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Abstract The work in this paper is based on a non-classical continuum theory in the Lagrangian description
for thermoviscoelastic solids without memory in which the conservation and balance laws are derived by
incorporating internal rotations (iΘΘΘ) arising from the Jacobian of deformation (JJJ), as well as Cosserat rotations
(eΘΘΘ) at amaterial point. Such non-classical solids have additional energy storage due to rotations and additional
dissipation due to rotation rates compared to classical continuum theories. Rotations iΘΘΘ are completely defined
by JJJ , whereas displacements uuu and Cosserat rotations eΘΘΘ are degrees of freedom at each material point. When
iΘΘΘ and eΘΘΘ are resisted by the deforming matter, conjugate moments arise, which together with (iΘΘΘ, eΘΘΘ)

and (i
.

ΘΘΘ, e
.

ΘΘΘ) result in additional work and rate of work. This paper utilizes thermodynamic framework for
non-classical solids derived based on internal as well as Cosserat rotations and presents a thermodynamically
consistent derivation of the constitutive theories that incorporate the aforementioned deformation physics. The
constitutive theories are derived using the conditions resulting from the entropy inequality in conjunction with
the representation theorem.

1 Literature review and scope of work

The Cosserat theories for continuous media consider rotations as independent degrees of freedom in addition
to the usual three displacements. Beam, plate, and shell theories are classical examples in which rotational
degrees of freedom at a material point are often used to incorporate desired physics. The stress-couple theories
due to Voigt [1,2] are perhaps the first presentation of incorporating the idea of rotations in the deformation
physics through the assumption of the existence of the moment tensor. Cosserat and Cosserat [3] presented
a unified treatment of deformable bodies using rotations at a material point as additional three degrees of
freedom based on what they called Euclidean action and the variation of internal energy density. This theory
is referred to as Cosserat theory based on rotations as independent degrees of freedom at a material point
(Cosserat rotations). The idea of Cosserat theory was revived some 50 years later in Refs. [4–8].

Aero andKuvshinskii [6] in 1960 pointed out that classicalmechanics is inadequate for short acousticwaves
in crystals and for the laws of piezoelectric phenomena. The authors presented what they call “a phenomeno-
logical theory of continuous media by taking into account rotational interaction among the particles.” By
assuming the existence of the moment tensor on the oblique plane of the tetrahedron, use of Cauchy principle,
and the balance of angular momenta, the derivation shows that the Cauchy stress tensor must be non-symmetric
and that the gradients of the Cauchy moment tensors are balanced by the antisymmetric components of the
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Cauchy stress tensor. In the rate of work, the antisymmetric part of the velocity gradient tensor is assumed to
be conjugate to the Cauchy moment tensor; hence, the rates of rotation are due to the internal deformation rate
of the deforming matter. Mindlin and Tiersten [9] assumed the existence of a moment on the oblique plane of
the tetrahedron and gave a similar derivation to Ref. [6], but included a discussion of the constitutive theories
presented in Refs. [5,6]. Examples of thickness-shear vibrations of a plate, torsional vibrations of a circular
cylinder, spherical cavity in a field of simple tension, and cylindrical cavity in a field of simple tension were
presented. Theories similar to those in Ref. [4–9] can also found in the works of Toupin [10] and Koiter [11].
Eringen [12] presented a special form of Cosserat theory in which rotational degrees of freedom are considered.
This theory is similar to that in Refs. [6,9–11]. Eringen and Suhubi [13,14] and Eringen [15,16] presented
a general theory of nonlinear microelastic continua in which the intrinsic motion of the microelements in a
macrovolume are taken into consideration. The authors showed that the presently known couple stress theory
and Cosserat theory are a subset of the theories presented by them. A microstructure theory of elasticity by
Mindlin [17] and a micropolar theory by Green and Rivlin [18], both in 1964, have similarities with theories
in [13–16] for special situations.

In another paper [19], Mindlin presented stress functions for a Cosserat continuum. In this paper, both
internal rotations and Cosserat rotations were considered. Constitutive theories were derived using potential
energy density which was assumed to be a function of strains, rotations, and rotation gradients. The energy
equation and the entropy inequality were not considered in this work; consequently, there was no discussion of
conjugate pairs (i.e., dual variables associated with the internal and Cosserat rotations were not discussed). The
constitutive theories are derived based on assumed physics for the strain energy density function. Following the
works cited above, there has been a large number of publications on stress-couple theories as well as Cosserat
theories (some containing both), alternate formulations, diverse applications, computational methods, finite
element formulations, and so on (see, e.g., Refs. [20–38]). It is not essential to discuss these in the context of
the work presented in this paper; however, they provide some background for the present work as well as some
help to the readers in terms of specific applications of this theory.

For any deforming solid matter, the displacements and the Jacobian of deformation JJJ defining gradients of
deformed coordinates with respect to undeformed coordinates are the fundamental measures of deformation
physics. Thus, the conservation and balance laws must consider complete JJJ in their derivations. For small
deformation, small strain, dJJJ , the gradients of displacements, replaces JJJ . Decomposition of dJJJ into a symmetric
tensor d

sJJJ and an antisymmetric tensor d
aJJJ suggests that consideration of complete dJJJ requires consideration

of d
sJJJ and d

aJJJ .
d
sJJJ defines strain measures whereas d

aJJJ defines rotations at a material point. The rotations at a
material point are defined using a triad whose axes are parallel to the x-frame.

Classical continuum theories are derived using displacements as degrees of freedom and d
sJJJ at a material

point. daJJJ is not considered at all. Any continuum theory that deviates from the consideration of displacements
uuu and d

sJJJ is a non-classical continuum theory. Rotations in d
aJJJ are due to dJJJ that are always intrinsically present

in all deformations; hence, we refer to these rotations as internal rotations. A continuum theory that considers
uuu, dsJJJ , and

d
aJJJ is referred to as an internal polar continuum theory, or a non-classical continuum theory with

internal rotations. Obviously, the latter is a more precise description of the theory. A continuum theory that
incorporates only Cosserat rotations is a non-classical Cosserat continuum theory. The theories that incorporate
both rotations are simply called non-classical continuum theories.

Confusion regarding the assumption of a material point with mass but no dimension and considerations
of rotations is rather natural. We go back to the definitions of strains and stresses in solids. We consider a
tetrahedron in the undeformed configuration (reference configuration) such that its oblique plane is subjected
to external loads. Upon deformation, the edges of the tetrahedron representing material lines become curved.
Tangent vectors to these deformed material lines are the edges of the deformed tetrahedron (covariant basis).
Their extensions and change in the 90◦ angle (in the undeformed tetrahedron) between them define strain mea-
sures. The contravariant stress tensor is defined using planes of the deformed tetrahedron whose components,
when converted to the x-frame using covariant base vectors, define the Cauchy stress tensor σσσ . The concept of
stress at a material point is in fact the limiting case of the deformed tetrahedron visualized as a material point.

Since dJJJ may vary between a material point and its neighbors, and if the material points stay connected (as
they do in the absence of damage), then these varying rotations between the material points are resisted by the
deforming matter, creating internal moments (in the same manner as the varying displacement gradients, when
resisted, result in stresses). The concepts of rotations and moments at a material point are easily understood
by considering the deformed tetrahedron. Existence of the internal moments in the deforming matter results in
the Cauchy moment tensor that can be derived in a similar manner as the Cauchy stress tensor and is related
to the average moment on the oblique plane of the deformed tetrahedron by the Cauchy principle.
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In short, existence of the Cauchy stress tensor and the Cauchy moment tensor are established using the
deformed tetrahedron. Its oblique plane contains average stress and average moment and its planes contain
contravariant stress and moment tensors that yield Cauchy stress and moment tensors. The Cauchy principle
relates the average stress and moment on the oblique plane of the tetrahedron to the Cauchy stress and moment
tensors derived using the planes of the deformed tetrahedron.

We remark that rotations at a material point exist but due not result in rotational inertia as the limiting case
of a material point has no dimensions. This fact is honored in the derivation of the law of balance of moment
of moments presented in this paper.

In the present work, we consider the internal rotations due to d
aJJJ as well as Cosserat rotations that are

additional three degrees of freedom about the axes of the same triad about which internal rotations are defined.
The continuum theory presented here considers uuu, dsJJJ ,

d
aJJJ , as well as Cosserat rotations; hence, this is a non-

classical continuum theory. A theory that considers onlyuuu, dsJJJ , and
d
aJJJ is also a non-classical continuum theory,

but more specifically it is a non-classical internal polar continuum theory or a non-classical continuum theory
with internal rotations.

The work presented in this paper considers rotations iΘΘΘ due to the antisymmetric part of the Jacobian
of deformation (or displacement gradient tensor) as well as Cosserat rotations eΘΘΘ , both acting about the
axes of a triad parallel to the fixed x-frame at each material point. The rotations iΘΘΘ are due to JJJ , hence are
referred to as internal rotations. These are always present in deforming solids and are completely defined by the
antisymmetric part of JJJ , hence do not constitute unknown degrees of freedom at a material point in addition
to the three displacements.

Surana et al. [39–48] proposed that if JJJ or dJJJ (for small deformation) for solid matter and the velocity
gradient tensor L̄LL for fluent continua are complete measures of the deformation physics, then the corresponding
thermodynamic frameworks must incorporate dJJJ and L̄LL in their entirety. The resulting theories are called inter-
nal polar continuum theories or non-classical continuum theories with internal rotations and rotation rates. This
work is obviously independent of Cosserat theories. The works by Surana et al. are motivated by incorporating
the complete physics of deformation in dJJJ and L̄LL in the thermodynamic framework as opposed to the assumption
of the existence of themoment tensor in the stress-couple theories. Theworks by Surana et al. [39,40,43,45,46]
discuss internal polar theories for solids and the constitutive theories. In Refs. [41,42,44], the authors present
internal polar theories for fluent continua including constitutive theories. In their more recent works [47,48],
non-classical continuum theories are presented for (i) thermoelastic solids incorporating internal and Cosserat
rotations and (ii) thermoviscous fluent continua (without memory) incorporating internal and Cosserat rotation
rates.

This paper presents a non-classical continuum theory for thermoviscoelastic solid continua (without mem-
ory) in which internal rotations and their rates as well as Cosserat rotations and their rates are considered in
the conservation and balance laws. Constitutive theories are derived using the conditions resulting from the
entropy inequality in conjunction with the representation theorem [49–68]. Material coefficients are derived
and discussed. For simplicity, only small deformation, small strain physics is considered in this paper.

2 Continuum theories with internal rotations due to JJJ or dJJJ

This paper uses the same notations as Ref. [69]. Quantities with an over-bar are quantities in the current
(deformed) configuration (i.e., all quantities with over-bar are functions of coordinates x̄i and time t—the
Eulerian description). Quantities without an over-bar are quantities referred to the reference configuration
(i.e., these are functions of undeformed coordinates xi and time t—Lagrangian description). The configuration
at time t = t0 = 0, commencement of the evolution, is considered as the reference configuration. Thus, xi
and x̄i are coordinates of the same material point in reference and current configurations, respectively, both
measured in a fixed Cartesian x-frame. This paper only considers the Lagrangian description.

If the Jacobian of deformation [J ] (finite deformation) or the displacement gradient tensor [dJ ] (small
deformation) and velocity gradient tensor [L̄] aremeasures of deformation in solid and fluent continua, then the
thermodynamic frameworks for solid and fluent continua must incorporate [J ], [dJ ], and [L̄] in their entirety.
First, consider solid continua (using x̄xx and xxx as coordinates in deformed and undeformed configurations,
respectively). The Jacobian of deformation (or deformation gradient) [J ] and displacement gradient tensor
[dJ ] are given by
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[J ] =
[
∂{x̄}
∂{x}

]
=
[
∂{u}
∂{x}

]
+ [I ] = [dJ ] + [I ]. (1)

Polar decomposition of [J ] gives
[J ] = [R][Sr ] = [Sl ][R] (2)

where [Sr ] and [Sl ] are left and right symmetric and positive-definite stretch tensors and [R] is an orthogonal
rotation tensor. Decomposition of [J ] and [dJ ] into symmetric ([s J ] and [ds J ]) and antisymmetric ([a J ] and
[da J ]) tensors gives

[J ] = [s J ] + [a J ], (3)

[s J ] = 1

2

(
[J ] + [J ]T

)
, (4)

[a J ] = 1

2

(
[J ] − [J ]T

)
(5)

and

[dJ ] =
[
d
s J
]

+
[
d
a J
]
, (6)

[
d
s J
]

= 1

2

(
[dJ ] + [dJ ]T

)
, (7)

[
d
a J
]

= 1

2

(
[dJ ] − [dJ ]T

)
. (8)

It is clear that

[a J ] =
[
d
a J
]
. (9)

Note that
[
d
s J
]
is a measure of infinitesimal strain (based on the linearization of the Green strain tensor), and

[a J ] = [
d
a J
]
defines rotation angles at a material point about the axes of a triad with its axes parallel to the

x-frame whereas [R] is a rotation matrix.
For infinitesimal deformation consider [dJ ]; hence, the strain measure

[
d
s J
]
and the rotation measure in[

d
a J
]
must be considered in the thermodynamic framework. Thus, consideration of [J ] in its entirety implies

incorporating [a J ] in the presently used classical theories, as
[
d
s J
]
is already considered in the form of strain

measures.When [J ] varies between neighboringmaterial points (so does [a J ]), and if it is resisted by deforming
solid continua, conjugate moments are created. Varying rotations and their rates and the conjugate moments
clearly result in additional resistance to motion (i.e., additional energy storage and/or dissipation as well as
possible additional physics of relaxation or memory).

The physics of internal rotations and rotation rates that vary between neighboring material points and the
resulting conjugate moments has been incorporated in the derivation of conservation and balance laws as well
as associated constitutive theories for simple solids and fluids by Surana et al. [39–44]. The resulting theories
are referred to as internal polar non-classical continuum theories for solid and fluent continua.

The consequence of the internal polar non-classical continuum theory is that the Cauchy stress tensor
becomes non-symmetric and the moment vector on the oblique plane of the tetrahedron and the Cauchy
principle for it in conjunction with the balance of angular momenta establishes that the gradients of the Cauchy
moment tensor are balanced by the antisymmetric components of the Cauchy stress tensor. The balance of
moment of moments [70,71] establishes that the Cauchy moment tensor is symmetric. The energy equation

and the entropy inequality establish that the symmetric part of the Cauchy stress tensor is conjugate to d
s

.
JJJ

(small deformation case), the rates of linear strains, and the symmetric moment tensor is conjugate to the
symmetric part of the rates of rotation gradient tensor. Surana et al. [43] provided constitutive theories for the
symmetric part of the Cauchy stress tensor and the symmetric Cauchy moment tensor for thermoelastic solid
continua. In the non-classical continuum theories, antisymmetric components of the Cauchy stress tensor are
balanced or defined by the gradients of the Cauchy moment tensor, hence remain as dependent variables in the
mathematical model and are completely defined when the Cauchy moment tensor is known. Some important
points to note in this approach are listed in the following.
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(i) The work is motivated by the necessity of incorporating the complete dJJJ in the conservation and balance
laws as it represents the complete deformation physics.

(ii) Non-symmetry of Cauchy stress tensor and existence of conjugate moment tensor and its symmetry are
consequences of the new physics in dJJJ , i.e., a JJJ or daJJJ .

(iii) The conservation and balance laws along with the constitutive equations for the symmetric part of the
Cauchy stress tensor, symmetric moment tensor, and heat vector provide closure to the mathematical
model.

(iv) Unlike stress-couple theories, existence of the moment is not assumed, but rather necessitated due to

varying rotations and rotation rates between the material points that are intrinsic in dJJJ and d
.
JJJ and are

completely defined by displacement and velocity gradients.
(v) This theory is non-classical due to the consideration of internal rotations but is not a Cosserat theory

that requires consideration of Cosserat rotations as additional unknown degrees of freedom at a material
point. In the internal polar non-classical theories, rotations are internal, vary between material points, and
are completely defined by a JJJ or daJJJ .

(vi) When the balance of moment of moments is not used as a balance law but the Cauchy moment tensor
is assumed to be symmetric, it amounts to neglecting the antisymmetric part of the moment tensor (for
whatever reason).

3 Considerations of internal and Cosserat rotations and their gradients, J, stress, moment, and strain
tensors

Since the work presented in this paper only considers small strain and small deformation, the distinction
between covariant and contravariant measures disappears as x̄i ≈ xi (i.e., the deformed configuration is not
substantially different from the undeformed configuration). For such deformation, det[J ] = det[ J̄ ] ≈ 1, hence
in the development of the theory there is a need to separate displacements from the deformed coordinates. The
displacement gradient [dJ ] in (1) is defined as

[dJ ] = ∂{u}
∂{x} =

[
u1, u2, u3
x1, x2, x3

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂u1
∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3

⎤
⎥⎥⎥⎥⎥⎥⎦

. (10)

The Cauchy stress tensor can be used as a measure of stress because the deformed and undeformed
tetrahedron can be treated the same for small deformation. Hence, the conservation and balance laws must be
based entirely on [dJ ] (i.e., [ds J ] and [da J ] both must be considered in the conservation and balance laws).

The displacement gradient tensor [dJ ] can be written in component form as

dJi j = 1

2

(
ui, j + u j,i

)+ 1

2

(
ui, j − u j,i

) = d
s Ji j + d

a Ji j (11)

in which

[
d
a J
]

=
⎡
⎣ 0 iΘx3 − iΘx2− iΘx3 0 iΘx1

iΘx2 − iΘx1 0

⎤
⎦ , (12)

iΘx1 = 1

2

(
∂u2
∂x3

− ∂u3
∂x2

)
; iΘx2 = 1

2

(
∂u3
∂x1

− ∂u1
∂x3

)
; iΘx3 = 1

2

(
∂u1
∂x2

− ∂u2
∂x1

)
. (13)

Alternatively (13) can be derived as

∇∇∇ × uuu = eeei × eee j
∂u j

∂xi
= εi jkeeek

∂u j

∂xi
, (14)

∇∇∇ × uuu = eee1

(
∂u3
∂x2

− ∂u2
∂x3

)
+ eee2

(
∂u1
∂x3

− ∂u3
∂x1

)
+ eee3

(
∂u2
∂x1

− ∂u1
∂x2

)
, (15)

∇∇∇ × uuu = eee1
(−2iΘx1

)+ eee2
(−2iΘx2

)+ eee3
(−2iΘx3

)
. (16)
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The sign difference in (13) and (16) is due to the fact that rotations in (13) are clockwise, whereas quantities
in (15) are twice the magnitude compared to those in (13) and are positive when counterclockwise. In this
paper, (13) is considered as the definition of rotations (i.e., clockwise). The rotations defined in (13) can exist
at every material point in the deforming solid.

The right and left stretch tensors [Sr ] and [Sl ] are symmetric and positive-definite, and [R] is an orthogonal
rotation tensor, a rotation matrix corresponding to the rotation angles defined in (13). [a J ] contains rotation
angles while [R] is the corresponding rotation matrix or tensor. Both their forms given here can be used in
derivations as needed. However, deriving [R] from [a J ] or vice versa in general in R3 may not be possible or
unique [72–74]. Fortunately, there is no need for this here.

Incorporating [dJ ] in its entirety in the derivation of conservation and balance laws implies incorporating[
d
s J
]
and

[
d
a J
]
(i.e., rotations iΘx1 , iΘx2 , and iΘx3 about the axes of a triad located at each material point).

Rotations in
[
d
a J
]
are internal and are completely defined by the skew-symmetric part of [dJ ].

Let eΘx1 , eΘx2 , and eΘx3 be the additional Cosserat rotations (unknown) about the same triad as used for
internal rotations iΘΘΘ , assumed positive counterclockwise. Let

[
e
aγ
]
be the antisymmetric matrix of rotation

angles defined using rotations eΘΘΘ , then

[eaγ ] =
⎡
⎣ 0 eΘx3 − eΘx2− eΘx3 0 eΘx1

eΘx2 − eΘx1 0

⎤
⎦ . (17)

Angles eΘ j in (17) are positive when counterclockwise. Let

[J] =
[
d
s J
]

+
[
d
a J
]

− [eaγ ] , (18)

[J] =
[
d
s J
]

+ [tar] , (19)

[t
ar
] =

[
d
a J
]

− [eaγ ] =
⎡
⎣ 0 tΘx3 − tΘx2− tΘx3 0 tΘx1

tΘx2 − tΘx1 0

⎤
⎦ (20)

in which [tar ] is the antisymmetric matrix containing total rotations tΘx1 , tΘx2 , and tΘx3 about the axes of the
triad at a material point, considered positive in the clockwise sense. Obviously,

tΘx1 = iΘx1 − eΘx1,

tΘx2 = iΘx2 − eΘx2 ,

tΘx3 = iΘx3 − eΘx3 .

(21)

Due to varying [J ] between material points, total rotations tΘΘΘ vary between neighboring material points.
When these are resisted by the deforming matter, conjugate moments are generated which, together with tΘΘΘ
and their rates, result in additional energy storage and/or dissipation as well as additional rheology.

Remarks

(i)
[
d
s J
]
represents the usual infinitesimal strain tensor as in the linear theory of elasticity.

(ii)
[
d
a J
]
,
[
e
aγ
]
, and

[
t
ar
]
are antisymmetric tensors containing rotation angles, hence are not measures of

strain.
(iii) Based on (i) and (ii), [J] is not a strain tensor, but rather addition of strain tensor

[
d
s J
]
and the internal

and Cosserat rotation angle tensors
[
d
a J
]
and

[
e
aγ
]
.

When the gradients of displacements vary between neighboring material points, so do the internal rotations
d
aJJJ , and likewise the Cosserat rotations

e
aγγγ may also vary between the neighboring material points. Hence, the

total rotation tensor tarrr can vary between the material points. When rotations t
arrr are resisted by the deforming

matter conjugate moments are created. tarrr and their rates and conjugate moments can result in additional energy
storage, dissipation, and rheology, i.e., in addition to those which are already present due to the Cauchy stress
tensor, strain, and strain rate tensors. Thus, in the deforming matter, the total rotations t

arrr are conjugate to the
moment tensor which necessitates that on the boundary of the deformed volume there must exist a resultant
moment tensor.
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Consider a volume of matter V˜ in the reference configuration with closed boundary ∂V˜. The volume V is
isolated from V˜ by a hypothetical surface ∂V as in the cut principle of Cauchy. Consider a tetrahedron T1 such
that its oblique plane is part of ∂V and its other three planes are orthogonal to each other and parallel to the
planes of the x-frame. Upon deformation, V˜ and ∂V˜ occupy V̄˜ and ∂ V̄˜, and likewise V and ∂V deform into
V̄ and ∂ V̄ . The tetrahedron T1 deforms into T̄1 whose edges (under finite deformation) are non-orthogonal
covariant base vectors g̃i . The planes of the tetrahedron formed by the covariant base vectors are flat but
obviously non-orthogonal to each other. We assume the tetrahedron to be the small neighborhood of material
point ō so that the assumption of the oblique plane Ā B̄C̄ being flat but still part of ∂ V̄ is valid. When the
deformed tetrahedron is isolated from volume V̄ it must be in equilibrium under the action of disturbance on
surface Ā B̄C̄ from the volume surrounding V̄ and the internal fields that act on the flat faces which equilibrate
with the mating faces in volume V̄ when the tetrahedron T2 is placed back in the volume V̄ .

Consider the deformed tetrahedron T̄1. Let P̄PP be the average stress per unit area on plane Ā B̄C̄ , M̄MM be
the average moment per unit area on plane Ā B̄C̄ henceforth referred to as moment for short, and n̄nn be the
normal to the face Ā B̄C̄ . P̄PP , M̄MM, and n̄nn all have different directions when the deformation is finite. Based on
the small deformation assumption, the deformed coordinates x̄i are approximately the same as the undeformed
coordinates xi ; thus, the deformed tetrahedron T̄1 in the current configuration is close to its map T1 in the
reference configuration. With this assumption, all stress measures (first and second Piola-Kirchhoff stress
tensors, Cauchy stress tensor) are approximately the same. The same holds for the moment tensors. Thus with
the assumption x̄xx ≈ xxx we can write

P̄PP = PPP, M̄MM = MMM. (22)

The Cauchy principle for P̄PP and M̄MM gives (hence for PPP and MMM)

PPP = σσσ T · n· n· n, MMM = mmmT · n· n· n (23)

in which σσσ is the Cauchy stress tensor andmmm is the Cauchy moment tensor (per unit area). Let

{tΘ}T = [tΘx1, tΘx2 , tΘx3

]
. (24)

Gradients of total rotations in (24) ([ΘJ t ]) can be defined using

[
ΘJ t
] =

[
∂{tΘ}
∂{x}

]
or ΘJ ti j = ∂ tΘi

∂x j
. (25)

The gradient tensor of total rotations [ΘJ t ] in (25) can be decomposed into symmetric and antisymmetric parts
[Θs J t ] and [Θa J t ],

[
ΘJ t
] = [Θs J t]+ [Θa J t] , (26)

[
Θ
s J

t] = 1

2

([
ΘJ t
]+ [ΘJ t]T) ,

[
Θ
a J

t] = 1

2

([
ΘJ t
]− [ΘJ t]T) .

(27)

Both σσσ andmmm are non-symmetric tensors.

4 Conservation and balance laws

The conservation and balance laws for a non-classical solid continuum with internal and Cosserat rotations
have been derived by Surana et al. [47,48] (see also Eringen et al. [75–83]). In the following, the standard
conservation and balance laws used in classical continuum theories that are also applicable to non-classical
continuum theories considered in this paper are presented. Conservation of mass, balance of linear momenta,
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balance of angular momenta, and the first and second laws of thermodynamics yield the following set of
equations:

ρ0(xxx) = |J |ρ(xxx, t), (28)

ρ0
Dvvv

Dt
− ρ0FFFb − ∇ · σ∇ · σ∇ · σ = 0, (29)

∇ · m∇ · m∇ · m − ε : σε : σε : σ = 0, (30)

ρ0
De

Dt
+ ∇ · q∇ · q∇ · q − tr

(
[σ ]
[

∂{v}
∂{x}

])
− tr

(
[m]

[
∂{t

.
Θ}

∂{x}

])
− t

.
ΘΘΘ ··· (∇ · m∇ · m∇ · m) = 0, (31)

ρ0

(
DΦ

Dt
+ η

Dθ

Dt

)
+ q · gq · gq · g

θ
− tr

(
[σ ]
[

∂{v}
∂{x}

])
− tr

(
[m]

[
∂{t

.
Θ}

∂{x}

])
− t

.
ΘΘΘ ··· (∇ · m∇ · m∇ · m) ≤ 0 (32)

in which ρ0 and ρ are the density in the reference and current configurations, vvv are the velocities, FFFb are the
body forces per unit mass, e is the specific internal energy, qqq is the heat vector, ggg are the temperature gradients,
Φ is the Helmholtz free energy density, η is the entropy density, and θ is the absolute temperature.

4.1 Why the law of balance of moment of moments is necessary in non-classical continuum theories for solid
continua

Yang et al. [84] presented the following reasoning for the consideration of additional requirements advocated
to be necessary for equilibrium of deforming solid matter in couple stress non-classical continuum theories.

When a system of forces is applied to a system of multiple particles, the equilibrium relations are derived
from a resultant force and a resultant couple of forces applied to an arbitrary point. The moment of a couple of
forces is a free vector in classical mechanics, which means that the effect of the couple applied at an arbitrary
point in the space of the system of materials particles is independent of the position of the point. In other words,
the couple can translate to any point in the space freely and the resulting effects are unchanged. As a result,
only the conventional force equilibrium and the moment equilibrium (balance of linear and angular momenta)
are involved in the equilibrium relations [9–11]. Equivalence of a couple resulting from the rotations iΘ that
is not a free vector but a driving force that rotates the material particles requires considerations (see [84] for
details) that eventually result in balance of moment of moments or couples for static equilibrium.

In this reasoning at the onset of the derivation, the moment of the moments due to the antisymmetric part
of the Cauchy stress tensor and the moment of the moment M̄MM acting on the oblique plane of the deformed
tetrahedron are assumed to equilibrate. This is termed by the authors as balance of moment of moments
balance law. In this approach, there are two major points to be clarified: (i) Is this a balance law, and (ii) if
what Yang et al. [84] presented is based on static considerations, then does it ensure dynamic equilibrium
of the deforming non-classical solid continua during evolution? Based on the definition of balance laws in
continuum mechanics (balance of linear and angular momenta, for example), a balance law must be based on
rate considerations. The work of Yang et al. [84] as presented by them is static equilibrium; hence, it is perhaps
more appropriate to label this as an equilibrium consideration at this stage rather than a balance law.

First, we consider inductive reasoning to demonstrate and establish why there is a need for an additional
law in non-classical continuum theories to ensure dynamic equilibrium of the deforming solid continua in the
presence of internal rotations and conjugate moments. In classical continuum theories for solid continua that
consider displacements as the only observable quantities at the material points and their conjugate forces (or
stresses), it is well known that the balance of linear momenta and the balance of angular momenta must hold
for the dynamic equilibrium of the deforming solid continua. That is, the rate of change of linear momenta
must be balanced by body forces and the average stress P̄PP on the oblique plane of the tetrahedron for any
arbitrary volume of matter (balance of linear momenta). The rate of change of the moment of linear momenta
must be balanced by the moment of the body forces and the moment of average stress P̄PP on the oblique plane
of the tetrahedron (balance of angular momenta balance law). These two balance laws ensure stable dynamic
equilibrium of the deforming volume of solid continua in classical continuummechanics at any instant of time.
Thus, we note that when the displacements are the only kinematic variables, two balance laws are required. The
first balance law is the dynamic balance of the quantities conjugate to displacements that are forces, the balance
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of linear momenta, and the second one is the dynamic balance of the moments of the quantities conjugate to
the displacements, i.e., moments of forces, the balance of angular momenta.

Remarks.

(i) We note that the balances of linear and angular momenta contain physics purely related to the forces
and the moments due to the forces.

(ii) When rotations and their conjugate moments are introduced, the balance of linear momenta (purely
related to the forces) remains unchanged as the non-symmetry of the Cauchy stress tensor is also
present in classical theories until the balance of angular momenta establishes it to be symmetric.

(iii) Additional moments introduced by the consideration of internal rotations must now by considered to
modify the dynamic balance of moments, i.e., the balance of angular momenta used in classical theories.
The end result is the relationship between additional conjugate quantities introduced due to non-classical
theories, i.e., the antisymmetric components of the Cauchy stress tensor and the Cauchy moment tensor.
We note that neither of these exists in the classical continuum theory. Thus, due to internal rotations and
the conjugate moments, the first balance law needed is the balance of angular momenta. This already
exists due to the classical theory; hence, it is modified due to the presence of additional moments conju-
gate to the internal rotations and also due to the antisymmetric components of the Cauchy stress tensor.

(iv) A new balance law, the law of balance of moment of moments (parallel to the balance of angularmomenta
in classical theories), is required for dynamic equilibrium in the presence of internal rotations, their rates,
and conjugate moments. This balance law must be a rate law just like all other balance laws, and must
only contain the physics related to the non-classical behavior, i.e., possibly rotations and their rates, the
conjugate Cauchy moment tensor, and the antisymmetric part of the Cauchy stress tensor. Thus, in the
derivation of this balance law, we must consider the rate of the moment of angular momenta only due
to internal rotation rates to balance with: (i) the moment of moments of those components associated
with P̄PP that are only related to non-classical physics, i.e., the antisymmetric components of the Cauchy
stress tensor, and (ii) the moment of M̄MM which is only due to non-classical physics.

(v) We remark that consideration of the following as a balance law in the non-classical theory considered
here is invalid,

D

Dt

∫

V̄ (t)

x̄xx × (x̄xx × ρ̄v̄vv) dV̄ =
∫

∂ V̄ (t)

x̄xx × (x̄xx × P̄PP − M̄MM) d ĀAA +
∫

V̄ (t)

x̄xx × (x̄xx × ρ̄ F̄FFb) dV̄ . (33)

(a) The left-hand side is purely due to the classical continuum physics, hence cannot be part of this
balance law. (b)

∫
∂ V̄ (t) x̄xx × (x̄xx × P̄PP) d ĀAA is invalid as it contains the symmetric part of the Cauchy stress

tensor (after application of the Cauchy principle) which is also part of the classical continuum theory.
In this expression, only antisymmetric components of the Cauchy stress tensor should be considered
as these are the only components related to non-classical behavior. (c)

∫
V̄ (t) x̄xx × (x̄xx × ρ̄ F̄FFb) dV̄ is also

purely due to classical continuum physics, hence cannot be considered in this balance law. Presence of∫
∂ V̄ (t)(x̄xx × M̄MM) d ĀAA is valid as M̄MM is purely due to internal rotation physics.

(vi) The derivation using (33) leads to erroneous results, as expected due to the fact that (33) mostly contains
physics that is purely related to the classical continuum theory (except M̄MM) that should be eliminated from
this balance law as this balance law is only necessitated due to new physics related to internal rotations.

(vii) We note that a kinematic variable requires two balance laws: (i) the first is related to the dynamic
balance of the quantity conjugate to the kinematic variable and (ii) the second one is related to the
dynamic balance of the moment of the quantities conjugate to the kinematic variable. Displacements
as kinematic variables need the balance of linear and angular momenta, which are dynamic balances of
forces and their moments. Introduction of internal rotations and their rates require dynamic balance of
moments (which already exists as the balance of angular momenta) and dynamic balance of moment of
moments, a new balance law. Thus, for each new kinematic variable we need to consider (i) the dynamic
balance of its conjugate quantity that already exists from the previous kinematic variable, hence can be
modified to accommodate the influence of new physics, and (ii) dynamic balance of the moment of its
conjugate quantity related only to the physics associated with the new kinematic variable, which is a
new balance law that needs to be derived using rate considerations. This inductive reasoning holds for
the introduction of each new kinematic variable.

(viii) In the next Section, we present the derivation of the law of balance of moment of moments based on rate
considerations.
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4.2 The law of balance of moment of moments

In this balance law, we must consider the rate of moment of angular momenta due to rotation rates to balance
with the moment of moments of the antisymmetric components of the Cauchy stress tensor and the moments
of M̄MM, all of which are only related to the non-classical physics due to internal rotations and the associated
conjugate moments. We can write⎛

⎜⎝
rate of moment of the

angular momenta due to
internal rotation rates

over V̄ (t)

⎞
⎟⎠ =

⎛
⎜⎝

moment of moments due
to antisymmetric components

of the Cauchy stress
tensor over V̄ (t)

⎞
⎟⎠−

(
moment of M̄MM
over ∂ V̄ (t)

)
(34)

The negative sign is due to the assumption of clockwise internal rotations to be positive; hence, the corre-
sponding moment tensor must be positive in the same sense. We note that in continuum theories for continuous
media, we assume that the material points or particles have mass but no dimensions; thus, the angular momenta
associated with the material particles due to rotation rates are zero. Thus, (34) reduces to

⎛
⎜⎝

moment of moments due
to antisymmetric components

of the Cauchy stress
tensor over V̄ (t)

⎞
⎟⎠−

(
moment of M̄MM
over ∂ V̄ (t)

)
= 0 (35)

If we consider the current configuration at time t , then in the Eulerian description we can write (35) as

∫

V̄ (t)

x̄xx × (ε :ε :ε : σ̄σσ (0)) dV̄ −
∫

∂ V̄ (t)

x̄xx × M̄MM d Ā = 0. (36)

Remarks.

(i) In the absence of (34), which is a rate statement, if we consider (35) and (36) directly, then we could
mistakenly view (35) and (36) as equilibrium of moment of moments, a static consideration. This is
obviously incorrect. As stated by Yang et al. [84], (36) indeed is a balance law, even though its derivation
based on a statement like (34) is not reported in Ref. [84]. Due to the fact that the left-hand side of (34)
is zero, the balance law (34) results in (36), which unfortunately has the appearance of an equilibrium
statement.

(ii) Henceforth, in this paper, we refer to (36) as the law of balance of moment of moments. For the non-
classical physics considered in this paper, the balance law (34) reduces to (36), which can also be labeled
as the equilibrium of moment of moments due to the absence of rate terms (as they are zero). Thus, we
can also say the law of balance/equilibrium of moment of moments.

We expand the second term in (36) and then convert the integral over ∂ V̄ to the integral over V̄ using the
divergence theorem: ∫

∂ V̄

x̄xx × M̄MM d Ā =
∫

∂ V̄

eeekεi jk xi M̄ j d Ā

=
∫

∂ V̄

eeekεi jk x̄i m̄mj n̄m d Ā

=
∫

V̄

eeek(εi jk x̄i m̄mj ),m dV̄

=
∫

V̄

eeekεi jk(m̄i j + x̄i m̄mj,m) dV̄

=
∫

V̄

eeekεi jkm̄i j d V̄ +
∫

V̄

x̄xx × (∇̄∇∇ ··· m̄mm) dV̄ .

(37)
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Using Eq. (37) in (36) and collecting terms yields:∫

V̄

x̄xx × (−∇̄∇∇ ··· m̄mm + εεε : σ̄σσ
)
dV̄ −

∫

V̄

eeekεi jk m̄i j d V̄ = 0. (38)

The first term in (38) vanishes due to the balance of angular momenta, giving the condition∫

V̄

eeekεi jk m̄i j d V̄ = 0 (39)

which, because V̄ is arbitrary, yields

εi jk m̄i j = 0 and εi jkmi j = 0. (40)

Equation (40) implies that mi j = m ji , i.e., the Cauchy moment tensor is symmetric. On the other hand, in
the absence of this balance law, symmetry of the Cauchy moment tensor is not established; hence, the Cauchy
moment tensor mmm will be non-symmetric. In the derivation of the constitutive theory for mmm in this paper, we
assume mmm to be non-symmetric, implying that the balance of moment of moments is not considered as a
necessary balance law. This is a more general case. The constitutive theories whenmmm is symmetric are a subset
of the more general case in whichmmm is non-symmetric.

5 Conjugate pairs in the entropy inequality, constitutive variables, and their argument tensors

From the entropy inequality, note that in each of the two trace terms both tensors are non-symmetric, thus
based on the works of Spencer, Wang, Zheng etc. [49–68], the pair of tensors in each trace term does not
constitute a conjugate pair. That is, either of the tensors in each pair cannot be expressed in terms of the other
due to the lack of existence of integrity for non-symmetric tensors. Recall[

∂{v}
∂{x}

]
= [L] = [ .J ] = [d .J ] = [ .J] +

[
e
a
.
γ
]
, (41)

∇ · m∇ · m∇ · m = ε : σε : σε : σ , (42)

t

.
ΘΘΘ = i

.
ΘΘΘ − e

.
ΘΘΘ . (43)

Substituting (41)–(43) in the entropy inequality (32) and using

tr
(
[σ ]
[
e
a
.
γ
])

= e

.
ΘΘΘ ··· (ε : σε : σε : σ ) (44)

leads to the following:

ρ0

(
DΦ

Dt
+ η

Dθ

Dt

)
+ q · gq · gq · g

θ
− tr

(
[σ ][ .J]

)
− tr

(
[m][Θ .

J t ]
)

− i

.
ΘΘΘ ··· (ε : σε : σε : σ ) ≤ 0. (45)

Note that in (45) both terms in each trace are non-symmetric tensors. Consider

[σ ] = [sσ ] + [aσ ], (46)

[m] = [sm] + [am], (47)

[ .J] =
[
d
s

.
J
]

+
[
d
a

.
J
]

−
[
e
a
.
γ
]

=
[
d
s

.
J
]

+
[
t
a
.
r
]

= [ .ε] +
[
t
a
.
r
]
, (48)

tr
(
[sσ ]

[
t
a
.
r
])

= 0,

tr
(
[aσ ][ .ε]

)
= 0, (49)

tr
(
[sm]

[
Θ
a

.
J t
])

= 0,

tr
(
[am]

[
Θ
s

.
J t
])

= 0.
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Substituting (46)–(48) and then using (49),

ρ0

(
DΦ

Dt
+ η

Dθ

Dt

)
+ q · gq · gq · g

θ
− (sσki )(

.
εki ) − (aσki )

(
t
a
.
rki
)

− (smki )
(

Θ
s

.
J tki

)

− (amki )(
Θ
a

.
J tki ) − i

.
ΘΘΘ ··· (ε : σε : σε : σ ) ≤ 0. (50)

The energy equation can accordingly be modified as

ρ0
De

Dt
+ ∇ · q∇ · q∇ · q − (sσki )(

.
εki ) − (aσki )

(
t
a
.
rki
)

− (smki )
(

Θ
s

.
J tki

)
− (amki )

(
Θ
a

.
J tki

)
− i

.
ΘΘΘ ··· (ε : σε : σε : σ ) = 0.

(51)

Note that in (51) in the trace terms both tensors are either symmetric or antisymmetric; hence, all trace terms in
(51) could be used to determine conjugate pairs in the constitutive theories. First, from (51), it is easy to infer
that Φ, η, qqq, sσσσ , aσσσ , smmm, and ammm are possible choices of constitutive variables. The argument tensors of these
constitutive variables are decided using the conjugate pairs as well as the desired physics these are to represent.
Since the deforming matter has elasticity as well as dissipation, εεε and

.
εεε (or εεε[1]), both need to be argument

tensors of sσσσ . If we assume that higher-order time derivatives of εεε also contribute to dissipation, then εεε, εεε[k];
k = 1, 2, . . . , nε need to be argument tensors of sσσσ . The resistance to deformation results in smmm, ammm, and
aσσσ . We also assume that the dissipation mechanism is also due to smmm, ammm, and aσσσ and the time derivatives of
the corresponding conjugate tensors. Temperature θ is surely an argument tensor of all constitutive variables.
Based on (51), the choice of ggg and θ as argument tensors of qqq is valid. Since the deformation and strains are
small, i.e., x̄xx ≈ xxx, ρ ≈ ρ0 (the matter is assumed incompressible), hence |J | = 1. Thus, we have the following
for the argument tensors of the constitutive variables:

sσσσ = sσσσ
(
εεε,εεε[i]; i = 1, 2, . . . , nε, θ

)
,

aσσσ = aσσσ
(t
arrr,

t
arrr [ j]; j = 1, 2, . . . , n(tar), θ

)
,

smmm = smmm
(

Θ
s JJJ

t , Θ
s JJJ

t
[k]; k = 1, 2, . . . , n(Θs J

t ), θ
)

,

ammm = ammm
(

Θ
aJJJ

t , Θ
aJJJ

t
[l]; l = 1, 2, . . . , n(Θa J

t ), θ
)

,

qqq = qqq(ggg, θ),

Φ = Φ

(
εεε,εεε[i]; i = 1, 2, . . . , nε,

t
arrr,

t
arrr [ j]; j = 1, 2, . . . , n(tar),

Θ
s JJJ

t , Θ
s JJJ

t[k]; k = 1, 2, . . . , n(Θs J
t ),

Θ
aJJJ

t , Θ
aJJJ

t[l]; l = 1, 2, . . . , n(Θa J
t ), ggg, θ

)
,

η = η

(
εεε,εεε[i]; i = 1, 2, . . . , nε,

t
arrr,

t
arrr [ j]; j = 1, 2, . . . , n(tar),

Θ
s JJJ

t , Θ
s JJJ

t[k]; k = 1, 2, . . . , n(Θs J
t ),

Θ
aJJJ

t , Θ
aJJJ

t[l]; l = 1, 2, . . . , n(Θa J
t ), ggg, θ

)
.

(52)

Remarks.

(i) In defining the argument tensors of sσσσ , aσσσ , smmm, ammm, and qqq in (52), we could have used the principle of
equipresence, in which case the argument tensors of these constitutive variables would be the same as
those of Φ and η in (52). We have intentionally not done so based on the discussion in the paragraph
immediately preceding Eq. (52). We elaborate on this in the following.

(ii) The conjugate pairs in (50) dictate rate ofwork conjugate pairs, hence facilitate the choices of the argument
tensors of the constitutive variables.

(iii) As an example consider the constitutive variable sσσσ . From (50), εεε needs to be its argument tensor as
.
εεε

is the rate of work conjugate to sσσσ . The dissipation mechanism necessitates that εεε[i]; i = 1, 2, . . . , n be
argument tensors of sσσσ as well, and the choice of θ as an argument tensor is obvious as we are considering
thermoviscoelastic solids. The choices of {g}, Θ

s JJJ
t , Θ

s JJJ
t
[k]; k = 1, 2, . . . , n(Θs J

t ), etc. are ruled out as their
rates are not rate of work conjugate with sσσσ .



Non-classical continuum theory 3201

(iv) From the tr
([sσ ][ .ε]) term in the entropy inequality (50), one could argue whether εεε[i]; i = 1, 2, . . . , n

should be considered as argument tensors of sσσσ . A closer examination of the derivation of the energy
equation reveals that the rates of work due to εεε[i]; i = 1, 2, . . . , n have not been included in its derivation;
hence, the lack of appearance of εεε[i]; i = 1, 2, . . . , n conjugate to sσσσ in the entropy inequality is a rather
natural consequence. This work, currently in progress, shows that the choice of εεε[i]; i = 1, 2, . . . , n as
argument tensors of sσσσ is supported by a more complete derivation of the energy equation in which higher
strain rates are included.

(v) Based on remarks (i)–(iv), the choice of argument tensors of the constitutive variables in (52) is appro-
priate. Starting with the principle of equipresence and ruling out those argument tensors that are not
supported by the rate of work conjugate argument will result in (52).

Note that the argument tensors of Φ and η are the totality of all of the argument tensors of all of the
constitutive variables. At this stage (52) is the most general choice. During the derivation of constitutive
theories, some arguments of some constitutive variables may be ruled out due to some other considerations.

Using Φ(···) in (52),
.

Φ can be obtained,

DΦ

Dt
= .

Φ = ∂Φ

∂εki

.
εki +

nε∑
j=1

∂Φ

∂(ε[ j])ki
(
.
ε[ j])ki + ∂Φ

∂
(
t
arki
) (ta .rki

)
+

n
(tar)∑
j=1

∂Φ

∂
(
t
ar[ j]

)
ki

(
t
a
.
r [ j]
)
ki

+ ∂Φ

∂
(
Θ
s J

t
ki

) (Θ
s

.
J tki

)
+

nΘ
s J

t∑
j=1

∂Φ

∂
(

Θ
s J

t
[ j]
)
ki

(
Θ
s

.
J t[ j]
)
ki

+ ∂Φ

∂
(
Θ
a J

t
ki

) (Θ
a

.
J tki

)
+

nΘ
a J

t∑
j=1

∂Φ

∂
(

Θ
a J

t
[ j]
)
ki

(
Θ
a

.
J t[ j]
)
ki

+ ∂Φ

∂gi

.
gi + ∂Φ

∂θ

.
θ. (53)

Substituting (53) into the entropy inequality (50) and collecting terms yields(
ρ0

∂Φ

∂εki
− sσki

)
.
εki +

(
ρ0

∂Φ

∂
(
t
arki
) − aσki

)
t
a
.
rki +

(
ρ0

∂Φ

∂
(
Θ
s J

t
ki

) − smki

)
Θ
s

.
J tki

+
(

ρ0
∂Φ

∂
(
Θ
a J

t
ki

) − amki

)
Θ
a

.
J tki + q · gq · gq · g

θ
+ ρ0

(
η + ∂Φ

∂θ

) .
θ + ∂Φ

∂gi

.
gi +

nε∑
j=1

∂Φ

∂
(
ε[ j]
)
ki

( .
ε[ j]
)
ki

+
n(tar)∑
j=1

∂Φ

∂
(
t
ar[ j]

)
ki

(
t
a
.
r [ j]
)
ki

+
nΘ
s J

t∑
j=1

∂Φ

∂
(

Θ
s J

t[ j]
)
ki

(
Θ
s

.
J t[ j]
)
ki

+
nΘ
a J

t∑
j=1

∂Φ

∂
(

Θ
a J

t[ j]
)
ki

(
Θ
a

.
J t[ j]
)
ki

− i

.
ΘΘΘ ··· (ε : σε : σε : σ ) ≤ 0. (54)

For arbitrary but admissible
.
θ ,

.
ggg,

.
εεε[ j]; j = 1, 2, . . . , nε, ta

.
rrr [ j]; j = 1, 2, . . . , nt

ar ,
Θ
s

.
JJJ t[ j]; j = 1, 2, . . . , nΘ

s J
t ,

and Θ
a

.
JJJ t[ j]; j = 1, 2, . . . , nΘ

a J
t , the entropy inequality will hold if their coefficients are zero. Hence, we obtain

the following:

ρ0

(
η + ∂Φ

∂θ

)
= 0 �⇒ η = − ∂Φ

∂θ
, (55)

∂Φ

∂gi
= 0 �⇒ Φ �= Φ(ggg),

∂Φ

∂εεε[ j]
= 0; j = 1, 2, . . . , nε �⇒ Φ �= Φ

(
εεε[ j]; j = 1, 2, . . . , nε

)
,

∂Φ

∂ tarrr [ j]
= 0; j = 1, 2, . . . , nt

ar �⇒ Φ �= Φ
(t
arrr [ j]; j = 1, 2, . . . , nt

ar
)
,

∂Φ

∂Θ
s JJJ

t[ j]
= 0; j = 1, 2, . . . , nΘ

s J
t �⇒ Φ �= Φ

(
Θ
s JJJ

t[ j]; j = 1, 2, . . . , nΘ
s J

t

)
,

∂Φ

∂Θ
aJJJ

t
[ j]

= 0; j = 1, 2, . . . , nΘ
a J

t �⇒ Φ �= Φ
(

Θ
aJJJ

t
[ j]; j = 1, 2, . . . , nΘ

a J
t

)
. (56)
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Condition (55) implies that η is not a constitutive variable. Using (56), the entropy inequality reduces to

(
ρ0

∂Φ

∂εki
− sσki

)
.
εki +

(
ρ0

∂Φ

∂
(
t
arki
) − aσki

)
t
a
.
rki +

(
ρ0

∂Φ

∂
(
Θ
s J

t
ki

) − smki

)
Θ
s

.
J tki

+
(

ρ0
∂Φ

∂
(
Θ
a J

t
ki

) − amki

)
Θ
a

.
J tki + q · gq · gq · g

θ
− i

.
ΘΘΘ ··· (ε : σε : σε : σ ) ≤ 0, (57)

and the argument tensors of Φ are modified as well,

Φ = Φ
(
εεε, tarrr,

Θ
s JJJ

t , Θ
aJJJ

t , θ
)
, (58)

The argument tensors of the remaining constitutive variables remain the same as in (52).
The entropy inequality in the form given by (57) is essential. For example, for arbitrary but admissible

choices of
.
εεε, ta

.
rrr , Θ

s

.
JJJ t , and Θ

a

.
JJJ t , if it is assumed that their coefficients in (57) are zero, then

sσσσ = ρ0
∂Φ

∂εεε
�⇒ sσσσ = sσσσ (εεε, θ),

aσσσ = ρ0
∂Φ

∂ tarrr
�⇒ aσσσ = aσσσ (tarrr, θ),

smmm = ρ0
∂Φ

∂Θ
s JJJ t

�⇒ smmm = smmm(Θs JJJ
t , θ),

ammm = ρ0
∂Φ

∂Θ
aJJJ t

�⇒ ammm = ammm(ΘaJJJ
t , θ).

(59)

We note that (59) are invalid based on (52), hence in the entropy inequality the following must hold (leaving
the first term as is):

∂Φ

∂ tarrr
= 0; ∂Φ

∂Θ
s JJJ t

= 0; ∂Φ

∂Θ
aJJJ t

= 0, (60)

Using (60) in (57), the entropy inequality reduces to
(

ρ0
∂Φ

∂εki
− sσki

)
.
εki − aσki

(
t
a
.
rki
)

− smki

(
Θ
s

.
J tki

)
− amki

(
Θ
a

.
J tki

)
+ q · gq · gq · g

θ
− i

.
ΘΘΘ ··· (ε : σε : σε : σ ) ≤ 0, (61)

and the argument tensors of Φ are modified,

Φ = Φ(εεε, θ), (62)

In order to proceed further, consider the decomposition of the symmetric Cauchy stress tensor, sσσσ into
equilibrium e(sσσσ ) and deviatoric d(sσσσ ) stress tensors,

sσσσ = e(sσσσ ) + d(sσσσ ). (63)

Substituting (63) in (61) gives
(

ρ0
∂Φ

∂εki
− e(sσ)ki

)
.
εki − d(sσ)ki

.
εki − aσki

(
t
a
.
rki
)

− smki

(
Θ
s

.
J tki

)
− amki

(
Θ
a

.
J tki

)

+q · gq · gq · g
θ

− i

.
ΘΘΘ ··· (ε : σε : σε : σ ) ≤ 0. (64)

For small deformation and small strain the matter is incompressible (|J | = 1), hence

∂Φ

∂εki
= ∂Φ

∂|J |
∂|J |
∂εki

= 0 as
∂Φ

∂|J | = 0. (65)
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Thus, the first term in (64) cannot be used to derive the constitutive theory for e(sσσσ ). Note that e(sσσσ ) in (64) is
in fact only valid for compressible matter if the coefficient of

.
εkl is set to zero. The incompressibility condition

must be introduced in (64),

∇̄∇∇ ··· v̄vv = tr[D̄] = tr[L̄] = tr(
.
JJJ JJJ−1) = .

J kl(J
−1)lk = .

J klδlk = 0. (66)

Also

tr([L̄]T ) = tr
(
(JJJ−1)T

.
JJJT ) = (J−1)lk

.
J lk = .

J lkδlk = 0. (67)

Since

tr[L̄] = tr([L̄]T ) (68)

we can write

1

2

(
tr[L̄] + tr([L̄]T )

) = 1

2
(
.
J klδlk + .

J lkδlk) = .
εklδkl = 0, (69)

Let p(θ) be an arbitrary Lagrange multiplier. Then, the incompressibility condition based on (69) becomes

p(θ)
.
εkiδki = 0. (70)

Adding (70) to the left side of (64) and using ∂Φ/∂εεε = 0,

(
p(θ)δki − e(sσ)ki

) .
εki − d(sσ)ki

.
εki − aσki

(
t
a
.
rki
)

− smki

(
Θ
s

.
J tki

)
− amki

(
Θ
a

.
J tki

)

+q · gq · gq · g
θ

− i

.
ΘΘΘ ··· (ε : σε : σε : σ ) ≤ 0. (71)

For arbitrary but admissible
.
εεε, (71) holds if

p(θ)δki − e(sσ)ki = 0. (72)

or

e(sσσσ ) = p(θ)III . (73)

This is the constitutive theory for the equilibrium stress for an incompressible solid. p(θ) is called the mechan-
ical pressure. If compressive pressure is assumed to be positive, then p(θ) in (73) can be replaced by −p(θ).
The entropy inequality now reduces to

q · gq · gq · g
θ

− d(sσ)ki
.
εki − aσki

(
t
a
.
rki
)

− smki

(
Θ
s

.
J tki

)
− amki

(
Θ
a

.
J tki

)
− i

.
ΘΘΘ ··· (ε : σε : σε : σ ) ≤ 0. (74)

The corresponding energy equation becomes

ρ0
De

Dt
+ ∇ · q∇ · q∇ · q − tr

([d(sσ)][ .ε])− tr
([aσ ][ta

.
r ])− tr

([sm][Θs
.
J t ])− tr

([am][Θa
.
J t ]) = 0. (75)

The entropy inequality (74) is satisfied if

sσ Ψ = tr
([d(sσ)][ .ε]) > 0,

aσ Ψ = tr
([aσ ][ta

.
r ]) > 0,

smΨ = tr
([sm][Θs

.
J t ]) > 0,

amΨ = tr
([am][Θa

.
J t ]) > 0,

(76)

q · gq · gq · g
θ

≤ 0 (77)

and

i

.
ΘΘΘ ··· (ε : σε : σε : σ ) = 0. (78)
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The conditions (76) imply that the rate of work due to d(sσσσ ), aσσσ , smmm, and ammm must be positive. Inequality
(77) can be used to derive the constitutive theory for qqq. Equation (78) serves as a constraint (compatibility
condition) on iΘΘΘ and the antisymmetric components of the Cauchy stress tensor σσσ . The rate of work or the
work conjugate pairs in (74) are in conformity with (52). The argument tensors of the constitutive variables in
(52) can now be revised,

d(sσσσ ) = d(sσσσ )(εεε,εεε[i]; i = 1, 2, . . . , nε, θ),

aσσσ = aσσσ
(t
arrr,

t
arrr [ j]; j = 1, 2, . . . , n(tar), θ

)
,

smmm = smmm
(

Θ
s JJJ

t , Θ
s JJJ

t
[k]; k = 1, 2, . . . , n(Θs J

t ), θ
)

,

ammm = ammm
(

Θ
aJJJ

t , Θ
aJJJ

t[l]; l = 1, 2, . . . , n(Θa J
t ), θ

)
,

qqq = qqq(ggg, θ),

e(sσσσ ) = p(θ)III,
Φ = Φ(θ)

(79)

and

sσσσ = e(sσσσ ) + d(sσσσ ). (80)

6 Constitutive theories

Note that in (79), d(sσσσ ) and smmm are symmetric tensors of rank two, and their argument tensors are also
symmetric tensors of rank two (except temperature θ ). aσσσ and ammm are antisymmetric tensors of rank two, and
their argument tensors are also antisymmetric tensors of rank two (except θ ). qqq is a tensor of rank one, and
its argument tensors ggg and θ are tensors of rank one and zero. Hence, the representation theorem (theory of
generators and invariants) of Spencer, Wang, Zheng, and others [49–68] can be used to derive constitutive
theories for these constitutive variables.

6.1 Representation theorem

The following Sections present derivations of the constitutive theories for d(sσσσ ), aσσσ , smmm, ammm, and qqq using the
theory of generators and invariants (representation theorem) based on pioneering works of Spencer, Wang,
Zheng, etc. [49–68]. To illustrate the basic concepts of representation theorem, consider a symmetric tensor
TTT (AAA1, AAA2, . . . , AAAk) of rank two with AAA1, AAA2, . . . , AAAk as its arguments that could be a mix of tensors of rank
two or lower. If tensor TTT belongs to a space then the space must have a basis, referred to as integrity. Spencer,
Wang, Zheng, etc. [49–68] have shown that for a symmetric tensor TTT of rank two, the basis consists of all
possible symmetric tensors of rank two that are derived using its arguments AAAi , i = 1, 2, . . . , k, referred
to as combined generators of the argument tensors. If III , GGG˜i , i = 1, 2, . . . , N are the combined generators
constituting the basis (symmetric tensors of rank two) of the of space of tensor TTT , then TTT can be represented
by a linear combination of III , GGG˜i , i = 1, 2, . . . , N , i.e.,

TTT = α0III +
N∑
i=1

αiGGG˜i (81)

αi = αi (I˜j ; j = 1, 2, . . . , M); i = 0, 1, . . . , N (82)

in which I˜j ; j = 1, 2, . . . , M are the combined invariants of the argument tensors of TTT (···).
Remarks.

(i) When TTT is an antisymmetric tensor of rank two, then the same representation theorem concept applies
except that in this case the combined generators GGG˜i will all be antisymmetric tensors of rank two.

(ii) If TTT is a tensor of rank one with its arguments as tensors of rank two, one, or zero, then the combined
generators of these argument tensors are tensors of rank one and the representation theorem holds.
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(iii) It has not been shown in Ref. [49–68] or elsewhere, to our knowledge, that if TTT is a non-symmetric tensor
of some rank with non-symmetric tensors as its arguments, then the representation theorem holds.

(iv) Material coefficients are derived fromαi (···) i = 0, 1, . . . , N usingTaylor series expansion in the invariants
and others (like temperature θ ).

(v) We remark that the representation theorem holds even if AAAi are a mix of symmetric and antisymmetric
tensors (chosen based on TTT and the desired physics), keeping in mind that a non-symmetric tensor can
be decomposed into symmetric and antisymmetric tensors. If we wish to represent a symmetric tensor
using the basis of a space in which it resides, then the basis must consist of symmetric tensors only. The
same argument holds for antisymmetric tensors. In view of the representation theorem, non-symmetric
tensors must be decomposed into symmetric and antisymmetric tensors as done in the present work in
the derivation of the entropy inequality (50).

6.2 Constitutive theory for d(sσσσ )

Consider the argument tensors of d(sσσσ ) in (79). Let sσGGG˜i ; i = 1, 2, . . . , Nsσ be the combined generators of
the argument tensors of d(sσσσ ) that are symmetric tensors of rank two and let sσI˜j ; j = 1, 2, . . . , Msσ be the
combined invariants of the same argument tensors. Then, the following holds in the current configuration:

d(sσσσ ) = sσα˜0III +
Nsσ∑
i=1

sσα˜i (sσGGG˜i ) (83)

in which
sσα˜i = sσα˜i (sσI˜j ; j = 1, 2, . . . , Msσ , θ); i = 1, 2, . . . , Nsσ . (84)

To determine the material coefficients in (83), expand each sσα˜i in a Taylor series in sσI˜j ; j = 1, 2, . . . , Msσ

and θ about a known configuration Ω , retaining only up to linear terms in sσI˜j ; j = 1, 2, . . . , Msσ , and θ ,
and then substitute these sσα˜i in (83). After collecting coefficients of those terms that are defined in the current
configuration, we obtain the following:

d(sσσσ ) = 0
sσ |Ω III +

Msσ∑
j=1

sσa j

(
sσI˜j )III − sσα˜tm

(
θ − θΩ

)
III

+
Nsσ∑
i=1

sσbi
(
sσGGG˜i )+

Nsσ∑
i=1

Msσ∑
j=1

sσc˜i j
(
sσI˜j )(sσGGG˜i )+

Nsσ∑
i=1

sσd˜i
(
θ − θΩ

) (
sσGGG˜i ) (85)

in which

0
sσ |Ω = sσα˜

0

∣∣∣∣∣∣Ω −
Msσ∑
j=1

∂(sσα˜
0)

∂(sσI˜
j )

∣∣∣∣∣∣
Ω

(
sσI˜

j )
Ω
,

sσa j =
∂(sσα˜

0)

∂(sσI˜
j )

∣∣∣∣∣∣
Ω

; j = 1, 2, . . . , Msσ ,

sσbi = sσα˜
i

∣∣∣∣∣∣Ω −
Msσ∑
j=1

∂(sσα˜
i )

∂(sσI˜
j )

∣∣∣∣∣∣
Ω

(
sσI˜

j )
Ω
; i = 1, 2, . . . , Nsσ ,

sσc˜i j =
∂(sσα˜

i )

∂(sσI˜
j )

∣∣∣∣∣∣
Ω

; i = 1, 2, . . . , Nsσ

j = 1, 2, . . . , Msσ ,

sσα˜tm = −
∂(sσα˜

0)

∂θ

∣∣∣∣∣∣
Ω

,

sσd˜i =
∂(sσα˜

i )

∂θ

∣∣∣∣∣∣
Ω

; i = 1, 2, . . . , Nsσ .

(86)
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sσa j , s
σbi , s

σc˜i j , sσd˜i , and sσα˜tm are material coefficients defined in the known configurationΩ . This constitutive
theory requires (Msσ + Nsσ + Msσ Nsσ + Nsσ + 1) material coefficients. The material coefficients defined in
(85) are functions of (sσI˜j )Ω and θ |Ω . This constitutive theory is based on integrity, the only assumption being
in the truncation of the Taylor series expansion of sσα˜i ; i = 0, 1, . . . , Nsσ .

6.2.1 Simplified constitutive theory for d(sσσσ )

The constitutive theory (85) obviously requires the determination of too many material coefficients. If nε is
limited to 1, then

d(sσσσ ) = d(sσσσ )(εεε,εεε[1], θ) = d(sσσσ )(εεε,
.
εεε, θ). (87)

If the constitutive theory is further limited to be linear in εεε and
.
εεε and product terms containing εεε and

.
εεε

are neglected, then (85) simplifies to (after neglecting initial stress and temperature terms without loss of
generality)

d(sσσσ ) = 2μεεε + λtr(εεε)III + 2μ1
.
εεε + λ1tr(

.
εεε)III . (88)

This constitutive theory requires only four material coefficients. μ and λ are Lamé’s constants for the strain
terms. μ1 and λ1 are corresponding material coefficients: related to strain rates.

6.3 Constitutive theory for aσσσ

Consider the argument tensors of aσσσ in (79). Let aσGGG˜i ; i = 1, 2, . . . , Naσ be the combined generators of the
argument tensors of aσσσ that are antisymmetric tensors of rank two and let aσI˜j ; j = 1, 2, . . . , Maσ be the
combined invariants of the same argument tensors. Then, the following holds in the current configuration:

aσσσ =
Naσ∑
i=1

aσα˜i (aσGGG˜i ) (89)

in which

aσα˜i = aσα˜i (aσI˜j ; j = 1, 2, . . . , Maσ , θ); i = 1, 2, . . . , Naσ . (90)

To determine the material coefficients in (89), expand each aσα˜i in a Taylor series in aσI˜j ; j = 1, 2, . . . , Maσ

and θ about a known configuration Ω , retaining only up to linear terms in aσI˜j ; j = 1, 2, . . . , Maσ and θ , and
then substitute these aσα˜i in (89). After collecting coefficients of those terms that are defined in the current
configuration, the following is obtained:

aσσσ =
Naσ∑
i=1

aσbi
(
aσGGG˜i )+

Naσ∑
i=1

Maσ∑
j=1

aσc˜i j
(
aσI˜j )(aσGGG˜i )+

Naσ∑
i=1

aσd˜i
(
θ − θΩ

) (
aσGGG˜i ). (91)

aσa j , a
σbi , a

σc˜i j , aσd˜i , and aσα˜tm are material coefficients defined in the known configurationΩ . This constitutive
theory requires (Maσ +Naσ +Maσ Naσ +Naσ +1)material coefficients. The material coefficients are functions
of (aσI˜j )Ω and θ |Ω . This constitutive theory is based on integrity, the only assumption being in the truncation
of the Taylor series expansion of aσα˜i ; i = 0, 1, . . . , Naσ . Explicit forms of the material coefficients can be
obtained from (86) by simply replacing the back superscript s with a.
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6.3.1 Simplified constitutive theory for aσσσ

The constitutive theory (91) based on integrity can be simplified by choosing nt
ar = 1,

aσσσ = aσσσ
(
t
arrr,

t
a
.
rrr, θ
)

. (92)

In this case aσGGG˜1 = t
arrr , aσGGG˜2 = t

a
.
rrr , and σGGG˜3 = [

t
ar
] [

t
a
.
r
]

−
[
t
a
.
r
] [

t
ar
]
are the only combined generators and

aσI˜1 = tr
((

t
arrr
)2), aσI˜2 = tr

((
t
a
.
rrr
)2), and aσI˜3 = tr

([
t
ar
][

t
a
.
r
])

are the only invariants, giving rise to a constitutive
theory with 19 material coefficients (Naσ = 3, Maσ = 3). A linear constitutive theory for aσσσ (neglecting initial
stress and θ terms and excluding products of tarrr and

t
a
.
rrr) will be

aσσσ = aσβ1
(t
arrr
)+ aσβ2

(
t
a
.
rrr
)

. (93)

The material coefficients aσβ1 and aσβ2 can be functions of the invariants and the temperature θ .

6.4 Constitutive theory for smmm

Consider the argument tensors of smmm in (79). Let smGGG˜i ; i = 1, 2, . . . , Nsm be the combined generators of the
argument tensors of smmm that are symmetric tensors of rank two and let smI˜j ; j = 1, 2, . . . , Msm be the combined
invariants of the same argument tensors. Then, the following holds in the current configuration:

smmm = smα˜0III +
Nsm∑
i=1

smα˜i (smGGG˜i ) (94)

in which

smα˜i = smα˜i (smI˜j ; j = 1, 2, . . . , Msm, θ); i = 1, 2, . . . , Nsm . (95)

To determine the material coefficients in (94), expand each smα˜i in a Taylor series in smI˜j ; j = 1, 2, . . . , Msm

and θ about a known configuration Ω , retaining only up to linear terms in smI˜j ; j = 1, 2, . . . , Msm and θ , and
then substitute these smα˜i in (94). After collecting coefficients of those terms that are defined in the current
configuration, the following is obtained:

smmm = 0
sm|Ω III +

Msm∑
j=1

sma j

(
smI˜j )III − smα˜tm

(
θ − θΩ

)
III

+
Nsm∑
i=1

smbi
(
smGGG˜i )+

Nsm∑
i=1

Msm∑
j=1

smc˜i j
(
smI˜j )(smGGG˜i )+

Nsm∑
i=1

smd˜i
(
θ − θΩ

) (
smGGG˜i ). (96)

sma j , s
mbi , s

mc˜i j , smd˜i , and smα˜tm arematerial coefficients defined in the known configurationΩ . This constitutive
theory requires (Msm +Nsm +MsmNsm +Nsm +1)material coefficients. The material coefficients are functions
of (smI˜j )Ω and θ |Ω . This constitutive theory is based on integrity, the only assumption being in the truncation
of the Taylor series expansion of smα˜i ; i = 0, 1, . . . , Nsm . Explicit forms of the material coefficients can be
obtained from (86) by simply replacing the back superscript sσ with sm and 0

sσ |Ω by 0
sm|Ω .

6.4.1 Simplified constitutive theory for smmm

A much simplified constitutive theory for smmm can be obtained if nsm is limited to 1,
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smmm = smmm
(

Θ
s JJJ

t , Θ
s

.
JJJ t , θ

)
, (97)

If the constitutive theory is further limited to be linear in Θ
s JJJ

t and Θ
s

.
JJJ t and product terms containing Θ

s JJJ
t and

Θ
s

.
JJJ t are neglected, then (96) simplifies to (after neglecting initial moment and temperature terms without loss

of generality)

smmm = smβ1
(
Θ
s JJJ

t)+ smβ2

(
Θ
s

.
JJJ t
)

. (98)

The material coefficients smβ1 and smβ2 can be functions of the invariants and the temperature θ .

6.5 Constitutive theory for ammm

Consider the argument tensors of ammm in (79). Let amGGG˜i ; i = 1, 2, . . . , Nam be the combined generators of the
argument tensors of ammm that are antisymmetric tensors of rank two and let amI˜j ; j = 1, 2, . . . , Mam be the
combined invariants of the same argument tensors. Then, the following holds in the current configuration:

ammm =
Nam∑
i=1

amα˜i (amGGG˜i ) (99)

in which

amα˜i = amα˜i (amI˜j ; j = 1, 2, . . . , Mam, θ); i = 1, 2, . . . , Nam . (100)

To determine the material coefficients in (99), expand each amα˜i in a Taylor series in amI˜j ; j = 1, 2, . . . , Mam

and θ about a known configuration Ω , retaining only up to linear terms in amI˜j ; j = 1, 2, . . . , Mam , and θ , and
then substitute these amα˜i in (99). After collecting coefficients of those terms that are defined in the current
configuration, the following is obtained:

ammm =
Nam∑
i=1

ambi
(
amGGG˜i )+

Nam∑
i=1

Mam∑
j=1

amc˜i j
(
amI˜j )(amGGG˜i )+

Nam∑
i=1

amd˜i
(
θ − θΩ

) (
amGGG˜i ). (101)

ama j , a
mbi , a

mc˜i j , amd˜i , and amα˜tm arematerial coefficients defined in the known configurationΩ . This constitutive
theory requires (Mam +Nam +MamNam +Nam +1)material coefficients. Thematerial coefficients are functions
of (amI˜j )Ω and θ |Ω . This constitutive theory is based on integrity, the only assumption being in the truncation
of the Taylor series expansion of amα˜i ; i = 0, 1, . . . , Nam . Explicit forms of the material coefficients can be
obtained from (86) by simply replacing the back superscript sσ with am and 0

aσ |Ω by 0
am|Ω .

6.5.1 Simplified constitutive theory for ammm

The constitutive theory (101) based on integrity can be simplified by choosing nΘ
a J

t = 1,

ammm = ammm
(

Θ
aJJJ

t , Θ
a

.
JJJ t , θ

)
. (102)

In this case amGGG˜1 = Θ
aJJJ

t , amGGG˜2 = Θ
a

.
JJJ t , and amGGG˜3 = [Θa J t ][Θa

.
J t ]− [Θa

.
J t ][Θa J t ] are the only combined generators

and amI˜1 = tr
(
(ΘaJJJ

t )2
)
, amI˜2 = tr

(
(Θa

.
JJJ t )2

)
, and amI˜3 = tr

([Θa J t ][Θa .J t ]) are the only invariants, giving rise to
a constitutive theory with 19 material coefficients (Nam = 3, Mam = 3). A linear constitutive theory for ammm

(neglecting initial moment and θ terms and excluding products of Θ
aJJJ

t and Θ
a

.
JJJ t ) will be

ammm = amβ1
(
Θ
aJJJ

t)+ amβ2

(
Θ
a

.
JJJ t
)

. (103)

The material coefficients amβ1 and amβ2 can be functions of the invariants and the temperature θ .
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6.6 Constitutive theory for qqq

Recall the inequality (77) resulting from the entropy inequality,

q · gq · gq · g ≤ 0 (as θ > 0). (104)

In (104), qqq and ggg are conjugate. The simplest possible constitutive theory for qqq can be derived by assuming
that qqq is proportional to −ggg which leads to the following for qqq [69,75]:

qqq = − k(θ)ggg. (105)

Alternatively if we assume

qqq = qqq(ggg, θ) (106)

then using the representation theorem (theory of generators and invariants), we can begin with (as ggg is the only
combined generator of ggg and θ that is a tensor of rank one) in the current configuration

qqq = − qαggg (107)

in which

qα = qα(qI˜, θ); qI˜= g · gg · gg · g, (108)

qI˜being the only invariant of the argument tensors ggg and θ . Expanding qα in a Taylor series in qI˜ and θ about
a known configuration Ω and retaining only up to linear terms in qI˜ and θ , we can obtain the following [69]:

qqq = − k|Ωggg − k1|Ω{g}T {g}ggg − k2|Ω(θ − θΩ)ggg (109)

where

k|Ω = qα|Ω + ∂qα

∂qI˜

∣∣∣∣∣
Ω

({g}T {g})Ω,

k1|Ω = ∂qα

∂qI˜

∣∣∣∣∣
Ω

,

k2|Ω = ∂qα

∂θ

∣∣∣∣
Ω

.

(110)

The constitutive theory (109) is the simplest possible constitutive theory based on the representation theorem
(using (106)). The only assumption in this constitutive theory is the truncation of Taylor series beyond linear
terms in qI˜and θ . This constitutive theory is based on integrity, hence complete. Obviously (105), the Fourier
heat conduction law is a subset of (109) when k is the only material coefficient and it only depends on
temperature θ .

7 Complete mathematical model

This Section presents the complete mathematical model including the linear constitutive theories when (i)
the balance of moment of moments is not a balance law and (ii) when the balance of moment of moments
is a balance law. Only linear constitutive theories are included here for simplicity. The complete constitutive
theories based on integrity given in this paper can be used to derive any desired subset suitable for the application
at hand.
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7.1 When the balance of moment of moments is not a balance law

For this case, we use the same conservation and balance laws that are used in classical continuum theories. In
this case, the Cauchy moment tensor is not symmetric; hence, constitutive theories are required for both smmm
and ammm. Details of the complete mathematical model (including the final form of the entropy inequality) are
given in the following (only for linear constitutive theories):

ρ0(xxx) = |J |ρ(xxx, t) ; |J | = 1,

ρ0
Dvvv

Dt
− ρ0FFFb − ∇ · σ∇ · σ∇ · σ = 0,

∇ · m∇ · m∇ · m − ε : σε : σε : σ = 0,

ρ0
De

Dt
+ ∇ · q∇ · q∇ · q − tr

([d(sσ)][ .ε])− tr
([

aσ
][t

a
.
r
])− tr

([
sm
][

Θ
s

.
J t
])− tr

([
am
][

Θ
a

.
J t
]) = 0,

q · gq · gq · g
θ

− d(sσ)ki
.
εεεki − aσki

(t
a
.
rki
)− smki

(
Θ
s

.
J tki
)− amki

(
Θ
a

.
J tki
)− i

.
ΘΘΘ ··· (ε : σε : σε : σ ) ≤ 0,

σσσ = sσσσ + aσσσ ; sσσσ = e(sσσσ ) + d(sσσσ ),

mmm = smmm + ammm. (111)

Constitutive Theories

d(sσσσ ) = 2μεεε + λtr(εεε)III + 2μ1
.
εεε + λ1tr(

.
εεε)III,

aσσσ = aσβ1
(t
arrr
)+ aσβ2

(t
a
.
rrr
)
,

smmm = smβ1
(
Θ
s JJJ

t)+ smβ2
(
Θ
s

.
JJJ t
)
,

ammm = amβ1
(
Θ
aJJJ

t)+ amβ2
(
Θ
a

.
JJJ t
)
,

qqq = −k(θ)ggg,

e(sσσσ ) = p(θ)III; mechanical pressure (mean normal stress).

(112)

These are a system of 28 partial differential equations (linear momenta (3), angular momenta (3), energy
(1), constitutive theories for: sσσσ (6), aσσσ (3), smmm (6), ammm (3), qqq (3)) in 28 variables: displacementsuuu (3), Cosserat
rotations eΘΘΘ (3), sσσσ (6), aσσσ (3), smmm (6), ammm (3), qqq (3), and temperature θ (1); hence, the mathematical model
has closure. This mathematical model requires the minimum of eleven material coefficients for 2D and 3D.

7.2 When the balance of moment of moments is a balance law

In this case, the Cauchy moment tensor is symmetric,

mmm = smmm; ammm = 0. (113)

Hence, the constitutive theory for ammm is not needed. This reduces the number of equations by three (constitutive
equations for ammm are eliminated) and the number of variables by three (ammm are eliminated as constitutive
variables); thus, in this case there are 25 equations in 25 dependent variables. The two material coefficients
associated with ammm are eliminated, leading to the minimum of nine material coefficients in 2D and 3D.

8 Summary and conclusions

In this paper, we have presented a non-classical continuum theory and associated constitutive theories for ther-
moviscoelastic solids without memory that incorporates internal rotations due to the Jacobian of deformation
as well as the Cosserat rotations at a material point. Both rotations are defined about a triad at each material
point with axes parallel to the fixed x-frame. The internal rotations are completely defined by the antisymmetric
part of the Jacobian of deformation (or the antisymmetric part of the displacement gradient tensor), hence are
known, whereas the Cosserat rotations are additional three unknown degrees of freedom at each material point,
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thus giving rise to a total of six degrees of freedom at each material point. Derivations of the conservation and
balance laws are presented, followed by detailed derivations of the constitutive theories consistent with the
conditions resulting from the second law of thermodynamics in conjunction with the representation theorem.
In the following, we summarize significant aspects of the work presented in this paper.

1. The rate of work due to internal rotations resulting from the Jacobian of deformation as well as due to
Cosserat rotations is considered in the conservation and balance laws as opposed to the rate of work only
due to Cosserat rotations in [79].

2. As shown by Yang et al. [84] and Surana et al. [70,71], the balance of moment of moments balance law is
required in non-classical continuum theories to ensure that the deforming volume ofmatter is in equilibrium.
Due to this balance law, the Cauchy moment tensor becomes symmetric. In this paper, we have derived
constitutive theories when the balance of moment of moments is not a balance law as well as when it is
considered as a balance law.

3. For thermoviscoelastic solids, some part of the mechanical work results in dissipation (entropy generation).
In this paper, we consider:
(a) When balance of moment of moments is not a balance law, the dissipation mechanism is due to d(sσσσ ),

aσσσ , smmm, as well as ammm.
(b) When the balance ofmoment ofmoments is a balance law, ammm = 0, hence there is no entropy generation

due to ammm. All others remain the same as in (a).
4. Many shortcomings and inconsistencies in the balance laws in the works of Eringen [79] pointed out by

Surana et al. [47] hold here as well, but are not repeated for the sake of brevity. An important point to note
is that when the constitutive variable and its argument tensors (some or all) are non-symmetric tensors, then
the constitutive theory for the constitutive variable can not be derived using the representation theorem.
Decomposition of the dependent variables and their argument tensors into symmetric and antisymmetric
tensors is necessary to establish conjugate pairs that either contain symmetric tensors or antisymmetric
tensors so that the representation theorem can be used to derive the constitutive theories as done in the
present work.

5. As shown in this paper, the constitutive theories based on integrity are almost always nonlinear in their
argument tensors. Their linearizations are perfectly valid if limited physics is of interest, however the
conclusions that may be drawn from the superposition of linear constitutive theories are obviously invalid.
An example would be linear constitutive theories for d(sσσσ ) and aσσσ , suggesting a constitutive theory for
(d(sσσσ ) + aσσσ ), a non-symmetric tensor in terms of non-symmetric argument tensors.

6. In the present work, we have assumed that since the internal rotations due to the Jacobian of deformation
and Cosserat rotations are additive, a constitutive theory should be possible for the combined total rotations.
This appears to be the approach used in published works, hence has been adopted here as well. However, if
the two sets of rotations are associated with different physics, then obviously separate constitutive theories
are warranted. This requires rederivation of the first and second laws of thermodynamics, new conjugate
pairs, and associated constitutive theories. This work is currently in progress and will be the subject of
upcoming papers.

In conclusion, the work presented in this paper is a consistent thermodynamic framework for non-classical
thermoviscoelastic solidswithoutmemory incorporating internal andCosserat rotations at amaterial point. The
paper contains thermodynamically consistent derivations of constitutive theories in which all possible mecha-
nisms of mechanical energy storage and dissipation that are supported by the second law of thermodynamics
are considered. Modifications of the general constitutive theories presented here for specific applications are
rather straightforward.
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