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Abstract In this paper, we investigate the free vibration response of a rotating blade in a gas turbine engine.
The blade is modeled as a tapered Timoshenko beam with nonlinear variations in its cross-section properties.
The governing equations of motions are derived using Lagrangian mechanics and Rayleigh–Ritz method.
These equations take into account centrifugal stiffening, axial and lateral coupling due to Coriolis effect, shear
deformation, and rotary inertia. We examine the effect of the beam geometry upon its axial and lateral free
vibration response. The effects of rotational speed, taper ratio, chord ratio, hub radius, and slenderness ratio on
the natural frequencies are analyzed. The results of our analysis indicate that the taper ratio, slenderness ratio,
and rotational speed of the beam govern its free lateral vibration response. The axial vibration of the beam is
significantly affected by the slenderness ratio, but it is found to be independent of the hub radius.

List of symbols

A Cross-section area of the beam
Aa Coefficients for polynomial of the cross-section area
Ar Cross-section area of the beam at the hub
C Coriolis damping matrix
E Young’s modulus
Fcf Centrifugal force
G Shear modulus
I Area moment of inertia
Ia Coefficients for polynomial of the moment of inertia
Ir Moment of inertia of the beam at the hub
K Total stiffness matrix
Km Elastic property-dependent stiffness matrix
K� Rotational speed-dependent stiffness matrix
L Length of the beam
M Mass matrix
P Force vector
R Radius of the tip of the beam
T Kinetic energy of the beam
T Transformation matrix
U Total potential energy
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UW Work done by applied forces
Uγ Potential energy due to shear strain
Uε Potential energy due to axial strain
W,U, � Displacement component of shape functions
X, Y, Z Time-dependent generalized coordinates
c Chord length
cR Chord length at the tip
cr Chord length at the hub
c̄ Chord ratio(
êz, ês, êc

)
Rotating coordinate system

d Displacement field vector
h Thickness of the beam
hR Thickness of the beam at the tip
hr Thickness of the beam at the hub
h̄ Taper ratio
k Shear coefficient
m Mass of the beam
nA Index of order of polynomial for area
nI Index of order of polynomial for moment of inertia
r Radius of the hub of the beam
r Position vector of a typical point on the beam in stationary coordinate system
rr Position vector of a typical point on the beam in rotating coordinate system
r̄ Non-dimensional hub radius
s Span of the beam
u Axial displacement
v Velocity vector
w Lateral displacement
z Distance of a typical fiber of the beam on a given cross-section area along lateral direction
� Lagrangian
Ω Rotational speed
Ω̄ Non-dimensional rotational speed
β Stagger angle of the beam
γsz Shear strain
ε Linear strain tensor
εs Axial strain
θ Rotational angle Ωt
{ξ} Generalized coordinate
ρ Density
ϕ cross-section rotation
ωn Natural frequency (rad/s)
ω̄n Non-dimensional natural frequency

1 Introduction

Rotating blades are employed in several engineering applications of turbomachinery such as compressors and
turbines disk assemblies. The free vibration analysis of these blades is crucial to determine their dynamic
response and stability in operation. Traditionally, the natural frequencies of these blades are analyzed by
modeling blades as rotating cantilever beams. However, the presence of centrifugal stiffening, coupling of
axial and lateral displacements and non-uniform cross-section properties of the beams present challenges
to the derivation of an accurate analytical formulation. Therefore, a number of authors have attempted to
analyze the problem, with numerous simplifications in the geometry of the beam or in the definition of the
problem, or both. Both Euler–Bernoulli beam and Timoshenko beam have been used to model the problem.
Timoshenko beam theory takes into account rotary inertia and shear deformation and provides more accurate
results than Euler–Bernoulli beam theory. However, the available papers over-simplify the cross section of the
beam and ignore the axial vibration mode. A brief summary of the literature is presented below to support our
case.
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We will divide these articles into two main categories: Euler–Bernoulli beams where shear effects are
ignored and Timoshenko beams where the authors accounted for shear effects and rotary inertia. Examples of
the articles employing Euler–Bernoulli include the work of Hodges et al. [1], Wang et al. [2], Bazoune [3],
Zhou et al. [4], Ece et al. [5], and Mao et al. [6] who conducted the free vibration analysis of non-rotating
beams with linear and nonlinear cross-section variations. Kane et al. [7], Khulief [8], Naguleswaran [9], Yang
et al. [10], Banerjee et al. [11,12], Wang et al. [13], Ozgumus et al. [14], Attarnejad et al. [15], Firouz-abadi
et al. [16] and Lee et al. [17] analyzed the lateral vibration response of rotating beams with linear taper in
height and width under different boundary conditions. Vinod et al. [18] used the approximate spectral element
method for the free vibration analysis of beams of mass and stiffness variations. Fung et al. [19] studied the
effect of centrifugal force on the frequencies of a rotating arm with an end mass and axial force. Huang et
al. [20] used a power series solution to describe the lateral vibration of tapered beams with coupled axial and
lateral deformations. Liao et al. [21] performed the stability analysis of a pre-twisted beam rotating about its
longitudinal axis with axial forces of periodic fluctuations. Sarkar et al. [22] derived a closed form solution
for the free vibration of non-uniform beams for special cases of free–free boundary conditions.

A number of authors have modeled the blade as a Timoshenko beam [23], which unlike an Euler–Bernoulli
beam accounts for the effects of shear deformation and rotary inertia. Some of the important studies of
Timoshenko beams include the works of Lee et al. [24], Auciello et al. [25], Yuan et al. [26], Ozgumus et al.
[27], Zhou et al. [28], and Huang et al. [29] who performed the free vibration analysis of stationary tapered
beams. Abbas [30], Datta et al. [31], Ozgumus et al. [32,33], Zhu et al. [34], Lee et al. [35], Rajsekaran et
al. [36], and Chen et al. [37] presented the free lateral vibration analysis of rotating beams with linear taper
in both height and width. Lee et al. [38], Chen et al. [39] and Yardimoglu et al. [40] presented results on the
dynamic stability of a rotating pre-twisted beam under a constant axial force. Lin et al. [41] and Lee et al. [42]
analyzed the effect of Coriolis forces on the free vibration response of a rotating uniform beam. Ibrahim et al.
[43] used a unified beam theory for Euler–Bernoulli and Timoshenko beams to derive the free lateral vibration
response of square and circular tapered beams. Ghafarian et al. [44] derived a solution for elastically connected
rotating tapered beams. Yardimoglu et al. [45] used the finite element theory with coupled displacement field
for nonlinear tapered beams.

Our careful review of the literature indicates that the majority of the existing works deal with only linearly
tapered beams and considers the lateral vibration response of the blade. There are only a few articles which
include the effect of Coriolis coupling effects for uniform beams. To the best of the authors’ knowledge, no
research work currently exists that examines the free vibration response of a non-uniform Timoshenko beam
with nonlinear thickness variation and coupling of the axial and the lateral displacements that takes into account
rotary inertia and shear deformation. The present paper aims to fill that gap.

2 Governing equations of motion

The analytical formulation is derived for a blade assumed as a rotating Timoshenko beam fixed at the hub.
The beam is assumed to be of rectangular cross-section geometry with reduced thickness and/or chord (width)
from the hub to the tip, as shown in Fig. 1; noting that r is the inner radius of the beam, R is the outer radius of
the beam, and Ω is its rotational speed. The nonlinear variations in the cross-section area and second moment
of inertia are expressed as polynomial functions of span s of the beam, as presented by Eqs. (1) and (2),

A (s) =
nA∑

a=0

Aas
a, (1)

I (s) =
nI∑

a=0

Ias
a . (2)

These polynomials would allow the generalized modeling of the beam.
The centrifugal force at a general span s of the beam can be expressed as

Fcf (s) = ρΩ2
nA∑

a=0

Aa

(a + 1) (a + 2)

[
L(a+1) {(a + 1) R + r} − s(a+1) {(a + 2) r + (a + 1) s}

]
. (3)
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Fig. 1 A schematic of the rotating non-uniform cantilever beam considered in the study

The first derivative of the centrifugal force with respect to span s is given by

∂Fcf (s)

∂s
= −ρΩ2

nA∑

a=0

Aa (r + s) sa (4)

where L is the length of the beam with L = R − r .
Figure 2 shows a non-uniformTimoshenko beamwith a stagger angle β clamped at the hub. Two coordinate

systems are defined to facilitate the analytical formulation: (i) a stationary coordinate system (î, ĵ, k̂) with an
origin at the center of the rotor, as shown in Fig. 2a, and (ii) a rotating coordinate system

(
êz, ês, êc

)
with the

origin at the clamped end of the beam, as shown in Fig. 2b. The deformation at any point along the span of the
beam is defined in terms of the lateral displacement w, axial displacement u, and cross-section rotation ϕ in
a rotating coordinate system. These displacements are assumed to be functions of the span of the beam s and
the time t . The deformation in the chord direction (i.e., êc-coordinate in Fig. 2b) is assumed to be zero in this
analysis. The schematic diagram of a clamped Timoshenko beam in a centrifugal force field is shown in Fig. 3
with an axial displacement u, lateral displacement w, and cross-section rotation ϕ.

The displacement field d of a typical point on the beam at span s and distance z from the midplane in the
rotating coordinate system

(
êz, ês, êc

)
is defined as

d = {w, u − zϕ, 0}T . (5)

From Eq. (5), we can obtain the strain tensor ε as

ε = 1

2

(
∇d + ∇Td

)
=
⎡

⎣
0 1

2

(
w′ − ϕ

)
0

1
2

(
w′ − ϕ

) (
u′ − zϕ′) 0

0 0 0

⎤

⎦ . (6)

The strain tensor given by (6) shows that the axial strain εs and the shear strain γsz are:

εs = (u′ − zϕ′) , (7)

γsz = (w′ − ϕ
)
. (8)

Lagrangian principle is used to derive the governing equations of motion such that the Lagrangian � =
T −U . T and U are the kinetic energy and potential energy of the system, respectively. For the present case,
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Fig. 2 A schematic view of a blade modeled as a Timoshenko beam: a a blade fixed to a rotor as a beam, b a rotating coordinate
system, and c a typical cross section of a beam

the Lagrangian � is of the form � = �
(
t, s, xi , ẋi , x ′

i

)
where ẋi = dxi

dt and x ′
i = ∂xi

∂s . The resulting equations
of motion can be derived using the following equation:

d

dt

(
∂�

∂ ẋi

)
− ∂�

∂xi
+ d

ds

(
∂�

∂x ′
i

)
= 0 (9)

where xi corresponds to w, u, and ϕ in our system.
The potential energy of this elastic system can be defined as the summation of deformation energy and the

work done by the centrifugal force Fcf . Using Eq. (7), the potential energy due to the axial strain is

Uε = 1

2

∫
Eε2s dV = 1

2

∫
E
(
u′ − zϕ′)2 dV = E

2

L∫

0

Au′2ds + E

2

L∫

0

Iϕ′2ds. (10)



3360 P. A. Roy, S. A. Meguid

Fig. 3 Schematic diagram of a cantilever Timoshenko beam in a centrifugal force field: a axial u and lateral w displacements,
and b cross-section rotation ϕ

Using Eq. (8), the potential energy due to shear deformation can be written as

Uγ = 1

2

∫
kGγ 2

szdV = kG

2

L∫

0

A
(
w′ − ϕ

)2 ds (11)

where E is Young’s modulus and G is shear modulus of the beam material, respectively.
In Eqs. (10) and (11), the cross-section area A and the second area moment of inertia I are functions of

the beam span s.
The work done by the centrifugal force Fcf can be expressed as

UW = 1

2

L∫

0

Fcfw
′2ds. (12)

Noting that the centrifugal force Fcf is defined by Eq. (3), the total potential energy can be written as

U = Uε +Uγ +UW , (13)

U = E

2

L∫

0

Au′2ds + E

2

L∫

0

Iϕ′2ds + kG

2

L∫

0

A
(
w′ − ϕ

)2ds + 1

2

L∫

0

Fcfw
′2ds. (14)
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Now, the derivation of the kinetic energy T of the system is discussed. The position vector rr of a typical
point on the beam at span s and distance z from the midplane in the rotating coordinate system

(
êz, ês, êc

)
can

be defined as
rr = {w + z, s + u − zϕ, 0}T . (15)

The transformation matrix T used to convert the position vector from a rotating to stationary coordinate
systems (î, ĵ, k̂) is defined as

T =
⎡

⎢
⎣

cos θ cosβ − sin θ − cos θ sin β −r sin θ
sin θ cosβ cos θ − sin θ sin β r cos θ

sin β 0 cosβ 0
0 0 0 1

⎤

⎥
⎦ (16)

where θ is the rotational angle Ωt .

Using the transformation matrix T, the position vector r in a stationary coordinate system
(
î, ĵ, k̂

)
is

defined as

r =
⎧
⎨

⎩

(w + z) cos θ cosβ − (r + s + u − zϕ) sin θ

(w + z) sin θ cosβ + (r + s + u − zϕ) cos θ

(w + z) sin β

⎫
⎬

⎭
. (17)

Taking the derivative of the position vector rwith respect to time t , we get the velocity vector v of a typical
point of the beam as,

v =
⎧
⎨

⎩

[ẇ cosβ − (r + s + u − zϕ)Ω] cos θ − [(u̇ − zϕ̇) + (w + z)Ω cosβ] sin θ

[ẇ cosβ − (r + s + u − zϕ)Ω] sin θ + [(u̇ − zϕ̇) + (w + z)Ω cosβ] cos θ
ẇ sin β

⎫
⎬

⎭
. (18)

This velocity vector v gives the resultant velocity which accounts for deformation and rigid body rotation
Ω . The kinetic energy of the beam at time t is calculated using

T =
∫

1

2
m (v · v) dV = ρ

2

L∫

0

A (v · v) ds, (19)

T = ρ

2

L∫

0

A

⎡

⎣
((ẇ cosβ − (r + s + u − zϕ)Ω) cos θ − ((u̇ − zϕ̇) + (w + z)Ω cosβ) sin θ)2

+ ((ẇ cosβ − (r + s + u − zϕ)Ω) sin θ + ((u̇ − zϕ̇) + (w + z)Ω cosβ) cos θ)2

+ (ẇ sin β)2

⎤

⎦ ds.

(20)

Substituting the kinetic energy (Eq. (20)) and the potential energy (Eq. (14)) expressions in the Lagrangian
� and solving for the variables w, u, and ϕ gives the following three equations of motion in terms of w, u and
ϕ:

ρA
∂2w

∂t2
− 2ρAΩ cosβ

∂u

∂t
− kG

(
A

∂2w

∂s2
+ ∂A

∂s

∂w

∂s

)
+ kG

(
A

∂ϕ

∂s
+ ϕ

∂A

∂s

)

−
(
Fcf

∂2w

∂s2
+ ∂Fcf

∂s

∂w

∂s

)
− ρAΩ2 cos2 βw = 0, (21)

ρA
∂2u

∂t2
+ 2ρAΩ cosβ

∂w

∂t
− E

(
A

∂2u

∂s2
+ ∂A

∂s

∂u

∂s

)
− ρAΩ2u = ρA (r + s)Ω2, (22)

ρ I
∂2ϕ

∂t2
− E

(
I
∂2ϕ

∂s2
+ ∂ I

∂s

∂ϕ

∂s

)
− ρ IΩ2ϕ − kGA

(
∂w

∂s
− ϕ

)
= 0. (23)

The geometric and natural boundary conditions for the beam can be stated as follows:
The geometric boundary conditions at span s = 0:

w (0, t) = 0, u (0, t) = 0, ϕ (0, t) = 0. (24)
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The natural boundary conditions at span s = L:
Shear force:

k AG

(
∂w

∂s
− ϕ

)
= 0; (25)

Axial force:

E A
∂u

∂s
= 0; (26)

Bending moment:

E I
∂ϕ

∂s
= 0; (27)

The equations of motion (Eqs. (21)–(23)) are highly nonlinear and coupled. We use the Rayleigh–Ritz
method with assumed shape functions to derive the natural frequencies and mode shapes. The assumed shape
functions are defined in Eqs. (28)–(30) as follows:

w (s, t) =
n∑

j=1

Wj (s) X j (t)whereWj (s) = 1 − cos
(
α j s
)

α j
, (28)

u (s, t) =
n∑

j=1

Uj (s) Y j (t)whereUj (s) = sin
(
α j s
)

α j
, (29)

ϕ (s, t) =
n∑

j=1

� j (s) Z j (t)where� j (s) = sin
(
α j s
)
, (30)

and where α j = (2 j−1)π
2L

These shape functions satisfy the geometric boundary conditions, and the natural boundary conditions are
added as force terms in the equations of motion. The variable n is an integer that dictates the number of terms
to be used to approximate these functions. The value of the variable n is chosen to be 10 to calculate the first
10 natural frequencies of the beam in each coordinate of w, u, and ϕ. Applying the Rayleigh–Ritz method to
the equations of motion with the assumed shape functions gives the following equations:

∑n
j=1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

ρ
(∑nA

a=0 Aa
∫ L
0 saWiW jds

)
Ẍ j − 2ρΩ cosβ

(∑nA
a=0 Aa

∫ L
0 saWiU jds

)
Ẏ j

− kG
(∑nA

a=0 Aa
∫ L
0 saWiW ′′

j ds
)
X j + kG

(∑nA
a=0 AaLa

)
Wi (L)W ′

j (L)X j

− kG
(∑nA

a=0 aAa
∫ L
0 sa−1WiW ′

jds
)
X j

− ρΩ2
(∑nA

a=0
Aa

(a+1)(a+2)

[
La+1 {(a + 1) R + r}]

) (∫ L
0 WiW ′′

j ds
)
X j

+ ρΩ2
(∑nA

a=0
Aar

(a+1)

∫ L
0 sa+1WiWjds

)
X j + ρΩ2

(∑nA
a=0

Aa
(a+2)

∫ L
0 sa+2WiWjds

)
X j

+ ρΩ2
(∑nA

a=0 Aar
∫ L
0 saWiW ′

jds
)
X j + ρΩ2

(∑nA
a=0 Aa

∫ L
0 sa+1WiW ′

jds
)
X j

− ρΩ2 cos2 β
(∑nA

a=0 Aa
∫ L
0 saWiW jds

)
X j + kG

(∑nA
a=0 Aa

∫ L
0 saWi�

′
jds
)
Z j

+ kG
(∑nA

a=0 aAa
∫ L
0 sa−1Wi� jds

)
Z j − kG

(∑nA
a=0 AaLa

)
Wi (L)� j (L)Z j

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

= 0,

(31)

∑n
j=1

⎡

⎢⎢⎢⎢
⎣

ρ
(∑nA

a=0

∫ L
0 AasaUiU jds

)
Ÿ j + 2ρΩ cosβ

(∑nA
a=0 Aa

∫ L
0 saUiW jds

)
Ẋ j

−E
(∑nA

a=0 Aa
∫ L
0 saUiU ′′

j ds
)
Y j − E

(∑nA
a=0 aAa

∫ L
0 sa−1UiU ′

jds
)
Y j

−ρΩ2
(∑nA

a=0 Aa
∫ L
0 saUiU jds

)
Y j + E

(∑nA
a=0 AaLa

)
Ui (L)U ′

j (L)Y j

⎤

⎥⎥⎥⎥
⎦

= ρrΩ2
(∑nA

a=0 Aa
∫ L
0 saUids

)
+ ρΩ2

(∑nA
a=0 Aa

∫ L
0 sa+1Uids

)
,

(32)
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∑n
j=1

⎡

⎢
⎢
⎢
⎣

ρ
(∑nI

a=0 Ia
∫ L
0 sa�i� jds

)
Z̈ j − E

(∑nI
a=0 Ia

∫ L
0 sa�i�

′′
jds
)
Z j −E

(∑nI
a=0 aIa

∫ L
0 sa−1�i�

′
jds
)
Z j

− ρΩ2
(∑nI

a=0 Ia
∫ L
0 sa�i� jds

)
Z j − kG

(∑nA
a=0 Aa

∫ L
0 sa�iW ′

jds
)
X j

+kG
(∑nA

a=0 Aa
∫ L
0 sa�i� jds

)
Z j

⎤

⎥
⎥
⎥
⎦

= 0.

(33)

These equations can be presented in matrix form as follows:

M
{
ξ̈
}+ C

{
ξ̇
}+ K {ξ} = {P} (34)

where M, C, and K are the respective mass, Coriolis damping, and stiffness matrices of size 3n × 3n. {P} is
a force vector of size 3n, and {ξ} is a generalized coordinate vector of size 3n composed of X j , Y j , and Z j
such that {ξ j } = X j , {ξ j+n} = Y j and {ξ j+2n} = Z j . For the purpose of free vibration analysis, the above
equation can be written as

M
{
ξ̈
}+ C

{
ξ̇
}+ (Km + KΩ

) {ξ} = {0} (35)

where Km and K� is the elastic property-dependent and the rotational speed-dependent stiffness matrix,
respectively.

Equation (35) is solved for eigenvalues to derive the natural frequencies of the beam.
The elements ofM, C, Km, and K� are presented in Eqs. (36)–(48) below:

[
Mi, j

] = ρ

⎛

⎝
nA∑

a=0

Aa

L∫

0

saWiW jds

⎞

⎠ , (36)

[
Mi+n, j+n

] = ρ

⎛

⎝
nA∑

a=0

Aa

L∫

0

saUiU jds

⎞

⎠ , (37)

[
Mi+2n, j+2n

] = ρ

⎛

⎝
nI∑

a=0

Ia

L∫

0

sa�i� jds

⎞

⎠ , (38)

[
Ci, j+n

] = − 2ρΩ cosβ

⎛

⎝
nA∑

a=0

Aa

L∫

0

saWiU jds

⎞

⎠ , (39)

[
Ci+n, j

] = 2ρΩ cosβ

⎛

⎝
nA∑

a=0

Aa

L∫

0

saUiW jds

⎞

⎠ , (40)

[
Km
i, j

]
= − kG

⎡

⎣

⎛

⎝
nA∑

a=0

Aa

L∫

0

saWiW
′′
j ds

⎞

⎠+
⎛

⎝
nA∑

a=0

aAa

L∫

0

sa−1WiW
′
jds

⎞

⎠

−
( nA∑

a=0

AaL
a

)

Wi (L)W ′
j (L)

]

, (41)

[
Km
i+n, j+n

]
= −E

⎡

⎣

⎛

⎝
nA∑

a=0

Aa

L∫

0

saUiU
′′
j ds

⎞

⎠+
⎛

⎝
nA∑

a=0

aAa

L∫

0

sa−1UiU
′
jds

⎞

⎠

−
( nA∑

a=0

AaL
a

)

Ui (L)U ′
j (L)

]

, (42)

[
Km
i+2n, j+2n

]
= kG

⎛

⎝
nA∑

a=0

Aa

L∫

0

sa�i� jds

⎞

⎠− E

⎡

⎣

⎛

⎝
nI∑

a=0

Ia

L∫

0

sa�i�
′′
jds

⎞

⎠
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+
⎛

⎝
nI∑

a=0

aIa

L∫

0

sa−1�i�
′
jds

⎞

⎠

⎤

⎦ , (43)

[
Km
i, j+2n

]
= kG

⎡

⎣

⎛

⎝
nA∑

a=0

Aa

L∫

0

saWi�
′
jds

⎞

⎠+
⎛

⎝
nA∑

a=0

aAa

L∫

0

sa−1Wi� jds

⎞

⎠

−
( nA∑

a=0

AaL
a

)

Wi (L)� j (L)

]

, (44)

[
Km
i+2n, j

]
= − kG

⎛

⎝
nA∑

a=0

Aa

L∫

0

sa�iW
′
jds

⎞

⎠ , (45)

[
KΩ
i, j

]
= − ρΩ2

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

(∑nA
a=0

Aa
(a+1)(a+2)

[
La+1 {(a + 1) R + r}]

) (∫ L
0 WiW ′′

j ds
)

−
(∑nA

a=0
Aar

(a+1)

∫ L
0 sa+1WiW ′′

j ds
)

−
(∑nA

a=0
Aa

(a+2)

∫ L
0 sa+2WiW ′′

j ds
)

−
(∑nA

a=0 Aar
∫ L
0 saWiW ′

jds
)

−
(∑nA

a=0 Aa
∫ L
0 sa+1WiW ′

jds
)

+ cos2 β
(∑nA

a=0 Aa
∫ L
0 saWiW jds

)

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

, (46)

[
KΩ
i+n, j+n

]
= − ρΩ2

⎛

⎝
nA∑

a=0

Aa

L∫

0

saUiU jds

⎞

⎠ , (47)

[
KΩ
i+2n, j+2n

]
= − ρΩ2

⎛

⎝
nI∑

a=0

Ia

L∫

0

sa�i� jds

⎞

⎠ . (48)

3 Results and discussion

The above analytical model is used to analyze the effect of hub radius, taper ratio, slenderness ratio, chord
ratio, and rotational speed on the lateral and axial natural frequencies of the beam. A typical gas turbine engine
(GTE) blade made of Ti6Al4V is considered for the purpose of the analysis. The relevant parameters of the
beam are presented in Table 1.

The non-dimensional parameters used to define the beam properties are presented in Table 2, where hR
and hr are thickness of the beam at the tip and hub, respectively, as shown in Fig. 4. The chord length (width)
of the beam at the tip and hub are cR and cr , respectively. The cross-section area of the beam at the hub, second
moment of inertia of the beam at the hub, and natural frequency in rad/s are Ar , Ir , and ωn , respectively.

The following Sections present results for the two cases of tapered beams: (i) linearly tapered beams and
(ii) exponentially tapered beams. The linear variations in the thickness and chord length (width) of the beams
can be defined by Eqs. (49) and (50), respectively,

h (s) = hr
(
1 − h̄

)
, (49)

Table 1 Geometric and material properties of the beam

Density, ρ 4466 kg/m3

Young’s modulus, E 117 GPa
Poisson’s ratio, ν 0.3
Shear coefficient, k 0.833
Length of the beam, L 1 m
Chord length at the hub, cr 0.25 m
Stagger angle, β 0◦
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Table 2 Non-dimensional parameters of the beam

Non-dimensional hub radius, r̄ r
L

Taper ratio, h̄ 1 − hR
hr

Chord ratio, c̄ 1 − cR
cr

Slenderness ratio, d̄
√

Ir
Ar L2

Non-dimensional rotational speed, Ω̄ Ω
(

ρAr L4

E Ir

)

Non-dimensional natural frequency, ω̄n ωn

(
ρAr L4

E Ir

)

Fig. 4 Representation of thickness and chord length (width) of the beam at the hub and tip

c (s) = cr (1 − c̄) . (50)

where h (s) and c (s) are the thickness and chord length of the beam at span s.
The exponential variations in the thickness and chord length (width) of beams can be defined by Eqs. (51)

and (52), respectively,

h (s) = hre
ln(1−h̄) s

L , (51)

c (s) = cr e
ln(1−c̄) s

L . (52)

The resulting variations in the cross-section area and moment of inertia are converted in the polynomial
form as defined in Eqs. (1) and (2), to allow their use in the analytical formulation. The presented formulation
is programmed using C++ to derive the solution for the free vibration response. Some of the important results
are presented below.

3.1 Effect of Coriolis coupling

The coupling of axial and lateral displacement due to the Coriolis effect can be identified by the terms
−2ρAΩ cosβ ∂u

∂t and +2ρAΩ cosβ ∂w
∂t in the equations of motion (Eqs. (21)–(23)). These terms appear as a

skew-symmetric damping matrix C in the matrix form of the equations of motion (Eq. (35)). In this Section,
the results of natural frequencies derived from Eq. (35) are compared with the case where the Coriolis damping
matrix C is ignored. The comparison of the results for both linearly and exponentially tapered beams at rota-
tional speed Ω̄ = 2, 6 and 10 is shown in Tables 3 and 4, respectively. The other parameters of the beam are kept
constant at r̄ = 0.5, h̄ = 0.5, c̄ = 0, and d̄ = 0.025. Coriolis coupling has an insignificant effect on both axial
and lateral natural frequencies. The first natural frequencies show a maximum difference of about 4% for Ω̄ =
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Table 3 Lateral and axial natural frequencies of a linearly tapered beam with and without Coriolis coupling (r̄ = 0.5, h̄ = 0.5,
c̄ = 0 and d̄ = 0.025)

Ω̄ Lateral natural frequency Axial natural frequency

2 6 10 2 6 10

With
coupling

Without
coupling

With
coupling

Without
coupling

With
coupling

Without
coupling

With
coupling

Without
coupling

With
coupling

Without
coupling

With
coupling

Without
coupling

ω̄1 4.333 4.339 7.050 7.144 10.105 10.488 71.844 71.733 72.523 71.509 73.916 71.061
ω̄2 18.812 18.818 24.891 24.953 33.748 33.968 192.116 192.072 192.356 191.989 192.909 191.823
ω̄3 45.908 45.914 53.145 53.198 65.021 65.210 316.382 316.352 316.522 316.302 316.857 316.201
ω̄4 83.994 83.997 92.073 92.110 106.177 106.308 441.419 441.400 441.533 441.364 441.777 441.292
ω̄5 131.162 131.166 139.907 139.947 155.727 155.855 566.732 566.717 566.820 566.689 567.005 566.633

Table 4 Lateral and axial natural frequencies of an exponentially tapered beam with and without Coriolis coupling (r̄ = 0.5,h̄ =
0.5, c̄ = 0 and d̄ = 0.025)

Ω̄ Lateral natural frequency Axial natural frequency

2 6 10 2 6 10

With
coupling

Without
coupling

With
coupling

Without
coupling

With
coupling

Without
coupling

With
coupling

Without
coupling

With
coupling

Without
coupling

With
coupling

Without
coupling

ω̄1 4.239 4.245 7.017 7.110 10.091 10.472 72.020 71.909 72.695 71.687 74.080 71.239
ω̄2 18.150 18.156 24.470 24.530 33.527 33.743 191.923 191.880 192.217 191.796 152.496 152.621
ω̄3 44.290 44.295 51.833 51.884 64.066 64.247 316.239 316.212 316.058 316.162 316.712 316.060
ω̄4 81.172 81.175 89.591 89.627 104.162 104.291 441.313 441.295 441.427 441.258 441.668 441.186
ω̄5 127.042 127.047 136.139 136.177 192.713 191.630 566.648 566.634 566.737 566.606 566.922 566.550

10, and all other natural frequencies show a variation of less than 1%. However, for the sake of completeness,
all the results presented after here take into account the effect of coupling due to the damping matrix C.

3.2 Validation of the model

The validity of the present analytical model is ascertained by comparing the natural frequencies of a much
simplified case involving a linearly tapered beam with the results from finite element analysis using the com-
mercial code ANSYS. The finite element model uses tapered beam elements whose motion is restricted in the
XY plane only and subjected to rotational speed about the Z axis as shown in Fig. 5. The beam is assumed
to have hub radius r̄ = 0.5, chord ratio c̄ = 0.5, slenderness ratio d̄ = 0.025, and non-dimensional rotational
speed Ω̄ = 5. The first five computed natural frequencies are compared for linearly tapered beams with taper
ratio h̄ = 0.4 and 0.8, and presented in Table 5. The results are found to be in good agreement with each other.

Commercial FE codes have only the linearly tapered Timoshenko beam formulation and do not allow direct
modeling of an exponential taper in the beams. However, for the purpose of validation, the nonlinear exponen-
tially tapered beam geometry is modeled by approximating it as a number of linearly tapered beams in ANSYS.
The first five computed natural frequencies are compared for taper ratio h̄ = 0.4 and 0.8 and presented in
Table 6. The results are found to be in good agreement, except that the higher-order lateral natural frequencies
for h̄ = 0.8 show a difference of about 8%. This is due to the approximation of the nonlinear tapered beam by a
number of linearly tapered beams in theFEmodel. These results also highlight the advantages of the present ana-
lytical model over commercial FE codes in accurately accounting for the nonlinearities in the beam geometry.

3.3 Effect of taper ratio and rotational speed

In this Section, the effects of the taper ratio h̄ and the rotational speed Ω̄ on the free vibration response of
linearly and exponentially tapered beams are presented. The other parameters of the beam are kept constant
at r̄ = 0.5, c̄ = 0, and d̄ = 0.025. Figures 6 and 7 depict the variation in lateral natural frequencies for
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Fig. 5 Finite element model of a rotating tapered beam

Table 5 Lateral and axial natural frequencies of a linearly tapered beam (r̄ = 0.5, c̄ = 0.5, d̄ = 0.025 and Ω̄ = 5)

h̄ Lateral natural frequency Axial natural frequency

0.4 0.8 0.4 0.8

Present FEM Present FEM Present FEM Present FEM

ω̄1 6.829 6.880 7.557 7.600 79.186 78.849 92.469 92.186
ω̄2 24.304 24.219 21.165 21.182 195.411 195.778 205.057 205.279
ω̄3 54.227 53.615 42.137 42.100 318.427 319.266 325.200 325.817
ω̄4 95.635 94.032 71.359 71.160 442.905 444.159 427.873 448.967
ω̄5 146.250 143.390 108.275 107.756 567.892 569.543 572.005 569.151

linearly and exponentially tapered beams, respectively. The first lateral natural frequency shows an increasing
trend with the increase in h̄, whereas the other four frequencies show reducing trends. The effect of the taper
ratio h̄ is more significant for the higher-order lateral natural frequencies. For example, for a linearly tapered
beam with Ω̄ = 5, the first natural frequency increases by 16%, and the fifth natural frequency decreases by
36% with the change in h̄ from 0 to 0.8. The rotational speed Ω̄ also has a significant effect on the lateral
natural frequencies of the beam. However, the effect of rotational speed Ω̄ is less significant for higher-order
frequencies, as shown in Figs. 6 and 7. For a linearly tapered beam with h̄ = 0.4, the first natural frequency
increases by 2.8 times, but the fifth natural frequency increases by 1.2 with a change in Ω̄ from 0 to 10.

The results of lateral vibrations of linearly and exponentially tapered beams for Ω̄ = 10 are compared in
Fig. 8 to show the effect of nonlinearities in the cross sectionon thenatural frequencies. If curve-fit lines are used,
the variations in lateral natural frequencies for the linearly tapered beam can be identified by a second-order
polynomial. Because of highly nonlinear cross-section properties of an exponentially tapered beam, it requires a
fourth-order polynomial to accurately represent the results. Furthermore, the difference in their results increases
with increase in h̄ with 12% difference between linearly and exponentially tapered beams with h̄ = 0.8 .

Table 7 shows the axial natural frequency results with a change in h̄ and Ω̄ . All axial natural frequencies
are found to be increasing with the increase in h̄. However, the effect of the taper ratio h̄ becomes less signif-
icant for higher-order frequencies. The rotational speed Ω̄ has a little effect on the axial natural frequencies.
Changing Ω̄ from 0 to 5 changes the first axial natural frequency by 0.3% for both linearly and exponentially
tapered beams with h̄ = 0.4.
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Table 6 Lateral and axial natural frequencies of an exponentially tapered beam (r̄ = 0.5, c̄ = 0.5, d̄ = 0.025 and Ω̄ = 5)

h̄ Lateral natural frequency Axial natural frequency

0.4 0.8 0.4 0.8

Present FEM Present FEM Present FEM Present FEM

ω̄1 6.806 6.856 7.264 7.302 79.461 79.124 92.469 95.397
ω̄2 23.919 23.932 19.079 19.197 195.135 195.503 205.057 203.201
ω̄3 52.891 52.795 34.492 36.734 318.218 319.060 325.200 323.209
ω̄4 93.029 92.569 56.418 61.050 442.746 444.002 427.873 446.323
ω̄5 142.276 141.249 85.946 91.955 567.767 569.445 572.005 570.552

Fig. 6 Variation of lateral natural frequencies with taper ratio and rotational speed for linearly tapered beams (r̄ = 0.5, c̄ = 0
and d̄ = 0.025)

3.4 Effect of chord ratio

In this Section, we examine the effect of the chord ratio c̄ on the free vibration of linearly and exponentially
tapered beams with the following parameters being kept constant: r̄ = 0.5, h̄ = 0.5 d̄ = 0.025, and Ω̄ = 5.
The variations of the lateral and the axial natural frequencieswith c̄ are presented in Tables 8 and 9, respectively.
Both, the lateral and the axial natural frequencies, increase with the increase in c̄. The first natural frequency
is significantly affected by c̄, but the effect of c̄ reduces for the higher-order natural frequencies. For example,
the first lateral natural frequency changes by 24% for a change in c̄ from 0 to 0.8. However, the fifth lateral
natural frequency changes by a mere 0.6%.

3.5 Effect of hub radius

In this case, we changed the hub radius r̄ and kept the length of the beam constant at 1 m such that r̄ would
vary from 0 to 1. For this analysis, the other non-dimensional parameters were kept constant at h̄ = 0.5, c̄ = 0,
d̄ = 0.025, and Ω̄ = 5. The results of the first five lateral natural frequencies are presented in Table 10. The
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Fig. 7 Variation of lateral natural frequencies with taper ratio and rotational speed for exponentially tapered beams (r̄ = 0.5,
c̄ = 0 and d̄ = 0.025)

Fig. 8 Comparison of fifth lateral natural frequency results of linearly and exponentially tapered beams (r̄ = 0.5, c̄ = 0, d̄ = 0.025
and Ω̄ = 10)

lateral natural frequencies are found to increase with an increase in r̄ . However, the effect of r̄ reduces for the
higher-order frequencies. For example, for a linearly tapered beam, the first natural frequency increases by 73%
with an increase in r̄ from0 to 1, but the increase in thefifth natural frequency is only 4%.Thevalues of the lateral
natural frequencies are found to be close to each other for linearly and exponentially tapered beams for h̄ = 0.5.

Table 11 shows results of the first five axial natural frequencies for both linearly and exponentially
tapered beams. All natural frequencies are found to have very small variations with the change in r̄ . These
results are due to the fact that the corresponding terms relating to axial motion in the stiffness matrix
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Table 7 Variation of axial natural frequencies with taper ratio and rotational speed (r̄ = 0.5, c̄ = 0, and d̄ = 0.025)

h̄ Linearly tapered beam Exponentially tapered beam

ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄1 ω̄2 ω̄3 ω̄4 ω̄5

Ω̄ = 0
0 62.832 188.496 314.159 439.822 565.486 62.832 188.496 314.159 439.822 565.486
0.2 65.697 189.497 314.763 440.254 565.823 65.703 189.490 314.758 440.251 565.821
0.4 69.421 190.990 315.676 440.912 566.336 69.489 190.912 315.620 440.870 566.302
0.6 74.560 193.594 317.332 442.116 567.280 74.982 193.169 317.004 441.865 567.079
0.8 82.356 199.452 321.536 445.330 569.866 84.759 197.689 319.807 443.889 568.660

Ω̄ = 5
0 63.502 188.708 314.283 439.903 565.563 63.502 188.708 314.283 439.903 565.563
0.2 66.283 189.703 314.885 440.355 565.893 66.288 189.696 314.880 440.349 565.891
0.4 69.969 191.190 315.795 441.000 566.404 70.036 191.110 315.738 440.959 566.371
0.6 75.063 193.796 317.458 442.201 567.349 75.473 193.369 317.128 441.958 567.147
0.8 82.822 199.628 321.653 445.420 569.934 85.204 197.887 319.931 443.978 568.730

Table 8 Variation of lateral natural frequencies with chord ratio (r̄ = 0.5, h̄ = 0.5, d̄ = 0.025, and Ω̄ = 5)

c̄ Linearly tapered beam Exponentially tapered beam

ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄1 ω̄2 ω̄3 ω̄4 ω̄5

0 6.293 22.993 50.786 89.391 136.973 6.251 22.511 49.384 86.802 133.093
0.2 6.497 23.135 50.866 89.398 136.914 6.447 22.636 49.447 86.792 133.012
0.4 6.770 23.339 51.010 89.470 136.908 6.716 22.835 49.573 86.834 132.966
0.6 7.175 23.692 51.318 89.717 137.063 7.130 23.174 49.834 87.011 132.996
0.8 7.849 24.505 52.210 90.532 137.859 7.928 23.922 50.453 87.341 133.114

Table 9 Variation of axial natural frequencies with chord ratio (r̄ = 0.5 h̄ = 0.5, d̄ = 0.025, and Ω̄ = 5)

c̄ Linearly tapered beam Exponentially tapered beam

ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄1 ω̄2 ω̄3 ω̄4 ω̄5

0 72.288 192.136 316.462 441.493 566.790 72.463 192.100 316.361 441.387 566.7061
0.2 75.296 193.598 317.243 442.065 567.235 75.484 193.376 317.142 441.953 567.147
0.4 79.183 195.427 318.358 442.903 567.892 79.456 195.149 318.236 442.745 567.767
0.6 84.498 198.498 320.483 444.371 569.047 85.175 197.890 319.938 443.976 568.730
0.8 92.509 205.028 325.215 448.038 572.005 87.341 203.230 323.235 446.338 570.566

Table 10 Variation of lateral natural frequencies with hub radius (h̄ = 0.5, c̄ = 0, d̄ = 0.025, and Ω̄ = 5)

r̄ Linearly tapered beam Exponentially tapered beam

ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄1 ω̄2 ω̄3 ω̄4 ω̄5

0 4.445 20.876 48.371 86.711 134.066 4.384 20.324 46.879 84.022 130.084
0.2 5.264 21.749 49.353 87.794 135.238 5.213 21.227 47.899 85.147 131.297
0.4 5.971 22.586 50.313 88.862 136.398 5.926 22.091 48.895 86.254 132.497
0.6 6.599 23.393 51.254 89.916 137.546 6.559 22.922 49.869 87.345 133.686
0.8 7.173 24.170 52.175 90.954 138.683 7.135 23.721 50.821 88.422 134.860
1 7.702 24.923 53.079 91.980 139.809 7.667 24.493 51.755 89.483 136.025

−ρΩ2
(∑nA

a=0 Aa
∫ L
0 saUiU jds

)
(in Eq. (31)) are independent of the hub radius r. The small variations

are observed only due to coupling of the lateral and axial displacements due to the Coriolis effect.

3.6 Effect of slenderness ratio

Contrary to the effect of other parameters, the slenderness ratio d̄ plays a dramatic role for the axial natural
frequencies of the beam, as depicted in Fig. 9. All five axial natural frequencies show a decrease of 10 times for
a change in d̄ from 0.005 to 0.05. The lateral natural frequencies show a decreasing trend with the increase in
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Table 11 Variation of axial natural frequencies with hub radius (h̄ = 0.5, c̄ = 0, d̄ = 0.025 and Ω̄ = 5)

r̄ Linearly tapered beam Exponentially tapered beam

ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄1 ω̄2 ω̄3 ω̄4 ω̄5

0 72.284 192.297 316.241 441.493 566.789 72.457 192.095 316.351 441.386 566.706
0.2 72.285 192.307 316.434 441.493 566.789 72.459 192.097 316.353 441.386 566.706
0.4 72.288 192.360 316.456 441.493 566.790 72.461 192.099 316.358 441.387 566.706
0.6 72.289 192.232 316.465 441.493 566.790 72.463 192.102 316.367 441.387 566.706
0.8 72.291 192.263 316.470 441.494 566.790 72.465 192.106 316.390 441.387 566.706
1 72.293 192.272 316.472 441.494 566.790 72.467 192.117 316.581 441.388 566.707

Fig. 9 Variation of a lateral and b axial natural frequencies of linearly tapered beams, and c lateral and d axial natural frequencies
of exponentially tapered beams with slenderness ratio (h̄ = 0.5, c̄ = 0, r̄ = 0.5 and Ω̄ = 5)

d̄ . However, the effect is not as severe as observed in the axial vibration case. The first lateral natural frequency
for exponentially tapered beams shows a change of 2% with the change in d̄ from 0.005 to 0.05. However, the
fifth lateral natural frequency shows a significant change of 27%.

4 Conclusions

This paper considers the free vibration response of a rotating Timoshenko beam with nonlinear variations in
the cross-section properties, taking into account the coupling between the axial and the lateral displacements,
shear deformation, rotary inertia, and change in stiffness due to rotational speed. The governing equations of
motion are derived using Lagrangian mechanics. These equations are solved using the Rayleigh–Ritz method
leading to the axial and lateral natural frequencies of the beam. A parametric study is performed to analyze
the effect of hub radius, chord ratio, taper ratio, slenderness ratio, and rotational speed on the free vibration of
the beam. Given below is a summary of our findings:
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(i) The first lateral natural frequency increases with the increase in the taper ratio, while the other lateral
natural frequencies exhibit a decreasing trend. All axial natural frequencies increase with the increase
in the taper ratio.

(ii) The rotational speed plays a significant role for the lateral vibration modes and results in an increase in
the lateral frequencies. However, it plays an insignificant role for the axial natural frequencies.

(iii) The lateral natural frequencies increase with the increase in the hub radius and chord ratio. However, the
axial natural frequencies are found to be independent of the hub radius.

(iv) Both lateral and axial natural frequencies decreasewith the increase in the slenderness ratio. The axial nat-
ural frequencies show a significant decrease by an order of magnitude with the increase in the taper ratio.
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