the elliptic cylinder, (A4)–(A5)
become

X = 2 sinh ξ0

R

∫ 2π

0

(
∂ζ

∂ξ

)
0
sin θdθ − 2 cosh ξ0

R

∫ 2π

0
ζ0 sin θdθ

+ sinh ξ0

2

∫ 2π

0
(v2)0 cos θdθ − sinh ξ0

∫ 2π

0
M0

(
∂v

∂t

)
0
sin θdθ, (A10)

Y = −2 cosh ξ0

R

∫ 2π

0

(
∂ζ

∂ξ

)
0
cos θdθ + 2 sinh ξ0

R

∫ 2π

0
ζ0 cos θdθ

+cosh ξ0

2

∫ 2π

0
(v2)0 sin θdθ + cosh ξ0

∫ 2π

0
M0

(
∂v

∂t

)
0
cos θdθ (A11)

where we have made use of (A8) and (A9) and

(v2)0 = β2M6
0 ζ

2
0

[M2
0 + β

2 sinh(2ξ0)]2
.

For the case of no-slip, the last two terms in the expressions for X, Y vanish. Finally, the drag, CD, and lift,
CL, coefficients in the horizontal and vertical directions, respectively, can then be obtained by a rotation of α
given by

CD = X cosα − Y sin α, CL = Y cosα + X sin α. (A12)

The dimensionless pressure coefficient, defined by P∗(ξ = 0, θ, t) = P(0, θ, t) − P(0, 0, t), can be obtained
by integrating (A9). Doing this yields

P∗(0, θ, t) = 2

R

∫ θ

0

(
∂ζ

∂ξ

)
0
dθ̄ − 1

2
v2

∣∣θ
0 −

∫ θ

0
M0

(
∂v

∂t

)
0
dθ̄ . (A13)

For the circular cylinder

x = eξ cos θ, y = eξ sin θ,
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and for M in (A9), we can substitute eξ . Using this, it follows that

CD = 2

R

∫ 2π

0

(
∂ζ

∂ξ
− ζ

)
0
sin θdθ + β2

2(1 + β)2

∫ 2π

0
ζ 2
0 cos θdθ −

∫ 2π

0

(
∂v

∂t

)
0
sin θdθ,

CL = 2

R

∫ 2π

0

(
ζ − ∂ζ

∂ξ

)
0
cos θdθ + β2

2(1 + β)2

∫ 2π

0
ζ 2
0 sin θdθ +

∫ 2π

0

(
∂v

∂t

)
0
cos θdθ,

P∗(0, θ, t) = 2

R

∫ θ

0

(
∂ζ

∂ξ

)
0
dθ̄ − β2

2(1 + β)2
ζ 2
0

∣∣θ
0 −

∫ θ

0

(
∂v

∂t

)
0
dθ̄ .
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