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Abstract Part 1 of this two-part paper solves the two-dimensional problem of the unsteady flow of a viscous
incompressible fluid past a circular cylinder subject to impermeability and Navier-slip conditions on the
surface. The Navier-slip condition is characterized by the slip length, β. The flow is calculated using two
methods. The first takes the form of a double series solution where an expansion is carried out in powers of
the time, t , and in powers of the parameter λ = √

8t/R where R is the Reynolds number. This approximate
analytical solution is valid for small times following the start of the motion and for large Reynolds numbers.
The second method involves a spectral-finite difference procedure for numerically integrating the full Navier–
Stokes equations expressed in terms of a stream function and vorticity. Our results demonstrate that for small
times and moderately large R the two methods of solution are in excellent agreement. Results are presented
for Reynolds numbers 500 and 1000, and comparisons with the no-slip condition are made. The key finding
is that a reduction in the drag coefficient results from the Navier-slip condition when compared to the no-slip
condition. This reduction increases as β increases. In addition, the slip condition also leads to suppression in
flow separation.

1 Introduction

This research solves the problem of unsteady flow past a circular cylinder of radius a. For t < 0, both the
cylinder and the surrounding fluid are at rest. Then suddenly at t = 0 the cylinder is impulsively set into
motion and moves with uniform speedU0 in the positive x direction. The problem is formulated in a reference
frame that moves with the cylinder having the origin of the coordinate system coinciding with the center of
the cylinder as shown in Fig. 1. The fluid is taken to be viscous and incompressible. The problem is solved on
the premise that the governing equations are the Navier–Stokes equations and that the flow remains laminar
and two-dimensional for all times and parameter values considered. On the cylinder surface, impermeability
and Navier-slip conditions are applied while at large distances asymptotic conditions are imposed.

Flow past a circular cylinder has received enormous attention over the years due to its practical and
fundamental importance. A comprehensive list of references detailing experimental, numerical and theoretical
investigations for various flow configurations can be found in the texts by Zdravkovich [1,2]. It is fair to say
that the vast majority of these investigations enforces no-slip conditions on the cylinder surface. Although the
no-slip condition has become the default boundary condition applied at a solid–liquid interface, the validity
of this condition was challenged at length during the nineteenth and early twentieth century. The notion of a
slip condition was originally proposed by Navier [3]. Cases in which the no-slip condition is known to fail
include the flows of rarified gases or flows within microfluidic/nanofluidic devices [4]. Here, the mean free
path of the fluid approaches the characteristic length scale. For situations involving hydrophobic solids, a
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Fig. 1 Flow setup

general Navier-slip condition yields results that are in better agreement with experimental observations than
the traditional no-slip condition [5]. Beavers and Joseph [6] proposed a semiempirical slip condition for a
liquid-porous medium interface which was later extended by Saffman [7].

The surface roughness scale distinguishes hydrophobic surfaces from superhydrophobic surfaces.
Hydrophobic surfaces can be characterized as having micron-sized protrusions, while superhydrophobic sur-
faces typically have nanometer-sized ridges or posts. The importance of superhydrophobic surfaces lies in
the observation that these surfaces have been shown to produce a significant reduction in drag for both lam-
inar and turbulent flows. Although the boundary condition experienced by a fluid over a superhydrophobic
surface is no-slip, the air–fluid interfaces existing between the surface features are essentially shear free and
hence responsible for reducing drag. The engineering of superhydrophobic surfaces has impacted various
technologies ranging from microfluidic/nanofluidic devices to marine vessels.

Relatively few studies have been devoted to slip flow past a cylinder. Three related previous studies in
particular are worth noting. You and Moin [8] studied the impact that hydrophobic surfaces have on the drag
and lift coefficients. They did this by comparing cylinders having a no-slip surface, a slip surface and a cylinder
having alternating bands of slip and no-slip conditions for Reynolds numbers of 300 and 3900 using direct
numerical simulations and large-eddy simulations. They found that for large Reynolds numbers hydrophobic
surfaces can lead to a reduction in drag and lift. Seo and Song [9], on the other hand, investigated the influence
of partial-slip conditions on the laminar flow past a circular cylinder using the shallow-water equations for
Reynolds numbers of 20, 40, 80, and 100. They found a reduction in drag as the slip length increased. Lastly,
Li et al. [10] looked at various slip configurations using analytical and numerical techniques for small-to-
moderately-large Reynolds numbers. For the Reynolds number range of 100–500, they discovered that flank
slip conditions produced the largest reduction in drag.

The underlying assumption made in this study is that the flow remains two-dimensional and laminar.
One can argue that for the Reynolds number regime considered three-dimensional effects and turbulence
may significantly alter the flow. In fact, experimental work conducted by Williamson [11] for the case of a
circular cylinder suggests that a three-dimensional transition occurs for Reynolds numbers R > 178. We also
note, however, that the three-dimensionality can be suppressed or delayed experimentally in several ways. For
example, the work of Blackburn and Henderson [12] has shown that cylinder vibrations tend to suppress the
three-dimensionality and produce flows that are more two-dimensional than their fixed cylinder counterparts.
Also, the results to be presented in this investigation suggest that the flow past a slippery cylinder becomes
more streamlined and that flow separation is suppressed. Based on this one would be inclined to infer that
this should also delay the onset of three-dimensionality and hence support the two-dimensional simplification.
Although physically the wake may be three-dimensional and turbulent, we believe that it can be represented
reasonably well by a laminar two-dimensional model in the near-wake region which is the focus of this study.

The main contributions of the present research are twofold. First, an analytical solution for the early
development of the flow is derived. This approximate solution is valid for small times, t , and moderate-to-high
Reynolds numbers, R. This represents an important contribution to this problem because currently only low-to-
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moderate Reynolds number approximate solutions exist in the literature [10]. Second, an efficient numerical
technique for solving the Navier–Stokes equations is proposed. This scheme is significantly different than
those used in previous numerical studies. An advantage offered by the analytical solution is that it provides a
means of validating the numerical solution for small times, and the reconciling of our numerical and analytical
solutions will be demonstrated. In addition, a detailed comparison between the slip and no-slip cases is carried
out.

This two-part paper is organized as follows: We begin in Sect. 2 by presenting the governing equations
along with their corresponding initial and boundary conditions using a coordinate system well suited for the
geometry. We also introduce boundary-layer coordinates as a means of better representing the initial flow
structure. Then, in Sect. 3, we construct an analytical solution to elicit information regarding the early flow
development. This is achieved by performing an expansion in powers of the parameter λ = √

8t/R, followed
by an expansion in terms of t . This procedure yields a series solution for the flow variables which is valid for
small times and large values of R. Following this, a numerical method for solving the governing equations is
outlined in Sect. 4. Comparisons and discussion between numerical and analytical results, alongwith streamline
plots and comparisons using the no-slip condition, are presented in Sect. 5. Lastly, the work is summarized in
Sect. 6. Part 2 of this paper represents an extension to slip flow past an inclined elliptic cylinder.

2 Governing equations

Assuming the flow remains two-dimensional for all time, a good choice of flow variables to describe themotion
is the scalar stream function, ψ , and vorticity, ζ . In terms of modified polar coordinates (ξ, θ) where ξ = ln r ,
the governing Navier–Stokes equations in dimensionless form are given by

∂2ψ

∂ξ2
+ ∂2ψ

∂θ2
= e2ξ ζ, (1)

e2ξ
∂ζ

∂t
= ∂ψ

∂θ

∂ζ

∂ξ
− ∂ψ

∂ξ

∂ζ

∂θ
+ 2

R

(
∂2ζ

∂ξ2
+ ∂2ζ

∂θ2

)
. (2)

We seek a solution in the domain ξ ≥ 0 and 0 ≤ θ ≤ 2π . The dimensionless radial and transverse velocity
components (u, v) can be obtained using

u = −e−ξ ∂ψ

∂θ
, v = e−ξ ∂ψ

∂ξ
. (3)

The dimensionless functions ψ and ζ are related to their dimensional counterparts ψ∗ and ζ ∗ by ψ∗ =
aU0ψ and ζ ∗ = U0ζ/a, while the dimensionless time, t , and radial coordinate, r , are related to the dimensional
time t∗ by t∗ = at/U0 and dimensional coordinate r∗ by r∗ = ar . Here, R denotes the Reynolds number
defined by R = 2aU0/ν where ν is the kinematic viscosity.

The surface boundary conditions include the impermeability and Navier-slip conditions given by

u = 0, v = β
∂v

∂ξ
at ξ = 0,

respectively. The Navier-slip condition adopted in this study corresponds to the Beavers and Joseph [6] condi-
tion. Here,β denotes the dimensionless slip length and is related to the dimensional slip lengthβ∗ byβ = β∗/a.
Physically, the dimensional slip length refers to the distance required for the slip velocity at the surface to
decrease to zero and hence become no-slip. Thus, as expected, β = 0 recovers the no-slip condition. For a
porous material, β∗ = √

�/� where � is the permeability and � is the Beavers–Joseph constant which takes
on values between 0.1 and 0.4 [6]; for common materials,

√
� can be as large as 10−2 mm [13]. In terms of

ψ and ζ , these conditions become

ψ = 0,
∂ψ

∂ξ
= β

(1 + β)
ζ at ξ = 0. (4)

In addition, we have the periodicity conditions

ψ(ξ, θ, t) = ψ(ξ, θ + 2π, t), ζ(ξ, θ, t) = ζ(ξ, θ + 2π, t), (5)
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and the far-field conditions
ψ → eξ sin θ , ζ → 0 as ξ → ∞. (6)

Condition (6) results from the oncoming uniform flow. Inspecting the boundary conditions (4), we notice a
coupling between the surface vorticity and the normal derivative of the stream function which may be difficult
to implement numerically. An alternate method to deal with this involves the use of integral conditions, which
we next introduce.

Dennis andQuartapelle [14] have shown that the vorticity satisfies integral constraints which can be derived
from Green’s second identity using the known surface and far-field boundary conditions. Recall that Green’s
second identity states that any twice differentiable functions g and h in the region D satisfy

∫ ∫
D
(g∇2h − h∇2g)dxdy =

∮
C

(
g
∂h

∂n
− h

∂g

∂n

)
dS.

Here, ∂h/∂n, ∂g/∂n refer to normal derivatives, andC is the closed curve corresponding to the boundary of D.
Choosing g = ψ and h to be harmonic functions given by e−nξ sin(nθ) and e−nξ cos(nθ), it is a straightforward
exercise to show that the vorticity satisfies integral constraints given by

∫ ∞

0

∫ 2π

0
e(2−n)ξ ζ(ξ, θ, t) sin(nθ)dθdξ = 2πδ1,n − β

(1 + β)

∫ 2π

0
ζ(0, θ, t) sin(nθ)dθ, (7)

for n = 1, 2, . . ., and

∫ ∞

0

∫ 2π

0
e(2−n)ξ ζ(ξ, θ, t) cos(nθ)dθdξ = − β

(1 + β)

∫ 2π

0
ζ(0, θ, t) cos(nθ)dθ, (8)

for n = 0, 1, 2, . . ., where δi,n is the Kronecker delta, defined by

δi,n =
{

1 if n = i
0 if n 	= i .

Basically, Green’s second identity enables us to convert the known boundary conditions on the surface and
at large distances into conditions that are valid throughout the entire domain. The issue now becomes how to
use these integral conditions to determine the, as of yet, unknown surface vorticity. This will be fully explained
in the subsequent sections.

Because of the impulsive start imposed on the flow, a thin boundary layer of thickness
√
8t/R surrounds

the cylinder. To better accommodate this singular behavior, we stretch the coordinate ξ and flow variables
according to

ξ = λz, ψ = λ�, ζ = ω/λ where λ =
√
8t

R
. (9)

In terms of the boundary-layer coordinates (z, θ), Eqs. (1)–(2) transform to

∂2�

∂z2
+ λ2

∂2�

∂θ2
= e2λzω , (10)

∂2ω

∂z2
+ 2e2λz

(
z
∂ω

∂z
+ ω

)
= 4te2λz

∂ω

∂t
− λ2

∂2ω

∂θ2
− 4t

(
∂�

∂θ

∂ω

∂z
− ∂�

∂z

∂ω

∂θ

)
, (11)

and will be used to dictate the early stages of the flow.We emphasize that although boundary-layer coordinates
are utilized, the full Navier–Stokes equations are to be solved and not the simplified boundary-layer equations.
This transformation along with the integral conditions has been successfully used in previous studies, such as
Badr and Dennis [15] and Collins and Dennis [16] for uniform flow past a cylinder, and Rohlf and D’Alessio
[17] for shear flow past a cylinder.

In the next section, we present a procedure by which we can build up an approximate solution for small
times and large Reynolds numbers, and in the process we will be able to determine the initial solution which
can be used as an initial condition.
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3 Analytical solution procedure

If R is large and t is small, then λ is also small, and it is possible to expand the flow variables in a double series
in terms of λ and t . First, we expand � and ω in a series of the form

� = �0 + λ�1 + λ2�2 + · · · ,

ω = ω0 + λω1 + λ2ω2 + · · · . (12)

Then each �n, ωn, n = 0, 1, 2, . . . , can be further expanded in a series of the form

�n(z, θ, t) = �n0(z, θ) + t�n1(z, θ) + · · · ,

ωn(z, θ, t) = ωn0(z, θ) + tωn1(z, θ) + · · · . (13)

We note that when performing a double expansion the internal orders of magnitudes between the expansion
parameters should be taken into account. In our case, λ and t will be equal when t = 8/R, and thus, for a fixed
value of R the procedure is expected to be valid for times that are of order 1/R, provided that R is sufficiently
large. Fortunately, asymptotic expansions are known to have the redeeming feature that they can provide good
results outside the domain of validity. This will be discussed in more detail when we make comparisons with
numerical solutions.

Substituting series (12)–(13) into Eqs. (10)–(11) and using the expansion

e2λz = 1 + 2λz + 2λ2z2 + · · · ,

produces a hierarchy of problems at various orders. For example, the first terms in the series, �0 and ω0,
correspond to the boundary-layer solution since they emerge in the limit as R → ∞ and are valid for all t ≥ 0.
The boundary-layer equations are given by

∂2�0

∂z2
= ω0, (14)

∂2ω0

∂z2
+ 2z

∂ω0

∂z
+ 2ω0 = 4t

∂ω0

∂t
− 4t

(
∂�0

∂θ

∂ω0

∂z
− ∂�0

∂z

∂ω0

∂θ

)
. (15)

The above equations expose the need for the double series; Eqs. (14)–(15) are still much too complicated to
solve analytically, and so an expansion in t is also necessary to make analytical progress.

The initial solution at t = 0 corresponds to the terms �00 and ω00 and can be obtained by setting t = 0 in
Eqs. (14)–(15). The initial solution then satisfies

∂2�00

∂z2
= ω00, (16)

∂2ω00

∂z2
+ 2z

∂ω00

∂z
+ 2ω00 = 0. (17)

It can easily be shown that the solution to (17) satisfying all the conditions is ω00 = 0. Using this and
integrating (16) twice and imposing the impermeability condition yields �00 = A(θ)z. The function A(θ) can
be determined by applying the Navier-slip condition which when expanded yields

∂�00

∂z
= β

(1 + β)
ω10 at z = 0.

Thus, in order to determine �00 we first need to solve for ω10. Before proceeding to find ω10, we first point
out that it is a straightforward exercise to show that ω0n = 0 for n = 0, 1, 2, . . ..

The term ω10 satisfies the equation
∂2ω10

∂z2
+ 2z

∂ω10

∂z
= 0. (18)

The solution satisfying the far-field condition ω10 → 0 as z → ∞ is given by

ω10(z, θ) = B(θ)erfc(z),
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where erfc(z) = 1 − erf(z) is the complementary error function while

erf(z) = 2√
π

∫ z

0
e−u2du

denotes the error function. The function B(θ) can be determined by applying the integral conditions (7)–(8)
which when expanded and expressed in terms of boundary-layer coordinates yield

∫ 2π

0
ω10(0, θ) sin(nθ)dθ = 2π(1 + β)

β
δ1,n,

∫ 2π

0
ω10(0, θ) cos(nθ)dθ = 0.

It immediately follows that

B(θ) = 2(1 + β)

β
sin θ and hence A(θ) = β

(1 + β)
B(θ) = 2 sin θ.

Thus, the leading-order nonzero terms in the solution become

�00(z, θ) = 2z sin θ , ω10(z, θ) = 2(1 + β)

β
erfc(z) sin θ.

Further, it was also shown that ω11 = �01 = 0. Examining the initial solution for the stream function, we
observe that �00 does not comply with the far-field condition (6). We have chosen to satisfy the surface
conditions (4) at the expense of the far-field condition. It is much more important to satisfy the conditions
on the surface because we are primarily interested in the evolving boundary-layer structure where vorticity is
generated. Note, however, that ω10 is constructed in such a way that the far-field condition is automatically
satisfied. This is a consequence of applying the integral conditions which incorporate the far-field conditions.

We now continue the procedure of determining the next terms, �10 and ω20, in the series given by (12).
As we will see the procedure gets more and more complicated as more terms are sought. We begin by solving
for ω20 which satisfies

∂2ω20

∂z2
+ 2z

∂ω20

∂z
− 2ω20 = −4z2

∂ω10

∂z
, (19)

and must obey the far-field condition ω20 → 0 as z → ∞ along with the integral conditions

∫ ∞

0

∫ 2π

0
ω10(z, θ) sin(nθ)dθdz = − β

(1 + β)

∫ 2π

0
ω20(0, θ) sin(nθ)dθ,

∫ ∞

0

∫ 2π

0
ω10(z, θ) cos(nθ)dθdz = − β

(1 + β)

∫ 2π

0
ω20(0, θ) cos(nθ)dθ.

Using the known solution for ω10(z, θ) and after some algebra, we obtain

ω20(z, θ) = 2(1 + β)2√
πβ2

(√
π zerfc(z) − e−z2

)
sin θ − (1 + β)

β

(
zerfc(z) + 2√

π
z2e−z2

)
sin θ.

Next we solve for �10 which satisfies
∂2�10

∂z2
= ω10, (20)

subject to

�10 = 0 ,
∂�10

∂z
= β

(1 + β)
ω20 at z = 0.

Again, using the known solutions for ω10(z, θ) and ω20(z, θ) we obtain

�10(z, θ) = 2(1 + β)

β

(
z2

2
erfc(z) − 1

4
erf(z) − z

2
√

π
e−z2

)
sin θ.
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The approximate solution

� ∼ �00 + λ �10 , ω ∼ λ ω10 + λ2 ω20

determined here provides sufficient information to validate the numerical scheme, outlined in the following
section, for small times. As a physical check of the analytical solution found, we compare the solution with
the inviscid solution which is easily found to be

ψ(ξ, θ) = 2 sinh ξ sin θ, ζ(ξ, θ) = 0.

Then,

v = e−ξ ∂ψ

∂ξ
= 2 sin θ at ξ = 0.

In the large R limit, the transverse velocity according to our expansion becomes

v = ∂�00

∂z
.

Evaluating this in the limit as z → ∞, we obtain

v → 2 sin θ,

which is in full agreement with the surface transverse velocity predicted by inviscid flow. Lastly, as a final
comment we note that although β ≥ 0 it is worth entertaining the consequences of a negative value of β even
though it is not physical or realistic. For example, when β = −1 the surface vorticity is zero, and the analytical
solution appears to reduce to the inviscid solution.

4 Numerical solution procedure

We now present a numerical method used to solve Eqs. (10)–(11). The numerical technique implemented
here is a spectral-finite difference scheme which is successful in capturing the early development of the flow.
Actually, the scheme employed represents a modified version of those utilized by Badr and Dennis [15] and
Rohlf and D’Alessio [17].

We begin by expanding the flow variables in an infinite Fourier series having the form

�(z, θ, t) = F0(z, t)

2
+

∞∑
n=1

[Fn(z, t) cos(nθ) + fn(z, t) sin(nθ)] ,

ω(z, θ, t) = G0(z, t)

2
+

∞∑
n=1

[Gn(z, t) cos(nθ) + gn(z, t) sin(nθ)] . (21)

When these are substituted into Eqs. (10)–(11), we obtain the following equations for the Fourier coefficients:

∂2F0
∂z2

= e2λzG0(z, t); (22)

∂2Fn
∂z2

− n2λ2Fn = e2λzGn(z, t); n = 1, 2, . . . , (23)

∂2 fn
∂z2

− n2λ2 fn = e2λzgn(z, t); n = 1, 2, . . . , (24)

e−2λz ∂
2G0

∂z2
+ 2z

∂G0

∂z
+ 2G0 = 4t

∂G0

∂t
− 4te−2λz S0, (25)
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e−2λz ∂
2Gn

∂z2
+ (

2z + 4nte−2λz f2n
) ∂Gn

∂z
+

(
2 − n2λ2e−2λz + 2nte−2λz ∂ f2n

∂z

)
Gn = 4t

∂Gn

∂t

− 2nte−2λz
(
fn

∂G0

∂z
− gn

∂F0
∂z

− gn
∂F2n
∂z

− 2F2n
∂gn
∂z

)
− 2te−2λz Sn ; n = 1, 2, . . . , (26)

e−2λz ∂
2gn
∂z2

+ (
2z − 4nte−2λz f2n

) ∂gn
∂z

+
(
2 − n2λ2e− 2λz − 2nte−2λz ∂ f2n

∂z

)
gn = 4t

∂gn
∂t

+ 2nte−2λz
(
Fn

∂G0

∂z
− Gn

∂F0
∂z

+ Gn
∂F2n
∂z

+ 2F2n
∂Gn

∂z

)
− 2te−2λzTn ; n = 1, 2, . . . (27)

where

S0 =
∞∑
n=1

∂

∂z
[n( fnGn − Fngn)],

Sn =
∞∑

m=1
m 	=n

(
∂Gm

∂z
[(m + n) fm+n + |m − n| f|m−n|] + mGm

[
∂ fm+n

∂z
+ sgn(m − n)

∂ f|m−n|
∂z

]

−mgm

[
∂Fm+n

∂z
+ ∂F|m−n|

∂z

]
− ∂gm

∂z
[(m + n)Fm+n + (m − n)F|m−n|]

)
,

Tn =
∞∑

m=1
m 	=n

(
∂gm
∂z

[|m − n| f|m−n| − (m + n) fm+n] − mGm

[
∂Fm+n

∂z
− ∂F|m−n|

∂z

]

−mgm

[
∂ fm+n

∂z
− sgn(m − n)

∂ f|m−n|
∂z

]
− ∂Gm

∂z
[(m + n)Fm+n − (m − n)F|m−n|]

)
.

Here, sgn(m − n) denotes the sign of m − n with sgn(0) = 0. In theory, the system of Eqs. (22)–(27)
comprises an infinite set; in practice, however, we truncate series (21) by setting all terms having subscripts
n > N to zero. Systems (22)–(27) then consist of 4N + 2 equations.

We now outline the solution procedure for the Fourier coefficients F0,G0, Fn,Gn, fn, gn for n =
1, 2, . . . , N . We need to solve Eqs. (25)–(27) subject to the far-field conditions

G0 → 0 , Gn, gn → 0 as z → ∞ for n = 1, 2, . . . , N ,

and the integral conditions (7)–(8) which now become
∫ ∞

0
e(2−n)λzGn(z, t)dz = − β

λ(1 + β)
Gn(0, t) for n = 0, 1, 2, . . . , N ,

∫ ∞

0
e(2−n)λzgn(z, t)dz = 2δ1,n − β

λ(1 + β)
gn(0, t) for n = 1, 2, . . . , N . (28)

We illustrate themethod using Eq. (25)with the understanding that (26)–(27) are solved in a similarmanner.
Equation (25) may be rewritten in the form

4t
∂G0

∂t
= Q(z, t) (29)

where

Q(z, t) = e−2λz ∂
2G0

∂z2
+ 2z

∂Ĝ0

∂z
+ 2G0 + 4te−2λz S0. (30)

Assuming the solution at time t is known, we can advance the solution to time t + �t by integrating Eq. (29).
Integration by parts yields

4τG0
∣∣t+�t
t − 4

∫ t+�t

t
G0dτ =

∫ t+�t

t
Qdτ
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where �t is the time increment. We now approximate the integrals using

∫ t+�t

t
χdτ ≈ �t[�χ(z, t + �t) + (1 − �)χ(z, t)]

where� is aweight factor andχ is a generic function. In general, 0 ≤ � ≤ 1 andwe treat� as a computational
parameter still to be specified. When � = 1/2, we obtain the well-known Crank–Nicolson scheme, while
� = 1 yields the fully implicit scheme. The case � = 0 corresponds to an explicit scheme which will not be
considered. With this approximation in place, Eq. (29) brings us to the expression

4[t + (1 − �)�t](G0(z, t + �t) − G0(z, t)) = �t[�Q(z, t + �t) + (1 − �)Q(z, t)]. (31)

If we now substitute Q(z, t + �t) given by (30) into (31) and replace all derivatives of G0 with respect to
z by central differences at the point z, then (31) becomes

C1(z, t + �t)G0(z − �z, t + �t) + C2(z, t + �t)G0(z, t + �t)

+C3(z, t + �t)G0(z + �z, t + �t) = D(z, t + �t) + E(z, t) (32)

where �z is the uniform grid spacing in the z direction and the functions C1,C2,C3, D, E can be easily
derived and do not involve G0. The function E is known from the previous time step, while the functions
C1,C2,C3, D are computed using the most recent available information as an initial guess. Thus, when
represented in matrix form Eq. (32) becomes a tri-diagonal system for the unknown values of G0 at the grid
points z = 0,�z, 2�z, . . .. If the region 0 ≤ z ≤ z∞, with z∞ denoting the outer boundary approximating
infinity, is divided into L equally spaced intervals of �z, then an (L −1)× (L −1) tri-diagonal matrix results.

At each time step, we need to solve this system subject to the far-field condition G0(z∞, t + �t) = 0
and the integral conditions given by (28). To enforce the integral conditions, we proceed as follows: First,
we obtain the homogeneous solution, Gh

0, by setting the right-hand side in (32) to zero, with Gh
0 satisfying

Gh
0(0, t+�t) = 1 andGh

0(z∞, t+�t) = 0. Then, we find the particular solution,Gp
0 , to (32) again satisfying

Gp
0 (0, t + �t) = 1 and Gp

0 (z∞, t + �t) = 0. We form the complete solution as

G0(z, t + �t) = γGh
0(z, t + �t) + Gp

0 (z, t + �t).

Finally, the constant γ is chosen so that (28) is satisfied. This yields

γ = −
(

β
λ(1+β)

+ ∫ z∞
0 e2λzG p

0 dz
)

(
β

λ(1+β)
+ ∫ z∞

0 e2λzGh
0dz

) .

The integrals appearing in the expression for γ are computed by Simpson’s rule, while an efficient routine is
implemented to solve the tri-diagonal systems for Gh

0 and G
p
0 . With our approximate solution to G0(z, t +�t)

now found, we then repeat this procedure for obtaining approximate solutions to Gn(z, t + �t), gn(z, t + �t)
for n = 1, 2, . . . , N .

The system given by (22)–(24) is effectively a linear system of ordinary differential equations, and there
are numerous methods available to solve such a system. The method used here to solve (22)–(24) for the
stream function is identical to that outlined in Dennis and Chang [18] and will be briefly described. First, the
right-hand sides of these equations are obtained using the computed solutionsG0,Gn, gn for n = 1, 2, . . . , N .
Then, each of these equations is factored into a pair of first-order equations, one of which is integrated in the
direction of increasing z, while the other in the direction of decreasing z. These first-order equations are then
integrated using stable marching algorithms satisfying the Navier-slip and impermeability conditions

F0 = Fn = fn = 0,
∂F0
∂z

= β

λ(1 + β)
G0,

∂Fn
∂z

= β

λ(1 + β)
Gn,

∂ fn
∂z

= β

λ(1 + β)
gn,

at z = 0 for n = 1, 2, . . . , N and the far-field conditions

F0 → 0, Fn → 0, fn → 1

λ
eλzδ1,n as z → ∞ for n = 1, 2, . . . , N .
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Before outlining the marching schemes utilized, we first recognize that at a given time t the equations for
fn, Fn can be viewed as linear differential equations of the type

d2F
dz2

− κ2F = c(z) (33)

where F = F(z) is one of fn, Fn , κ = nλ, and c(z) depends on the vorticity coefficients gn,Gn . We assume
that F and c are spatially discretized according to F j = F( j�z) and c j = c( j�z). The important point to
note here is that the particular marching algorithm to be used is dependent on the parameter κ = nλ. It is shown
in Dennis and Chang [18] that most step-by-step procedures become increasingly unstable as κ becomes large.
Hence, two sets of step-by-step methods are utilized: one for the case κ < 0.5 while another for κ ≥ 0.5. The
details for both cases will be outlined below.

For κ < 0.5, we make use of the marching scheme

F j+1 = 24 + 10κ2�z2

12 − κ2�z2
F j − F j−1 + �z2

12 − κ2�z2
(
c j+1 + 10c j + c j−1

)
, (34)

which is accurate to O(�z6). The marching procedure is initiated with the lower-order scheme

F1 = �z2

6
(2c0 + c1) + dF0

dz

(
�z + κ2�z3

6

)
, (35)

which makes use of the boundary conditions F0 = 0.
For κ ≥ 0.5, we use the idea of Dennis and Chang [18] that equation (33) can be factored as

(
d

dz
− κ

)(
d

dz
+ κ

)
F = c(z). (36)

We can now make the change of variables

p = dF
dz

+ κF, (37)

q = dF
dz

− κF . (38)

This allows Eq. (36) to be written as the non-coupled system of first-order differential equations

dp

dz
− κp = c(z), (39)

dq

dz
+ κq = c(z). (40)

Once p and q have been solved, F and dF
dz can be obtained by the relations

F = p − q

2κ
, (41)

dF
dz

= p + q

2
. (42)

Equation (39) is marched forwards from z = 0 to z = z∞, and Eq. (40) is marched backwards from z = z∞
to z = 0. Marching the equations in this way ensures that both the boundary conditions on the cylinder surface
and the boundary conditions in the far field are utilized.

We now list the marching scheme for (39) with the understanding that a similar scheme, used backwards,
is used to integrate (40). The scheme’s derivation details can be found in Dennis and Chang [18]. The scheme
reads
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F j+2 = e−2κ�zF j + 1

κ

(
e−2κ�zc j − c j+2

)

+ 1

2κ2�z

[
3c j+2 − 4c j+1 + c j − e−2κ�z (

4c j+1 − 3c j − c j+2
)]

+ 1

κ3�z2
[
2c j+1 − c j − c j+2

] (
1 − e−2κ�z) , (43)

which is initiated with the scheme

F1 = e−κ�zF0 + 1

κ

(
e−κ�zc0 − c1

) + 1

2κ2�z

[
c2 − c0 − e−κ�z (4c1 − 3c0 − c2)

]

+ 1

κ3�z2
[2c1 − c0 − c2]

(
1 − e−κ�z) (44)

where F0 depends on the surface condition.
Lastly, we describe the marching procedure for the case κ = 0 (hence n = 0). Equation (33) becomes

d2F
dz2

= c(z). (45)

Here, F = F0 since n = 0. The problem then amounts to twice numerically integrating the function c(z)
using Simpson’s rule. We first use the scheme to compute F ′ = dF

dz as follows:

F ′
j = F ′

j−2 + �z

3

(
c j−2 + 4c j−1 + c j

)
, (46)

which is initiated with

F ′
1 = F ′

0 + �z

24
[9c0 + 19c1 − 5c2 + c3] . (47)

Once F ′ is known, the same marching algorithm, subject to the impermeability condition F0 = 0, is used
again to compute F .

The entire cycle described above is repeated until convergence is reached. The convergence criterion
adopted is given by

|G(k+1)
0 (z, t + �t) − G(k)

0 (z, t + �t)| < ε, |G(k+1)
n (z, t + �t) − G(k)

n (z, t + �t)| < ε,

and |g(k+1)
n (z, t + �t) − g(k)

n (z, t + �t)| < ε for n = 1, 2, . . . , N .

Here, the superscripts k, k + 1 refer to two successive iterates in the cyclic procedure, and ε is some
specified tolerance. To initiate the integration procedure, we use the solution at t = 0 given by �00 and ω00
which when expressed in terms of the Fourier coefficients becomes

G0(z, 0) = Gn(z, 0) = gn(z, 0) = 0,

F0(z, 0) = Fn(z, 0) = 0, f1(z, 0) = 2z, fn(z, 0) = 0 for n 	= 1,

where n = 1, 2, . . . , N .
Presented in the next section are analytical and numerical results along with various comparisons.

5 Results and comparisons

The flow is completely characterized by the Reynolds number, R, and the slip length, β. To confirm numerical
convergence, numerous numerical experiments were carried out with different grids and time steps. From these
experiments together with the information gained from our analytical solution, we have found the scheme to
be both flexible and robust; it requires no relaxation, can run with fairly large time steps, and can even allow
the number of terms in the Fourier series to vary during the course of the simulation. The analytical solution
reveals that few terms in the series are needed initially, but as time marches on more and more terms are
necessary. From our numerical experiments, the following typical values for the computational parameters
were used: z∞ = 8, N = 25, �z = 0.05, and ε = 10−6. We have decided to run the scheme in fully implicit
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Table 1 Comparison in CD between unsteady present and existing steady-state no-slip results for Reynolds numbers R =
20, 40, 100

R References CD

20 Present (unsteady, t = 25) 2.128
Dennis and Chang [19] (steady) 2.045
Fornberg [20] (steady) 2.000
D’Alessio and Dennis [21] (steady) 1.941

40 Present (unsteady, t = 25) 1.612
Dennis and Chang [19] (steady) 1.522
Fornberg [20] (steady) 1.498
D’Alessio and Dennis [21] (steady) 1.443

100 Present (unsteady, t = 25) 1.195
Dennis and Chang [19] (steady) 1.056
Fornberg [20] (steady) 1.058
D’Alessio and Dennis [21] (steady) 1.077

mode (� = 1). Running in Crank–Nicolson mode (� = 1/2) exhibited similar convergence characteristics;
however, it produced oscillations in the drag and lift coefficients for a brief time after start up, which is a
signature of the Crank–Nicolson scheme. Initial time steps of 10−4 were used for the first 10 advances. Then,
the next 10 time steps were proceeded with �t = 10−3 and continued after with �t = 0.01. At t = 1, the
time step was increased to �t = 0.05. No stability difficulties were encountered with the choice of grid and
parameters listed above.

Of particular importance is the determination of the drag and lift coefficients, CD and CL , respectively,
and their variation with time. The dimensionless drag and lift coefficients, obtained by integrating the pressure
and frictional stresses on the surface, were computed using the formulae

CD = 2

R

∫ 2π

0

(
∂ζ

∂ξ
− ζ

)
0
sin θdθ + β2

2(1 + β)2

∫ 2π

0
ζ 2
0 cos θdθ −

∫ 2π

0

(
∂v

∂t

)
0
sin θdθ,

CL = 2

R

∫ 2π

0

(
ζ − ∂ζ

∂ξ

)
0
cos θdθ + β2

2(1 + β)2

∫ 2π

0
ζ 2
0 sin θdθ +

∫ 2π

0

(
∂v

∂t

)
0
cos θdθ.

Derivations of these formulae are outlined in Part 2. We note that for the no-slip case only the first term in
these expressions survives, and since we are dealing with symmetric flow CL = 0. The numerical scheme was
first tested by setting β = 0 (i.e., no-slip) and comparing CD with those reported in previous studies [19–21].
As a checkCL was computed and found to be zero to within our tolerance ε. Shown in Table 1 are comparisons
in the drag coefficient for small Reynolds numbers with documented steady-state results. Since our simulation
is unsteady, time-stepping was carried out to t = 25, when the flow had settled down appreciably. With the
passage of time CD is expected to decrease slowly beyond t = 25, and this explains why the present values
are slightly larger than the steady-state results.

Next we compare the computed surface vorticity distribution against that predicted by the approximate
analytical solution. Using the analytical solution derived in Sect. 3 for the vorticity, the following expression
for the surface vorticity ζ(0, θ, t) can be obtained:

ζ(0, θ, t) ∼ 2(1 + β)

β

(
1 − λ(1 + β)√

πβ

)
sin θ.

Contrasted in Fig. 2 are surface vorticity distributions at times t = 0.1, 0.5, 1 for the case R = 1000 and
β = 0.5. These plots serve to illustrate how the agreement between the numerical and analytical solutions
is excellent for small times and worsens as time progresses. We see that the agreement is still reasonable at
t = 1, and at t = 0.1 the two solutions are indistinguishable. The general trend observed is that the agreement
improves as both R and β increase. As suggested by the analytical solution, the surface vorticity distribution
is sinusoidal for small times.

It is well established that for large Reynolds numbers the pressure contribution to CD,CL dominates over
the frictional component. An important measure of the pressure force is obtained from the dimensionless
pressure coefficient (derived in Part 2) given by

P∗(ξ = 0, θ, t) = P(0, θ, t) − P(0, 0, t) = 2

R

∫ θ

0

(
∂ζ

∂ξ

)
0
d θ̄ − β2

2(1 + β)2
ζ 2
0

∣∣θ
0 −

∫ θ

0

(
∂v

∂t

)
0
d θ̄ .
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Fig. 2 Numerical (solid line) and analytical (dashed line) surface vorticity distributions for R = 1000 and β = 0.5 at various
times
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Fig. 3 Numerical (solid line) and analytical (dashed line) pressure coefficient distributions for R = 1000 and β = 1 at various
times

The corresponding expression for the inviscid case is easily shown to be

P∗(0, θ) = cos(2θ) − 1.

Our approximate analytical solution yields the following expression for P∗:

P∗(0, θ, t) ∼ 2(1 + β)(2 + β)

β2R
(1 − cos θ) − 2

(
1 − λ(1 + β)√

πβ

)2

sin2 θ.

Displayed in Fig. 3 are comparisons between the numerical and analytical expressions for the case R =
1000, β = 1 at times t = 0.1, 0.5, 1. Although the inviscid solution is not drawn, it is clear that there is a
good agreement between the numerical, analytical, and inviscid solutions. We emphasize that as t increases
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Fig. 4 Streamline plots at t = 15 for R = 500 and β = 0, 0.1, 0.5, 1 from top to bottom, respectively

the departure between the viscous and inviscid solutions will become very significant due to boundary-layer
separation.

We next present results and streamline flow patterns for R = 500. While the numerical scheme described
earlier is well suited to capture the early-to-moderate stages of the flow field, for much larger times it will be
more appropriate to switch back to the original coordinates (ξ, θ) and solve the system given by (1)–(2) instead
of (10)–(11). In this investigation, we have decided to focus on the flow development for early-to-moderate
times, 0 < t ≤ 15. For this time interval, we can work entirely in terms of the boundary-layer coordinates
(z, θ). We begin by presenting streamline plots of the flow for R = 500 at t = 15 for various values of β as
shown in Fig. 4. It is evident from the plots that as β increases the flow becomes more and more streamlined.
This behavior is to be expected. We notice that the wake region behind the cylinder diminishes dramatically
with increasing β. In fact, for β = 1 we observe an almost symmetric flow about the y axis (in addition to
the symmetry about the x axis). As the flow becomes more streamlined, we anticipate a reduction in the drag
coefficient; this is precisely what we see in Fig. 5 which illustrates the time variation of CD . For convenience,
we have plotted the absolute value of CD (since CD will be negative due to the direction of the oncoming
flow) and suppressed the rapid reduction in |CD| from 0 < t < 0.1 (due to the impulsive start). From this
plot, we also notice that for β 	= 0 the drag coefficient appears to approach a steady-state value. Displayed in
Fig. 6 is the distribution of the surface pressure coefficient, P∗, which reveals that as β increases the pressure
difference between the front and rear stagnation points decreases. Since the pressure force forms the largest
component of the drag, this explains the reduction in drag. Lastly, we present the surface vorticity distribution
in Fig. 7 which shows that the distribution becomes more sinusoidal as β increases.

Figure 8 contrasts the development of the flow with time for R = 1000 with β = 0 and β = 1. The
instantaneous flow patterns indicate that a pair of counter-rotating vortices formed between t = 1 and t = 2
for the no-slip case. With time these vortices grow to create a large wake region behind the cylinder. On the
other hand, for the Navier-slip case there is no sign of vortex formation nor is there any evidence of shed
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Fig. 5 Time variation of CD for R = 500 and β = 0, 0.1, 0.5, 1
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Fig. 6 The distribution of P∗ at t = 15 for R = 500 and β = 0, 0.1, 0.5, 1
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Fig. 7 The surface vorticity distribution at t = 15 for R = 500 and β = 0, 0.1, 0.5, 1
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Fig. 8 Streamline plots for R = 1000 at t = 1, 2, 5, 10 from top to bottom, respectively, with β = 0 (left) and β = 1 (right)
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Fig. 9 Time variation of CD for R = 1000 and β = 0, 1

vortices. The associated time variation of the drag coefficient and distributions of the surface pressure and
vorticity is displayed in Figs. 9, 10, 11, respectively. These plots are very similar to the corresponding plots
previously presented for the case R = 500.

We lastly comment on the suppression of flow separation. As indicated in Fig. 4, the slip condition seems
to suppress the tendency for flow separation as β increases. This was investigated further by estimating the
critical value of β, denoted by βc, where flow separation is suppressed. Numerous numerical simulations were
performed to estimate βc over the time intervals considered for R = 100, 500, and 1000. The value of βc was
determined by applying the vanishing surface vorticity condition as follows. For a given Reynolds number
with β = 0, the separation angle, θs , was found by estimating where the surface vorticity changes sign. As β
increased θs also increased, and by incrementing β wewere able to estimate when θs = 180◦ which we defined
as βc. We discovered that for R = 100 the value of βc occurred in the interval 0.6 < βc < 0.65. This was
repeated for R = 500 and R = 1000, and βc was found to lie in the interval 0.7 < βc < 0.75 for both cases.
Thus, there appears to be little variation in βc with the Reynolds number over the range 100 ≤ R ≤ 1000.
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Fig. 10 The distribution of P∗ at t = 10 for R = 1000 and β = 0, 1
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Fig. 11 The surface vorticity distribution at t = 10 for R = 1000 and β = 0, 1

6 Conclusions

Considered in this paper is the unsteady two-dimensional laminar flow of a viscous incompressible fluid past
a circular cylinder subject to impermeability and Navier-slip surface conditions. To adequately model the
evolving early flow development and to sufficiently resolve the thin boundary layer, a transformation was
introduced. This boundary-layer type transformation incorporated the known early structure of the flow into
the equations of motion. A numerical technique involving both finite difference and spectral methods was
described and successfully implemented to compute the early-to-moderate stages of the flow following the
start of themotion formoderate-to-large Reynolds numbers. Also presentedwas an approximate series solution
expressed in powers of the time t and the parameter λ = √

8t/R. Excellent agreement was found between the
approximate and numerical solutions for small times and moderately large Reynolds numbers. Comparisons
with documented results for the no-slip case also revealed good agreement.

Various results including streamline plots, surface vorticity and pressure coefficient distributions, and
time variations in the drag coefficient were presented for Reynolds numbers 500 and 1000 and for small-
to-moderate times. The key finding is that a reduction in the drag coefficient results from the Navier-slip
condition when compared to the no-slip condition. This reduction increases as the slip length increases. Our
results are consistent with those made by previous investigations. The streamline plots for the no-slip case can
be characterized as having a large wake region containing a pair of counter-rotating vortices, while for the
Navier-slip case the streamline plots can be profoundly different depending on the value of β. For example,
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when β = 1 there is no apparent wake region forming behind the cylinder for small-to-moderate times for
R = 500 and R = 1000. That is, flow separation is suppressed. The critical value ofβ leading to the suppression
of flow separation was estimated for various Reynolds numbers and was found to remain fairly constant in the
range 100 ≤ R ≤ 1000. Also, the pressure difference between the front and rear stagnation points decreases
as β increases with β = 0 possessing the largest difference. Although the flow considered in Part 1 was
symmetric, Part 2 of this investigation will focus on asymmetric flow past an inclined elliptic cylinder.
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